首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The cAMP-dependent protein kinase Pka1 is known as a regulator of glycogenesis, transition into meiosis, proper chromosome segregation, and stress responses in Schizosaccharomyces pombe. We demonstrated that both the cAMP/PKA pathway and glucose limitation play roles in appropriate spindle formation. Overexpression of Mal3 (1–308), an EB1 family protein, caused growth defects, increased 4C DNA content, and induced monopolar spindle formation. Overproduction of a high-affinity microtubule binding mutant (Q89R) and a recombinant protein possessing the CH and EB1 domains (1–241) both resulted in more severe phenotypes than Mal3 (1–308). Loss of functional Pka1 and glucose limitation rescued the phenotypes of Mal3-overexpressing cells, whereas deletion of Tor1 or Ssp2 did not. Growth defects and monopolar spindle formation in a kinesin-5 mutant, cut7-446, was partially rescued by pka1 deletion or glucose limitation. These findings suggest that Pka1 and glucose limitation regulate proper spindle formation in Mal3-overexpressing cells and the cut7-446 mutant.  相似文献   

2.
Maurer SP  Fourniol FJ  Bohner G  Moores CA  Surrey T 《Cell》2012,149(2):371-382
Growing microtubule ends serve as transient binding platforms for essential proteins that regulate microtubule dynamics and their interactions with cellular substructures. End-binding proteins (EBs) autonomously recognize an extended region at growing microtubule ends with unknown structural characteristics and then recruit other factors to the dynamic end structure. Using cryo-electron microscopy, subnanometer single-particle reconstruction, and fluorescence imaging, we present a pseudoatomic model of how the calponin homology (CH) domain of the fission yeast EB Mal3 binds to the end regions?of growing microtubules. The Mal3 CH domain bridges protofilaments except at the microtubule seam. By binding close to the exchangeable GTP-binding site, the CH domain is ideally positioned to sense the microtubule's nucleotide state. The same microtubule-end region is also a stabilizing structural cap protecting the microtubule from depolymerization. This insight supports a common structural link between two important biological phenomena, microtubule dynamic instability and end tracking.  相似文献   

3.
Sandblad L  Busch KE  Tittmann P  Gross H  Brunner D  Hoenger A 《Cell》2006,127(7):1415-1424
End binding 1 (EB1) proteins are highly conserved regulators of microtubule dynamics. Using electron microscopy (EM) and high-resolution surface shadowing we have studied the microtubule-binding properties of the fission yeast EB1 homolog Mal3p. This allowed for a direct visualization of Mal3p bound on the surface of microtubules. Mal3p particles usually formed a single line on each microtubule along just one of the multiple grooves that are formed by adjacent protofilaments. We provide structural data showing that the alignment of Mal3p molecules coincides with the microtubule lattice seam as well as data suggesting that Mal3p not only binds but also stabilizes this seam. Accordingly, Mal3p stabilizes microtubules through a specific interaction with what is potentially the weakest part of the microtubule in a way not previously demonstrated. Our findings further suggest that microtubules exhibit two distinct reaction platforms on their surface that can independently interact with target structures such as microtubule-associated proteins, motors, kinetochores, or membranes.  相似文献   

4.
A critical aspect of mitosis is the interaction of the kinetochore with spindle microtubules. Fission yeast Mal3 is a member of the EB1 family of microtubule plus-end binding proteins, which have been implicated in this process. However, the Mal3 interaction partner at the kinetochore had not been identified. Here, we show that the mal3 mutant phenotype can be suppressed by the presence of extra Spc7, an essential kinetochore protein associated with the central centromere region. Mal3 and Spc7 interact physically as both proteins can be coimmunoprecipitated. Overexpression of a Spc7 variant severely compromises kinetochore-microtubule interaction, indicating that the Spc7 protein plays a role in this process. Spc7 function seems to be conserved because, Spc105, a Saccharomyces cerevisiae homolog of Spc7, identified by mass spectrometry as a component of the conserved Ndc80 complex, can rescue mal3 mutant strains.  相似文献   

