首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metallothionein-3 (MT-3) is a brain-specific isoform of metallothioneins, which is down-regulated in Alzheimer's disease (AD), inhibits the growth of neurons in vitro, and differs from common MTs also in gene regulation. To elucidate the differences in structure and function between MT-3 and common MTs, Zn2+ and Cd2+ binding to MT-3 and MT-1 were studied using electrospray ionization time of flight mass spectrometry (ESI TOF MS) at pH values between 7.5 and 2.7. The metal binding properties of MT-3 differ considerably from those of MT-1. After reconstitution with a metal excess, metallated MT-3 exists as a mixture of Zn7MT-3 (or Cd7MT-3, respectively) and several metalloforms with stoichiometries below and above seven. In contrast, MT-1 exists as a single Zn7MT-1 (or Cd7MT-1). Lowering of pH leads to a stepwise release of metals from metallated MT-3, first from extra sites, then from the 3-metal cluster and finally from the 4-metal cluster. At acidic pH values the 4-metal cluster of MT-3 is slightly more stable than that of MT-1. The results demonstrate higher structural plasticity, dynamics and metal binding capacity of MT-3 than of MT-1, which makes MT-3 suitable as a zinc buffer-transfer molecule in zinc-enriched neurons functioning at conditions of fluctuating zinc concentrations.  相似文献   

2.
Mammalian metallothioneins (MTs) are involved in cellular metabolism of zinc and copper and in cytoprotection against toxic metals and reactive oxygen species. MT-3 plays a specific role in the brain and is down-regulated in Alzheimer's disease. To evaluate differences in metal binding, we conducted direct metal competition experiments with MT-3 and MT-2 using electrospray ionization mass spectroscopy (ESI-MS). Results demonstrate that MT-3 binds Zn2+ and Cd2+ ions more weakly than MT-2 but exposes higher metal-binding capacity and plasticity. Titration with Cd2+ ions demonstrates that metal-binding affinities of individual clusters of MT-2 and MT-3 are decreasing in the following order: four-metal cluster of MT-2>three-metal cluster of MT-2 approximately four-metal cluster of MT-3>three-metal cluster of MT-3>extra metal-binding sites of MT-3. To evaluate the reasons for weaker metal-binding affinity of MT-3 and the enhanced resistance of MT-3 towards proteolysis under zinc-depleted cellular conditions, we studied the secondary structures of apo-MT-3 and apo-MT-2 by CD spectroscopy. Results showed that apo-MT-3 and apo-MT-2 have almost equal helical content (approximately 10%) in aqueous buffer, but that MT-3 had slightly higher tendency to form alpha-helical secondary structure in TFE-water mixtures. Secondary structure predictions also indicated some differences between MT-3 and MT-2, by predicting random coil for common MTs, but 22% alpha-helical structure for MT-3. Combined, all results highlight further differences between MT-3 and common MTs, which may be related with their functional specificities.  相似文献   

3.
Metallothioneins (MTs) have an important role in zinc homeostasis and may counteract the impact of oversupply. Both intracellular zinc and MT expression have been implicated in proliferation control and resistance to cellular stress, although the interdependency is unclear. The study addresses the consequences of a steady-state overexpression of MT-1 for intracellular zinc levels, cell cycle progression, and protection from zinc toxicity using a panel of cell lines with differential expression of MT-1. The panel comprised parental Chinese hamster ovary-K1 cells with low endogenous expression of MT and transfectants with enhanced expression of mouse MT-1 on an autonomously replicating expression vector with a noninducible promoter. Cell cycle progression, determined by flow cytometry and time-lapse microscopy, revealed that enhanced cytoplasmic expression of MT-1 does not impact on normal cell cycle operation, suggesting that basal levels of MT-1 expression are not limiting for background levels of oxidative stress. MT-1 overexpression correlated with a steady-state increase in cytoplasmic free Zn(2+), assessed using the fluorescent zinc-sensor Zinquin, particularly at high levels of overexpression, further suggesting that zinc availability is normally not limiting for cell cycle progression. Enhanced MT-1 expression, over a 10-fold range, had a clear impact on resistance to Cd(2+) and Zn(2+) toxicity. In the case of Zn(2+), the degree of protection afforded was less, indicating that MT-1 has a limited range and saturable capacity for effecting resistance. The results have implications for the use of cellular stress responses to exogenously supplied zinc and zinc-based systemic therapies.  相似文献   

