首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mitochondria are the foremost producers of the cellular energy currency ATP. They are also a significant source of reactive oxygen species and an important buffer of intracellular calcium. Mitochondrial retrograde signals regulate energy homeostasis and pro-survival elements whereas anterograde stimuli can trigger programmed cell death. Maintenance of a healthy, functional mitochondria network is therefore essential, and several mechanisms of mitochondrial quality control have been described. Mitochondrial dysfunction is linked to several neurodegenerative conditions including Parkinson, and Huntingdon diseases as well as Amyotrophic lateral sclerosis. Understanding the mechanisms governing mitochondrial quality control may reveal novel strategies for pharmacological intervention and disease therapy.  相似文献   

3.
4.
5.
6.
A unique organelle for studying membrane biochemistry is the mitochondrion whose functionality depends on a coordinated supply of proteins and lipids. Mitochondria are capable of synthesizing several lipids autonomously such as phosphatidylglycerol, cardiolipin and in part phosphatidylethanolamine, phosphatidic acid and CDP-diacylglycerol. Other mitochondrial membrane lipids such as phosphatidylcholine, phosphatidylserine, phosphatidylinositol, sterols and sphingolipids have to be imported. The mitochondrial lipid composition, the biosynthesis and the import of mitochondrial lipids as well as the regulation of these processes will be main issues of this review article. Furthermore, interactions of lipids and mitochondrial proteins which are highly important for various mitochondrial processes will be discussed. Malfunction or loss of enzymes involved in mitochondrial phospholipid biosynthesis lead to dysfunction of cell respiration, affect the assembly and stability of the mitochondrial protein import machinery and cause abnormal mitochondrial morphology or even lethality. Molecular aspects of these processes as well as diseases related to defects in the formation of mitochondrial membranes will be described.  相似文献   

7.
Mitochondria are intracellular organelles thought to have evolved from an alphaproteobacterium engulfed by the ancestor of the eukaryotic cell, an archeon, two billion years ago. Although mitochondria are frequently recognised as the “power plant” of the cell, the function of these organelles go beyond the simple generation of ATP. In fact, mounting evidence suggests that mitochondria are involved in several cellular processes, from regulation of cell death to signal transduction. Given this important role in cell physiology, mitochondrial dysfunction has been frequently associated with human diseases including cancer. Importantly, recent evidence suggests that mitochondrial function is directly regulated by oncogenes and tumour suppressors. However, the consequences of deregulation of mitochondrial function in tumour formation are still unclear. In this review, I propose that mitochondria play a pivotal role in shaping the oncogenic signalling cascade and that mitochondrial dysfunction, in some circumstances, is a required step for cancer transformation.  相似文献   

8.
线粒体是细胞内氧化磷酸化(oxidative phosphorylation,OXPHOS)和合成三磷酸腺苷(adenosine triphosphate,ATP)的细胞器,是细胞能量代谢的“动力工厂”。线粒体几乎存在于所有真核生物中,参与细胞凋亡、钙稳态以及先天免疫反应的调节等过程,对细胞行使正常的生理功能至关重要。线粒体是半自主细胞器,拥有自身的基因组DNA,编码37个基因,包括2个rRNA基因、13个m RNA基因和22个tRNA基因。线粒体的基因表达需要经过复杂的转录和转录后加工过程,包括多顺反子RNA的切割、RNA的修饰以及RNA的末端加工等过程。异常的线粒体RNA加工会导致线粒体RNA表达谱发生变化、线粒体翻译紊乱、线粒体功能失常等,从而造成多种线粒体相关疾病。本文综述了线粒体DNA的转录、RNA转录后加工以及影响RNA加工的因素方面的最新研究进展。  相似文献   

9.
10.
11.
Mitochondria are the energy producing dynamic double-membraned organelles essential for cellular and organismal survival. A multitude of intra- and extra-cellular signals involved in the regulation of energy metabolism and cell fate determination converge on mitochondria to promote or prevent cell survival by modulating mitochondrial function and structure. Mitochondrial fitness is maintained by mitophagy, a pathway of selective degradation of dysfunctional organelles. Mitophagy impairment and altered clearance results in increased levels of dysfunctional and structurally aberrant mitochondria, changes in energy production, loss of responsiveness to intra- and extra-cellular signals and ultimately cell death. The decline of mitochondrial function and homeostasis with age is reported to be central to age-related pathologies. Here we discuss the molecular mechanisms controlling mitochondrial dynamics, mitophagy and cell death signalling and how their perturbation may contribute to ageing and age-related illness.  相似文献   

12.
Boveris A  Cadenas E 《IUBMB life》2000,50(4-5):245-250
Mitochondria are considered the major cellular site for hydrogen peroxide production, a process that is kinetically controlled by the availability of oxygen and nitric oxide to cytochrome oxidase and of ADP to F1-ATPase. The multisite regulation of mitochondrial respiration and energy-transducing pathways support a critical regulatory role of mitochondrion in cell signaling pathways. The cellular steady-state levels of hydrogen peroxide and the role of mitochondria in maintaining these levels are reviewed.  相似文献   

