首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Toxic metal pollution requires significant adjustments in plant metabolism. Here, we show that the plant microbiota plays an important role in this process. The endophytic Sporobolomyces ruberrimus isolated from a serpentine population of Arabidopsis arenosa protected plants against excess metals. Coculture with its native host and Arabidopsis thaliana inhibited Fe and Ni uptake. It had no effect on host Zn and Cd uptake. Fe uptake inhibition was confirmed in wheat and rape. Our investigations show that, for the metal inhibitory effect, the interference of microorganisms in plant ethylene homeostasis is necessary. Application of an ethylene synthesis inhibitor, as well as loss-of-function mutations in canonical ethylene signalling genes, prevented metal uptake inhibition by the fungus. Coculture with S. ruberrimus significantly changed the expression of Fe homeostasis genes: IRT1, OPT3, OPT6, bHLH38 and bHLH39 in wild-type (WT) A. thaliana. The expression pattern of these genes in WT plants and in the ethylene signalling defective mutants significantly differed and coincided with the plant accumulation phenotype. Most notably, down-regulation of the expression of IRT1 solely in WT was necessary for the inhibition of metal uptake in plants. This study shows that microorganisms optimize plant Fe and Ni uptake by fine-tuning plant metal homeostasis.  相似文献   

3.
4.
Yang S  Yu H  Xu Y  Goh CJ 《FEBS letters》2003,555(2):291-296
The plant hormone cytokinin plays a major role in regulating plant growth and development. Here we generated cytokinin-reduction Arabidopsis plants by overexpressing a heterologous cytokinin oxidase gene DSCKX1 from Dendrobium orchid. These transgenic plants exhibited reduced biomass, rapid root growth, decreased ability to form roots in vitro, and reduced response to cytokinin in growing calli and roots. Furthermore, the expression of KNAT1, STM, and CycD3 genes was significantly reduced in the transgenic plants, suggesting that cytokinin may function to control the cell cycles and shoot/root development via regulation of these genes.  相似文献   

5.
6.
7.
Barley seedlings grown on filter paper moistened with 1mM Cd showed 50% root growth inhibition within 24h of exposure. The amount of cadmium after 24h Cd treatment was highest in the first 2mm-long apical root segment, while it was slightly higher in the fourth segment, 6-8mm behind the root tip, after 48h. In recovery experiments, when Cd-treated plants were transferred onto filter paper moistened with distilled water, a large amount of Cd was localised in the apoplast and considerable cell death was detected even though root growth was renewed. This indicates that cell death is likely an active physiological process that contributes to the removal of Cd from the root during root growth recovery. Elevated lipid peroxidation and thiol contents were detected in all individual segments of Cd-treated barley root. On the other hand, proline accumulation was disturbed during Cd stress, showing a significant decrease in all of the studied segments except the first. Cd-induced alteration in the expression of genes involved in metal signalling and detoxification and in drought and oxidative stress responses indicates that Cd-induced water and oxidative stress is responsible for the root growth inhibition, probably through an accelerated differentiation of root tissues.  相似文献   

8.
Auxin and its homeostasis play key roles in many aspects of plant growth and development. Cadmium (Cd) is a phytotoxic heavy metal and its inhibitory effects on plant growth and development have been extensively studied. However, the underlying molecular mechanism of the effects of Cd stress on auxin homeostasis is still unclear. In the present study, we found that the root elongation, shoot weight, hypocotyl length and chlorophyll content in wild-type (WT) Arabidopsis seedlings were significantly reduced after exposure to Cd stress. However, the lateral root (LR) formation was markedly promoted by Cd stress. The level and distribution of auxin were both greatly altered in primary root tips and cotyledons of Cd-treated plants. The results also showed that after Cd treatment, the IAA content was significantly decreased, which was accompanied by increases in the activity of the IAA oxidase and alteration in the expression of several putative auxin biosynthetic and catabolic genes. Application of the auxin transport inhibitor, 1-naphthylphthalamic acid (NPA) and 1-naphthoxyacetic acid (1-NOA), reversed the effects of Cd on LR formation. Additionally, there was less promotion of LR formation by Cd treatment in aux1-7 and pin2 mutants than that in the WT. Meanwhile, Cd stress also altered the expression of PINs and AUX1 in Arabidopsis roots, implying that the auxin transport pathway is required for Cd-modulated LR development. Taken together, these findings suggest that Cd stress disturbs auxin homeostasis through affecting auxin level, distribution, metabolism, and transport in Arabidopsis seedling.  相似文献   

9.
10.
We are interested in elucidating the molecular mechanisms underlying plant reactions to the toxic heavy metal cadmium (Cd). To this end, we devised a new screening strategy using agar plates with a gradient of Cd concentrations, termed Cd-gradient agar plates (CGAPs), to isolate Arabidopsis mutants that displayed altered reactions to the metal. Arabidopsis M2 seeds, derived from ethyl methanesulfonate (EMS) treated seeds, were germinated on the CGAPs such that the primary root of each seedling elongated against increasing concentrations of Cd on the surface of the plate. Under these conditions, the lengths of the primary roots reliably demonstrated the degree of Cd tolerance of individual seedlings. The use of CGAPs also allowed close observation of the root reaction of each seedling to Cd without causing lethal damage. The screen identified three mutant lines, MRC-32, MRC-22 and MRC-26, which showed distinctly different characteristics. MRC-32 plants exhibited enhanced tolerance to Cd and contained Cd at higher concentrations than wild-type (WT) plants treated with the heavy metal. The whole root system of MRC-22 plants showed a Cd-phobic response. MRC-26 plants accumulated less Cd in their aboveground tissues than WT plants, suggesting that they were defective in transporting the heavy metal from roots to aboveground tissues. We also determined the likely chromosomal location of each mutation.  相似文献   