4.
Metallothioneins are cysteine-rich, small metal-binding proteins present in various mammalian tissues. Of the four common metallothioneins, MT-1 and MT-2 (MTs) are expressed in most tissues, MT-3 is predominantly present in brain, whereas MT-4 is restricted to the squamous epithelia. The expression of MT-1 and MT-2 in some organs exhibits sex, age, and strain differences, and inducibility with a variety of stimuli. In adult mammals, MTs have been localized largely in the cell cytoplasm, but also in lysosomes, mitochondria and nuclei. The major physiological functions of MTs include homeostasis of essential metals Zn and Cu, protection against cytotoxicity of Cd and other toxic metals, and scavenging free radicals generated in oxidative stress. The role of MTs in Cd-induced acute and chronic toxicity, particularly in liver and kidneys, is reviewed in more details. In acute toxicity, liver is the primary target, whereas in chronic toxicity, kidneys are major targets of Cd. The intracellular MTs bind Cd ions and form CdMT. In chronic intoxication, Cd stimulates de novo synthesis of MTs; it is assumed that toxicity in the cells starts when loading with Cd ions exceeds the buffering capacity of intracellular MTs. CdMT, released from the Cd-injured organs, or when applied parenterally for experimental purposes, reaches the kidneys via circulation, where it is filtered, endocytosed in the proximal tubule cells, and degraded in lysosomes. Liberated Cd can immediately affect the cell structures and functions. The resulting proteinuria and CdMT in the urine can be used as biomarkers of tubular injury.  相似文献   

5.
Advances in metallothionein structure and functions.   总被引:12,自引:0,他引:12  
Metallothioneins (MTs) are a class of ubiquitously occurring low molecular weight cysteine- and metal-rich proteins containing sulfur-based metal clusters. The conservation of these clusters in an increasing number of three-dimensional structures of invertebrate, vertebrate and bacterial MTs signifies the importance of this structural motif. In the postgenomic era, it is becoming increasingly clear that MTs fulfil different functions. Increasing body of evidence show that diverse functions of the mammalian MT-1/MT-2 isoforms including involvement in zinc homeostasis, protection against heavy metal toxicity and oxidative damage are related to their clusters. In contrast, the biological properties of the brain-specific MT-3 isoform imply that the clusters in this protein play a structural role. The recent highlights of MT research are the subject of this review.  相似文献   

6.
Chemistry and biology of mammalian metallothioneins   总被引:1,自引:0,他引:1  
Metallothioneins (MTs) are a class of ubiquitously occurring low molecular mass, cysteine- and metal-rich proteins containing sulfur-based metal clusters formed with Zn(II), Cd(II), and Cu(I) ions. In mammals, four distinct MT isoforms designated MT-1 through MT-4 exist. The first discovered MT-1/MT-2 are widely expressed isoforms, whose biosynthesis is inducible by a wide range of stimuli, including metals, drugs, and inflammatory mediators. In contrast, MT-3 and MT-4 are noninducible proteins, with their expression primarily confined to the central nervous system and certain squamous epithelia, respectively. MT-1 through MT-3 have been reported to be secreted, suggesting that they may play different biological roles in the intracellular and extracellular space. Recent reports established that these isoforms play an important protective role in brain injury and metal-linked neurodegenerative diseases. In the postgenomic era, it is becoming increasingly clear that MTs fulfill multiple functions, including the involvement in zinc and copper homeostasis, protection against heavy metal toxicity, and oxidative damage. All mammalian MTs are monomeric proteins, containing two metal–thiolate clusters. In this review, after a brief summary of the historical milestones of the MT-1/MT-2 research, the recent advances in the structure, chemistry, and biological function of MT-3 and MT-4 are discussed.  相似文献   