5.
Moe1 is a conserved fission yeast protein that negatively affects microtubule stability/assembly. We conducted a two-hybrid screen to search for Moe1-binding proteins and isolated Mal3, a homologue of human EB1. We show that Moe1 and Mal3 expressed in bacteria form a complex and that Moe1 and Mal3 expressed in fission yeast cosediment with microtubules. Deletion of either moe1 or mal3 does not result in lethality; however, deletion of both moe1 and mal3 leads to cell death in the cold. The resulting cells appear to die of chromosome missegregation, which correlates with the presence of abnormal spindles. We investigated the cause for the formation of monopolar spindles and found that only one of the two spindle pole bodies (SPBs) contains gamma-tubulin, although both SPBs appear to be equal in size and properly inserted in the nuclear membrane. Moreover, the moe1 mal3 double null mutant in the cold contains abnormally short and abundant interphase microtubule bundles. These data suggest that Moe1 and Mal3 play a role in maintaining proper microtubule dynamics/integrity and distribution of gamma-tubulin to the SPBs during mitosis. Finally, we show that human Moe1 and EB1 can each rescue the phenotype of the moe1 mal3 double null mutant and form a complex, suggesting that these proteins are part of a well-conserved mechanism for regulating spindle functioning.  相似文献   

6.
Schizosaccharomyces pombe Mal3 is a member of the EB family of proteins, which are proposed to be core elements in a tip-tracking network that regulates microtubule dynamics in cells. How Mal3 itself influences microtubule dynamics is unclear. We tested the effects of full-length recombinant Mal3 on dynamic microtubules assembled in vitro from purified S. pombe tubulin, using dark field video microscopy to avoid fluorescent tagging and data-averaging techniques to improve spatiotemporal resolution. We find that catastrophe occurs stochastically as a fast (<2.2 s) transition from constant speed growth to constant speed shrinkage with a constant probability that is independent of the Mal3 concentration. This implies that Mal3 neither stabilizes nor destabilizes microtubule tips. Mal3 does, however, stabilize the main part of the microtubule lattice, inhibiting shrinkage and increasing the frequency of rescues, consistent with recent models in which Mal3 on the lattice forms stabilizing lateral links between neighboring protofilaments. At high concentrations, Mal3 can entirely block shrinkage and induce very rapid rescue, making catastrophes impossible to detect, which may account for the apparent suppression of catastrophe by Mal3 and other EBs in vivo. Overall, we find that Mal3 stabilizes microtubules not by preventing catastrophe at the microtubule tip but by inhibiting lattice depolymerization and enhancing rescue. We argue that this implies that Mal3 binds microtubules in different modes at the tip and on the lattice.Microtubules are intrinsically dynamic self-assembling structures of tubulin subunits (1) whose polymerization is subject to extensive spatial and temporal control in cells partly through the activity of microtubule-associated proteins (2). In cells, the EB family of microtubule plus end-tracking proteins (+TIPs)2 localizes at the plus end of growing but not shrinking microtubules. EB depletion increases catastrophe frequency and reduces microtubule length in many species (35), suggesting that EBs suppress microtubule catastrophes. It is, however, unclear from these cellular studies whether this activity is direct or indirect because the dynamic binding of EBs to other +TIPs proteins enhances the localization of all EB complex proteins, including EB1, to microtubule ends (6).To determine the direct effect of EB family proteins on microtubule dynamics, in vitro experiments are necessary. These have established that microtubule end tracking is an intrinsic property of the EB proteins and that other +TIP proteins such as CLIP170 are dependent upon EBs for their microtubule end localization (79). However, EB1 binding also directly alters the structure of growing microtubule tips (10). In vitro studies show that Mal3, the EB1 homologue in Schizosaccharomyces pombe, can also affect the structure of microtubules. Sandblad et al. (11) found localization of Mal3 along the (A-lattice) seam of B-lattice microtubules and proposed this as a potential mechanism for direct microtubule stabilization by the EBs. Des Georges et al. (12) showed that Mal3 binds to and specifically stabilizes the A-lattice protofilament overlap, promoting nucleation and assembly of A-lattice-containing microtubules.Several studies in vitro have all shown that EBs can affect microtubule dynamics (4, 7, 10, 13) but conflict over which parameter is affected. Thus although Bieling et al. (7) and Manna et al. (13) observed no effect on microtubule growth rates, Komarova et al. (4) and Vitre et al. (10) found an acceleration of growth. Manna et al. (13) found that EB1 inhibits catastrophe, yet the other studies observed that EBs trigger catastrophe events. There is clearly a need to resolve these apparent conflicts, especially as the same proteins in vivo appear to suppress catastrophe.To try to elucidate the mechanism by which EB proteins influence microtubule assembly, we developed a minimalist approach in which the potential for confounding factors to affect the data is reduced or eliminated. Our assay uses proteins from a single organism, S. pombe, and GMPCPP-stabilized microtubule seeds assembled from purified tubulin with only the seeds attached to the chamber surface. We used this system to measure the effects of unlabeled full-length Mal3 on the polymerization dynamics of unlabeled S. pombe microtubules. Microtubules were imaged using dark field microscopy to avoid fluorescent labeling (see Fig. 1A). We also developed a semiautomated analysis system that allows us to digitize a large number of events, which can then be processed by data averaging and filtering. This reduces noise, allowing us to examine the detailed kinetics of the catastrophic switch from growth to shrinkage. Using this system, we find that Mal3 has no direct effect upon the frequency or kinetics of catastrophe events but that it does reduce shrinkage rates and increase rescue frequency in a dose-dependent manner.Open in a separate windowFIGURE 1.In vitro S. pombe microtubule dynamics assay. A, schematic diagram of S. pombe microtubule dynamics assay. GMPCPP stabilized polarity-marked microtubule seed assembled from Alexa Fluor 488- and Alexa Fluor 680-labeled pig brain tubulin. Only the center of the seed is attached to the surface by anti-Alexa Fluor 488 antibody. Dynamic non-fluorescently labeled S. pombe microtubules grown from seeds were observed by dark field illumination. B, merged fluorescence images of GMPCPP stabilized, polarity-marked pig microtubule seed (pig Alexa-MT). Green, Alexa Fluor 488; red, Alexa Fluor 680. Polarity is indicated by − or +. The plus end of the seed has a longer Alexa Fluor 680-labeled region (upper panel), a dark field image showing pig microtubule seed plus elongated S. pombe microtubules (middle panel), and the merged images (lower panel). Red broken lines show the ends of the seed, and yellow broken lines show the ends of the elongated S. pombe microtubules. Arrows indicate the dynamic S. pombe microtubule elongated from the stabilized microtubule seed. Scale bar: 10 μm. C, kymographs of microtubule length change over time. The left panel shows a diagram of a typical example. Time is indicated by the vertical axis, and length is indicated by the horizontal axis. Rescue (r) and catastrophe (c) events are labeled. Regrowth of shrinking microtubules from the seed (yellow arrow) were not counted as rescues. Scale bars: vertical, 5 min; horizontal, 20 μm. + and − ends of microtubule are indicated. D, enlargement of catastrophe events from the yellow rectangle in C. Scale bars: vertical, 30 s; horizontal, 5 μm.  相似文献   