13.
14.
Mitochondria are essential organelles for cellular homeostasis. A variety of pathologies including cancer, myopathies, diabetes, obesity, aging and neurodegenerative diseases are linked to mitochondrial dysfunction. Therefore, mapping the different components of mitochondria is of particular interest to gain further understanding of such diseases. In recent years, proteomics-based approaches have been developed in attempts to determine the complete set of mitochondrial proteins in yeast, plants and mammals. In addition, proteomics-based methods have been applied not only to the analysis of protein function in the organelle, but also to identify biomarkers for diagnosis and therapeutic targets of specific pathologies associated with mitochondria. Altogether, it is becoming clear that proteomics is a powerful tool not only to identify currently unknown components of the mitochondrion, but also to study the different roles of the organelle in cellular homeostasis.  相似文献   

15.
Mitochondria are essential organelles for cellular homeostasis. A variety of pathologies including cancer, myopathies, diabetes, obesity, aging and neurodegenerative diseases are linked to mitochondrial dysfunction. Therefore, mapping the different components of mitochondria is of particular interest to gain further understanding of such diseases. In recent years, proteomics-based approaches have been developed in attempts to determine the complete set of mitochondrial proteins in yeast, plants and mammals. In addition, proteomics-based methods have been applied not only to the analysis of protein function in the organelle, but also to identify biomarkers for diagnosis and therapeutic targets of specific pathologies associated with mitochondria. Altogether, it is becoming clear that proteomics is a powerful tool not only to identify currently unknown components of the mitochondrion, but also to study the different roles of the organelle in cellular homeostasis.  相似文献   

16.
Mitochondria not only provide most of the ATP needed for cell work and numerous specific anabolic and catabolic functions, they also contribute to Ca++ signalling and play a key role in the pathway to cell death. Impairment of mitochondrial functions caused by mutations of the mt-genome or by acute processes, is responsible for numerous diseases. Decreased concentrations of adenine nucleotides, leaky outer and inner mitochondrial membranes, and decreased activities of respiratory chain enzymes contribute to depression of cellular energy metabolism, one of the most important consequences of mitochondrial impairment as characterized by decreased cytosolic phosphorylation potentials.  相似文献   

17.
Here we postulate that the adapter protein evolutionarily conserved signalling intermediate in Toll pathway (ECSIT) might act as a molecular sensor in the pathogenesis of Alzheimer's disease (AD). Based on the analysis of our AD-associated protein interaction network, ECSIT emerges as an integrating signalling hub that ascertains cell homeostasis by the specific activation of protective molecular mechanisms in response to signals of amyloid-beta or oxidative damage. This converges into a complex cascade of patho-physiological processes. A failure to repair would generate severe mitochondrial damage and ultimately activate pro-apoptotic mechanisms, promoting synaptic dysfunction and neuronal death. Further support for our hypothesis is provided by increasing evidence of mitochondrial dysfunction in the disease etiology. Our model integrates seemingly controversial hypotheses for familial and sporadic forms of AD and envisions ECSIT as a biomarker to guide future therapies to halt or prevent AD.  相似文献   

18.
Mitochondria are pivotal for cellular bioenergetics, but are also a core component of the cell death machinery. Hypothesis-driven research approaches have greatly advanced our understanding of the role of mitochondria in cell death and cell survival, but traditionally focus on a single gene or specific signalling pathway at a time. Predictions originating from these approaches become limited when signalling pathways show increased complexity and invariably include redundancies, feedback loops, anisotropies or compartmentalisation. By introducing methods from theoretical chemistry, control theory, and biophysics, computational models have provided new quantitative insights into cell decision processes and have led to an increased understanding of the key regulatory principles of apoptosis. In this review, we describe the currently applied modelling approaches, discuss the suitability of different modelling techniques, and evaluate their contribution to the understanding of the mitochondrial apoptosis pathway. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.  相似文献   

19.
Mitochondria are highly dynamic organelles extremely important for cell survival. Their structure resembles that of prokaryotic cells since they are composed with two membranes, the inner (IMM) and the outer mitochondrial membrane (OMM) delimitating the intermembrane space (IMS) and the matrix which contains mitochondrial DNA (mtDNA). This structure is strictly related to mitochondrial function since they produce the most of the cellular ATP through the oxidative phosphorylation which generate the electrochemical gradient at the two sides of the inner mitochondrial membrane an essential requirement for mitochondrial function. Cells of highly metabolic demand like those composing muscle, liver and brain, are particularly dependent on mitochondria for their activities. Mitochondria undergo to continual changes in morphology since, they fuse and divide, branch and fragment, swell and extend. Importantly, they move throughout the cell to deliver ATP and other metabolites where they are mostly required. Along with the capability to control energy metabolism, mitochondria play a critical role in the regulation of many physiological processes such as programmed cell death, autophagy, redox signalling, and stem cells reprogramming. All these phenomena are regulated by Ca2+ ions within this organelle. This review will discuss the molecular mechanisms regulating mitochondrial calcium cycling in physiological and pathological conditions with particular regard to their impact on mitochondrial dynamics and function during ischemia. Particular emphasis will be devoted to the role played by NCX3 and AKAP121 as new molecular targets for mitochondrial function and dysfunction.  相似文献   

20.
Mitochondria are cellular organelles involved in host-cell metabolic processes and the control of programmed cell death. A direct link between mitochondria and innate immune signalling was first highlighted with the identification of MAVS-a crucial adaptor for RIGI-like receptor signalling-as a mitochondria-anchored protein. Recently, other innate immune molecules, such as NLRX1, TRAF6, NLRP3 and IRGM have been functionally associated with mitochondria. Furthermore, mitochondrial alarmins-such as mitochondrial DNA and formyl peptides-can be released by damaged mitochondria and trigger inflammation. Therefore, mitochondria emerge as a fundamental hub for innate immune signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号