7.
Metallothioneins (MTs) have been detected in livers and kidneys of 10 marine mammals species (Pinnipeds and Odontocetes). Characterization of renal MTs of striped dolphin has shown that the protein has two isoforms (MT-1 and MT-2) with a molecular weight estimated around 6,800. MT concentrations also vary widely in marine mammals tissues (from 58 to 1,200 microg x g(-1) ww) underlying the numerous parameters involved: physiological status, pregnancy, age, diet. The participation of this protein in metal detoxification has been investigated since high levels of cadmium (Cd) and mercury (Hg) have been measured in livers and kidneys of marine mammals. It has been suggested that those animals can mitigate at least in part, the toxic effects of Cd and Hg through binding to MTs. The percentage of the cytosolic Cd bound to MTs can reach almost 100%. On the contrary, the percentage of hepatic and renal Hg bound to MT is very low (generally less than 10%) and this metal is mainly associated with selenium (HgSe) under a detoxified form in the insoluble fraction of the tissues. MTs appear to play a minor role in the binding and detoxification of Hg by marine mammals. On the contrary, close and dynamic interactions occur between Cd and MTs. Cytosolic MTs appear as a potential short term way of detoxification of Cd accumulated from diet. Long-term detoxification would imply a sequestration of the metal under a precipitated form (e.g. in lysosomes).  相似文献   

8.
金属硫蛋白 3(MT 3) ,又称神经生长抑制因子 ,主要表达于中枢神经系统。它属于金属硫蛋白家族 ,但具有几项其他家族蛋白质如MT 1/ 2等所不具有的独特性质 ,是一种多功能蛋白质 ,可在中枢神经系统中发挥重要的神经调节和神经保护作用 ,但是具体发挥机制还很不清楚。实验以人神经母细胞瘤细胞系SH SY5Y为模型 ,运用最近发展起来的比较蛋白质组学研究方法对MT 3基因瞬时转染引起的SH SY5Y细胞蛋白质的整体变化进行了系统的研究。经考马斯亮蓝染色 ,结果表明 ,MT 3转基因后平均每块胶上可检测到约 75 0个蛋白质点。利用ImageMaster 2DElite软件对胶上的蛋白质点进行半定量分析 ,发现共有 17个蛋白质点呈显著的变化 :和对照组比较 ,在这 17个点中 ,有 12个表达明显上调 ,有 5个表达水平明显下降 ,实验结果具有可重复性。结合pI值和分子量 ,应用基质辅助激光解吸 /电离飞行时间质谱对这 17个点进行分析 ,鉴定了其中 10个点 ,包括类锌指蛋白 ,谷氨酸转运蛋白和增强蛋白等。这些蛋白质都可在神经系统功能的调节中发挥作用。实验结果表明MT 3可能是通过调节和 /或协同这些蛋白质来发挥它的多种功能的。  相似文献   

9.
MTs are small cysteine-rich metal-binding proteins found in many species and, although there are differences between them, it is of note that they have a great deal of sequence and structural homology. Mammalian MTs are 61 or 62 amino acid polypep-tides containing 20 conserved cysteine residues that underpin the binding of metals. The existence of MT across species is indicative of its biological demand, while the conservation of cysteines indicates that these are undoubtedly central to the function of this protein. Four MT isoforms have been found so far, MT-1, MT-2, MT-3, and MT-4, but these also have subtypes with 17 MT genes identified in man, of which 10 are known to be functional. Different cells express different MT isoforms with varying levels of expression perhaps as a result of the different function of each isoform. Even different metals induce and bind to MTs to different extents. Over 40 years of research into MT have yielded much information on this protein, but have failed to assign to it a definitive biological role. The fact that multiple MT isoforms exist, and the great variety of substances and agents that act as inducers, further complicates the search for the biological role of MTs. This article reviews the current knowledge on the biochemistry, induction, regulation, and degradation of this protein in mammals, with a particular emphasis on human MTs. It also considers the possible biological roles of this protein, which include participation in cell proliferation and apoptosis, homeostasis of essential metals, cellular free radical scavenging, and metal detoxification.  相似文献   

10.
Metallothioneins (MTs) are low molecular weight proteins characterized by a high cysteine content and give rise to metal-thiolate clusters. Most MTs have two metal clusters containing three and four bivalent metal ions, respectively. The MT gene family in mammals consists of four subfamilies designated MT-1 through MT-4. MT-3 is expressed predominantly in brain and MT-4 in differentiating stratified squamous epithelial cells. Many reports have addressed MT structure and function, but despite the increasing experimental data several topics remain to be clarified, and the true function of this elusive protein has yet to be disclosed. Owing to their induction by a variety of stimuli, MTs are considered valid biomarkers in medicine and environmental studies. Here, we will discuss only a few topics taken from the latest literature. Special emphasis will be placed on MT antioxidant functions, the related oxidation of cysteines, which can give rise to intra/intermolecular bridges, and the relations between MTs and diseases which could be originated by metal dysregulation.  相似文献   