11.
12.
13.
14.
The role of defence gene expression triggered by Cd toxicity in the plant’s response to Botrytis cinerea was investigated in Arabidopsis thaliana Columbia 0. Silicon (0 or 1.5 mM) and Cd (0, 1 or 10 μM) were supplied to 3-month-old solution-cultured plants. After 3 days, half of the plants of each treatment were inoculated with Botrytis. Supplied Cd concentrations were below the toxicity threshold and did not cause shoot growth inhibition or evidence of oxidative stress, while Botrytis infection severely decreased plant growth in all treatments. The expression of marker genes PR1 and BGL2 for the salicylic acid (SA) and the PDF1.2 for the jasmonic acid–ethylene (JA–ET) signalling pathways was enhanced in 10 μM Cd-treated non-infected plants. Twenty hours after inoculation, PDF1.2 expression showed a strong increase in all treatments, while enhanced PR1, BGL2, and CHIB expression was only found 7 days after infection. A great synergistic effect of Cd and Botrytis on PDF1.2 expression was found in 10 μM Cd-treated plants. Silicon decreased PR1, BGL2, and CHIB, while increasing PDF1.2 expression, which indicates its role as a modulator of the signalling pathways involved in the plant’s response to fungal infection. Botrytis growth decreased in 10 μM Cd-treated plants, which could be due to the combined effects of Cd and Botrytis activating the SA and JA–ET-mediated signalling pathways. Taken together, our results provide support for the view that Cd concentrations close to the toxicity threshold induce defence signalling pathways which potentiate the plant’s response against fungal infection.  相似文献   

15.
Heavy metal pollution such as Cd, Hg, Pb, As and Se is an increasing environment problem worldwide. These metals and metalloids have toxic effect on both plants and animals, which are strongly poisonous to metal-sensitive enzymes, resulting in growth inhibition and death of the organism[1]. Contamination of soils with heavy metals, either by natural causes or due to pollution, often has pronounced effects on the vegetation, resulting in the appearance of metallophytes, and heavy-metal tolera…  相似文献   

16.
PvSR2 (Phaseolus vulgaris stress-related gene) has been cloned from French bean and shown to be expressed specifically upon heavy metal treatment. In order to investigate the role of PvSR2 in plant, PvSR2 gene under the control of cauliflower mosaic virus 35S promoter was introduced into tobacco mediated with Agrobacterium tumefaciens LBA4404. The regenerated plantlets were selected on medium with 100 mg/L kanamycin. PCR and Southern blot analysis showed PvSR2 gene was integrated in tobacco genome. Gus and Northern blot analysis indicated PvSR2 gene was expressed in transgenic seedling. The heavy metal resistance assay showed that the transgenic tobacco seedlings with the PvSR2 coding sequence exhibited higher tolerance to Cd compared with wild-type (WT) under Cd exposure. The Cd content accumulated in root between transgenic and WT seedlings had no obvious difference at lower Cd external concentration (0.05-0.075 mmol/L CdCl2), whereas transgenic plant showed a lower root Cd content than the control at higher external Cd concentration (0.1 mmol/L CdCl2). These results suggested that the expression of PvSR2 can enhance the Cd tolerance, and PvSR2 may be involved in Cd transportation and accumulation at the test concentration of 0.1 mmol/L Cd.  相似文献   

17.
We analyzed the influence of salts of two heavy metals—lead and cadmium (Pb2+ and Cd2+) on plants, including plant and root size, plant genome stability as well as global genome expression. Measurement of the metal uptake showed that there was a significantly higher incorporation of Cd than of Pb, 0.6 and 0.15 uM per gram of dry weight, respectively. The analysis of the root length and plant size showed a dose dependent decrease in plants exposed to cadmium. In contrast there was little difference in the size of plants exposed to lead, although there was nearly four-fold increase of the root length. Analysis of the genome stability revealed that cadmium led to a dose dependent increase of homologous recombination whereas lead had no effect.

Analysis of the global genome expression of plants chronically exposed to 50 uM of Cd and Pb revealed 65 and 338 up- and down-regulated genes by Cd and 19 and 76 by Pb, respectively. Interestingly, half of the genes that changed their expression in Pb-treated plants also changed their expression in Cd-treated ones. The greater number of genes regulated by Cd reflects generally higher genome instability of plants as well as higher uptake as compared to Pb.  相似文献   


18.
19.
Brassinosteroid (BR) signalling is known to be coordinated with light signalling in above ground tissue. Many studies focusing on the shade avoidance response in above ground tissue or hypocotyl elongation in darkness have revealed the contribution of the BR signalling pathway to these processes. We previously analysed the expression of DWARF 4 (DWF4), a key BR biosynthesis enzyme, and revealed that light perception in above ground tissues triggered DWF4 accumulation in root tips. To determine the required wavelength of light and photoreceptors responsible for this regulation, we studied DWF4‐GUS marker plants grown in several monochromatic light conditions. We revealed that monochromatic blue LED light could induce DWF4 accumulation in primary root tips and root growth as much as white light, whereas monochromatic red LED could not. Consistent with this, a cryptochrome1/2 double mutant showed retarded root growth under white light whereas a phytochromeA/B double mutant did not. Taken together, our data strongly indicated that blue light signalling was important for DWF4 accumulation in root tips and root growth. Furthermore, DWF4 accumulation patterns in primary root tips were not altered by auxin or sugar treatment. Therefore, we hypothesize that blue light signalling from the shoot tissue is different from auxin and sugar signalling.  相似文献   

20.
Microarray analysis of brassinosteroid-regulated genes in Arabidopsis   总被引:14,自引:0,他引:14  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号