7.
EB1 family proteins are evolutionarily conserved proteins that bind microtubule plus-ends and centrosomes and regulate the dynamics and organization of microtubules. Human EB1 family proteins, which include EB1, EBF3, and RP1, also associate with the tumor suppressor protein adenomatous polyposis coli (APC) and p150glued, a component of the dynactin complex. The structural basis for interaction between human EB1 family proteins and their associated proteins has not been defined in detail. EB1 family proteins have a calponin homology (CH) domain at their N terminus and an EB1-like C-terminal motif at their C terminus; the functional importance of these domains has not been determined. To better understand functions of human EB1 family proteins and to reveal functional similarities and differences among these proteins, we performed detailed characterizations of interactions between human EB1 family proteins and their associated proteins. We show that amino acids 1-133 of EB1 and EBF3 and the corresponding region of RP1, which contain a CH domain, are necessary and sufficient for binding microtubules, thus demonstrating for the first time that a CH domain contributes to binding microtubules. EB1 family proteins use overlapping but different regions that contain the EB1-like C-terminal motif to associate with APC and p150glued. Neither APC nor p150glued binding domain is necessary for EB1 or EBF3 to induce microtubule bundling, which requires amino acids 1-181 and 1-185 of EB1 and EBF3, respectively. We also determined that the EB1 family protein-binding regions are amino acids 2781-2820 and 18-111 of APC and p150glued, respectively.  相似文献   

8.
End-binding protein 1 (EB1) is one of the best studied plus-end tracking proteins. It is known that EB1 specifically binds the plus ends of microtubules (MTs) and promotes MT growth. EB1 activity is thought to be autoinhibited by an intramolecular interaction. Recent cryo-EM analyses showed that the CH domain of Mal3p (Schizosaccharomyces pombe EB1 homolog) binds to GMPCPP-MT (Sandblad, L. Cell 127 (2006) 1415-24), and strongly binds GTPγS-MT which is proposed to mimic MT plus ends better than GMPCPP-MT (Maurer S.P. et al. Cell 149 (2012) 371–82). Here, we report on the MT binding sites of the CH domain of EB1 as revealed by NMR using the transferred cross-saturation method. In this study, we used GMPCPP-MT and found that the MT binding sites are very similar to the binding site for GTPγS-MT as suggested by cryo-EM (Maurer S.P. et al. Cell 149 (2012) 371–82). Notably, the N-terminal tip of helix α6 of the CH domain did not make contact with GMPCPP-MT, in contrast to the cryo-EM study which showed that it is closely located to a putative switch region of β-tubulin in GTPγS-MT (Maurer S.P. et al. Cell 149 (2012) 371-82). Further, we found that the intramolecular interaction site of EB1 overlaps the MT binding sites, indicating that the MT binding sites are masked by interaction with the C-terminal domain. We propose a structural view of autoinhibition and its release mechanism through competition binding with binding partners such as adenomatous polyposis coli protein.  相似文献   