11.
MTs are small cysteine-rich metal-binding proteins found in many species and, although there are differences between them, it is of note that they have a great deal of sequence and structural homology. Mammalian MTs are 61 or 62 amino acid polypeptides containing 20 conserved cysteine residues that underpin the binding of metals. The existence of MT across species is indicative of its biological demand, while the conservation of cysteines indicates that these are undoubtedly central to the function of this protein. Four MT isoforms have been found so far, MT-1, MT-2, MT-3, and MT-4, but these also have subtypes with 17 MT genes identified in man, of which 10 are known to be functional. Different cells express different MT isoforms with varying levels of expression perhaps as a result of the different function of each isoform. Even different metals induce and bind to MTs to different extents. Over 40 years of research into MT have yielded much information on this protein, but have failed to assign to it a definitive biological role. The fact that multiple MT isoforms exist, and the great variety of substances and agents that act as inducers, further complicates the search for the biological role of MTs. This article reviews the current knowledge on the biochemistry, induction, regulation, and degradation of this protein in mammals, with a particular emphasis on human MTs. It also considers the possible biological roles of this protein, which include participation in cell proliferation and apoptosis, homeostasis of essential metals, cellular free radical scavenging, and metal detoxification.  相似文献   

12.
Two metallothioneins (MTs) from bovine fetal liver were purified by a combination of gel filtration and ion-exchange chromatography. The primary structures of the isoproteins MT-1 and MT-2 were elucidated by peptide and amino acid sequence analysis. The amino-terminal part was deduced from automated Edman degradations of the pyridylethylated CNBr-cleaved derivatives. The remaining part of the sequence was established by a comparison of the carboxamidomethylated tryptic peptides to those from equine liver MT-1A and MT-2B. Peptides differing in either amino acid composition or retention time from high pressure liquid chromatography were further subjected to manual Edman degradations or carboxypeptidase Y digestion. The two isoproteins consist of 61 amino acids and show a sequence identity of 90%. When compared with the primary structures of other mammalian MTs, the 20 cysteinyl residues are totally conserved, in agreement with their function as metal ligands. The two isoproteins contain Cu and Zn at a ratio of 3:4. Spectroscopic data reveal absorption properties typical for both Cu- and Zn-thiolate transitions. The marked differences of MT-1 and MT-2 in the Cu-thiolate CD features can be attributed to the six amino acid substitutions occurring exclusively in the amino-terminal parts of the molecules. It is proposed that in bovine fetal MTs also the three copper ions are preferentially bound to the first 9 cysteinyl residues (cluster B) and the four zinc ions to the remaining 11 cysteinyl residues (cluster A) suggested previously by 113Cd NMR spectroscopy of calf liver MTs (Briggs, R. W., and Armitage, I. M. (1982) J. Biol. Chem. 257, 1259-1262).  相似文献   

13.
Structure and function of molluscan metallothioneins (MTs) are still poorly understood. The sea mussel Mytilus galloprovincialis displays two MT isoforms which differ in both primary sequences and physiological functions. MT-10 is the constitutive isoform, whereas MT-20 is mainly induced by cadmium (Cd). Both MTs were produced as recombinant proteins and showed identical Cd content and similar Cd-binding properties. Conversely, circular dichroism disclosed marked differences in the secondary conformations of the two Cd(7)-MTs. The possible relapses of these structural differences on protein stability and function were assessed. MT-10 presented a higher thermal stability and a more compact structure than MT-20, as it was inferred by absorption and emission spectroscopy studies. Moreover, the kinetics of Cd-release clearly indicated that MT-10 is much more sensitive to oxidation than is MT-20. The observed differences between MT-10 and MT-20 are discussed in terms of the different physiological roles exerted by the two isoforms in mussel.  相似文献   

14.
Zinc metabolism in the cells is largely regulated by ubiquitous small proteins, metallothioneins (MT). Metallothionein-3 is specifically expressed in the brain and is down regulated in Alzheimer's disease. We demonstrate by mass spectrometry that MT-3, in contrast to common MTs, binds Zn(2+) and Cd(2+) in a noncooperative manner and can also bind higher stoichiometries of metals than seven. MT-3 reconstituted with seven metals exists in a dynamic equilibrium of different metalloforms, where the prevalent metalloform is Me(7)MT-3, but metalloforms with 6, 8, and even 9 metals are also present. The results from pH and stability studies demonstrate that the heterogeneity of metalloforms originates from the N-terminal beta-cluster, whereas the C-terminal alpha-cluster of MT-3 binds four metal ions such as that of common MTs. Experiments with EDTA demonstrate that the beta-cluster of ZnMT-3 has a higher metal transfer potential than the beta-cluster of Zn(7)MT-2. Moreover, ZnMT-3 loses metals during ultrafiltration. MT-3, reconstituted with an excess of Zn(2+) or Cd(2+), exists as a dynamic mixture of metalloforms with higher than 7 metal stoichiometries (8-11). Such forms of ZnMT-3 are unstable and decompose partly already during a rapid gel filtration, whereas CdMT-3 forms are more stable. Extra metal ions may bind to the beta-cluster region as well as to the carboxylates of MT-3. The specific metal-binding properties of MT-3 could be functionally implemented for buffering of fluctuating concentrations of zinc in zincergic neurons and for transfer of zinc to synaptic vesicles.  相似文献   

15.
Neuronal growth inhibitory factor (GIF) of porcine brain, was isolated and purified by a similar procedure which was used on the isolation of human and bovine GIF. The native porcine protein with stoichiometry of 4Cu+, 3Zn2+ was obtained for the first time. The kinetics of zinc transfer from Cu4Zn3MT-3 to apo-carbonic anhydrase were studied, and zinc transfer rate constants and thermodynamic parameters were obtained. It is found that like other MTs, porcine Cu4Zn3MT-3 can also transfer its zinc atom to apoCA, even much easier than other MTs. A possible association mechanism has been proposed, the formation of Cu4Zn3MT3-apoCA complex may be the rate-determining step. The obtained data indicate besides its neuronal growth inhibitory function, GIF might play a role in cellular Zn homeostasis in brain.  相似文献   

16.
Quercetin is a common flavonoid polyphenol which has been shown to exert neuroprotective actions in vitro and in vivo. Though quercetin has antioxidant properties, it has been suggested that neuroprotection may be ascribed to its ability of inducing the cell’s own defense mechanisms. The present study investigated whether quercetin could increase the levels of paraoxonase 2 (PON2), a mitochondrial enzyme expressed in brain cells, which has been shown to have potent antioxidant properties. PON2 protein, mRNA, and lactonase activity were highest in mouse striatal astrocytes. Quercetin increased PON2 levels, possibly by activating the JNK/AP-1 pathway. The increased PON2 levels induced by quercetin resulted in decreased oxidative stress and ensuing toxicity induced by two oxidants. The neuroprotective effect of quercetin was significantly diminished in cells from PON2 knockout mice. These findings suggest that induction of PON2 by quercetin represents an important mechanism by which this polyphenol may exert its neuroprotective action.  相似文献   

17.
The high concentration of zinc in the hippocampal mossy fiber axon boutons is localized in the vesicles and is mobilized by exocytosis of the zinc-laden vesicles. Furthermore, the mammalian hippocampi contain metallothionein (MT) isoforms which regulate the steady state concentration of zinc, an important antioxidant. Indeed, zinc deprivation leads to an increased lipid peroxidation, reduces the activity of Cu++-Zn++ superoxide dismutase, and protect against oxidative stress such as exposure to ultraviolet A irradiation. By employing electron spin resonance (ESR) spectroscopy, we have demonstrated that rat hippocampal MT isoforms 1 and 2 were able to scavenge 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH), hydroxyl radicals (*OH) generated in a Fenton reaction, and superoxide anions (O2*-) generated by the hypoxanthine and xanthine oxidase system. In addition, MT-1 isoform protected the isolated hepatocytes from lipid peroxidation as determined by thiobarbituric acid bound malondialdehyde. MT antibodies scavenged DPPH radicals, hydroxyl radicals and reactive oxygen species but not superoxide anions. The results of these studies suggest that although both isoforms of MT are able to scavenge free radicals, the MT-1 appears to be a superior scavenger of superoxide anions and 1,1-diphenyl-2-picrylhydrazyl radicals. Moreover, antibodies formed against MT isoform retain some, but not all, free radical scavenging actions exhibited by MT-1 and MT-2.  相似文献   

18.
Mouse metallothioneins (MTs) were separated into three isoforms by an anion-exchange h.p.l.c. column; conventionally isolated MT-1 and MT-2 showed a single peak (MT-1-1) and two peaks (MT-2-1 and MT-2-2), respectively. In growing cells, developing hepatocytes and growing tumour cells, MT-1/MT-2 ratios were less than 0.6, irrespective of the type of MT inducer, whereas adult liver post-mitotic cells had a ratio of more than 1.0. A large amount of the MT-2-2 subfraction was found in dexamethasone-treated FM3A cells; 90% of MTs was MT-2-2, suggesting that glucocorticoid hormone mainly induces MT-2-2 in tumour cells.  相似文献   

19.
Potential mechanisms underlying zinc's capacity to protect membranes from lipid oxidation were examined in liposomes. Using lipid oxidation initiators with different chemical and physical properties (transition metals, lipid- or water-soluble azo compounds, ultraviolet radiation c (UVc), superoxide radical anion (O2*-), and peroxynitrite (ONOO-) we observed that zinc only prevented copper (Cu2+)- and iron (Fe2+)-initiated lipid oxidation. In the presence of Fe2+, the antioxidant action of zinc depended directly on the negative charge density of the membrane bilayer. An inverse correlation (r2: 0.96) was observed between the capacity of zinc to prevent iron binding to the membrane and the inhibitory effect of zinc on Fe2+-initiated lipid oxidation. The interaction of zinc with the bilayer did not affect physical properties of the membrane, including rigidification and lateral phase separation known to increase lipid oxidation rates. The interactions between zinc and the lipid- (alpha-tocopherol) and water- (epicatechin) soluble antioxidants were studied. The inhibition of Fe2+-induced lipid oxidation by either alpha-tocopherol or epicatechin was increased by the simultaneous addition of zinc. The combined actions of alpha-tocopherol (0.01 mol%), epicatechin (0.5 microM) and zinc (5-50 microM) almost completely prevented Fe2+ (25 microM)-initiated lipid oxidation. These results show that zinc can protect membranes from iron-initiated lipid oxidation by occupying negatively charged sites with potential iron binding capacity. In addition, the synergistic actions of zinc with lipid and water-soluble antioxidants to prevent lipid oxidation, suggests that zinc is a pivotal component of the antioxidant defense network that protects membranes from oxidation.  相似文献   

20.
Metallothioneins (MTs) are involved in the cellular metabolism of zinc and in cytoprotection against stress factors. Hippocampus plays a specific role in the body's response to stressors. The present study was conducted to evaluate the effects of zinc on the expression of metallothionein isoforms in the hippocampus of stress rats. The animal model of psychologic stress was developed by restraint for 4 weeks. Wistar rats were randomly assigned to 6 groups: control group, zinc-deficient group, zinc-supplemented group, and the corresponding 3 stress groups. Three separate diets of different zinc contents (1.73 ppm, 17.7 ppm, and 41.4 ppm, respectively) were used in this study. Compared with the control group, the stress groups had higher inductions of MTs and MT-1 and MT-3 mRNA in hippocampus. On the one hand, the expressions of MTs and their mRNAs in hippocampus were downregulated in the zinc-deficient group; however, their expressions were evidently enhanced in the stress zinc-deficient group. MT induction in the zinc-supplemented group was increased. Furthermore, the stress zinc-supplemented group had a more significant yield of MTs and their mRNAs. In addition, the levels of plasma cortisol, interleukin-6 (IL-6), IL-1, and nitric oxide (NO) were increased clearly in the zinc-deficient group and the stress groups. The results suggest that zinc deficiency may decrease and zinc supplementation may increase the expressions of MTs and their mRNAs in hippocampus; moreover, stress can increase their expressions dramatically. The impairment of stress on the body may be involved with the nutrition status of zinc, and zinc deficiency can lower the body's adaptability to stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号