9.
Microtubule-associated end-binding protein 3 (EB3) accumulates asymmetrically at the tip-end of growing microtubules, providing a central platform for linking various cellular components. EB3 orchestrates microtubule dynamics and targeting, enabling diverse processes within neurons. Inositol 1, 4, 5-trisphosphate 3-kinase A (IP3K-A; also known as ITPKA) is a neuron-enriched protein that binds to microtubules by PKA-dependent manners. In this study, we found that IP3K-A binds to EB3 and their binding affinity is precisely regulated by protein kinase A (PKA)-dependent phosphorylation of IP3K-A at Ser119 (pSer119). We also revealed that the complex of IP3K-A and EB3 dissociates and reassociates rapidly during chemically induced LTP (cLTP) condition. This dynamic rearrangement of IP3K-A and EB3 complex will contribute remodeling of microtubule cytoskeleton allowing effective structural plasticity in response to synaptic stimulations.  相似文献   

10.
Microtubule dynamics are regulated by plus-end tracking proteins (+TIPs), which bind microtubule ends and influence their polymerization properties. In addition to binding microtubules, most +TIPs physically associate with other +TIPs, creating a complex web of interactions. To fully understand how +TIPs regulate microtubule dynamics, it is essential to know the intrinsic biochemical activities of each +TIP and how +TIP interactions affect these activities. Here, we describe the activities of Bim1 and Bik1, two +TIP proteins from budding yeast and members of the EB1 and CLIP-170 families, respectively. We find that purified Bim1 and Bik1 form homodimers that interact with each other to form a tetramer. Bim1 binds along the microtubule lattice but with highest affinity for the microtubule end; however, Bik1 requires Bim1 for localization to the microtubule lattice and end. In vitro microtubule polymerization assays show that Bim1 promotes microtubule assembly, primarily by decreasing the frequency of catastrophes. In contrast, Bik1 inhibits microtubule assembly by slowing growth and, consequently, promoting catastrophes. Interestingly, the Bim1-Bik1 complex affects microtubule dynamics in much the same way as Bim1 alone. These studies reveal new activities for EB1 and CLIP-170 family members and demonstrate how interactions between two +TIP proteins influence their activities.  相似文献   

11.
EBs and CLIPs are evolutionarily conserved proteins, which associate with the tips of growing microtubules, and regulate microtubule dynamics and their interactions with intracellular structures. In this study we investigated the functional relationship of CLIP-170 and CLIP-115 with the three EB family members, EB1, EB2(RP1), and EB3 in mammalian cells. We showed that both CLIPs bind to EB proteins directly. The C-terminal tyrosine residue of EB proteins is important for this interaction. When EB1 and EB3 or all three EBs were significantly depleted using RNA interference, CLIPs accumulated at the MT tips at a reduced level, because CLIP dissociation from the tips was accelerated. Normal CLIP localization was restored by expression of EB1 but not of EB2. An EB1 mutant lacking the C-terminal tail could also fully rescue CLIP dissociation kinetics, but could only partially restore CLIP accumulation at the tips, suggesting that the interaction of CLIPs with the EB tails contributes to CLIP localization. When EB1 was distributed evenly along the microtubules because of overexpression, it slowed down CLIP dissociation but did not abolish its preferential plus-end localization, indicating that CLIPs possess an intrinsic affinity for growing microtubule ends, which is enhanced by an interaction with the EBs.  相似文献   

12.
We have identified a novel temperature-sensitive mutant of fission yeast alpha-tubulin Atb2 (atb2-983) that contains a single amino acid substitution (V260I). Atb2-983 is incorporated into the microtubules, and their overall structures are not altered noticeably, but microtubule dynamics is compromised during interphase. atb2-983 displays a high rate of chromosome missegregation and is synthetically lethal with deletions in a subset of spindle checkpoint genes including bub1, bub3, and mph1, but not with mad1, mad2, and mad3. During early mitosis in this mutant, Bub1, but not Mad2, remains for a prolonged period in the kinetochores that are situated in proximity to one of the two SPBs (spindle pole bodies). High dosage mal3(+), encoding EB1 homologue, rescues atb2-983, suggesting that Mal3 function is compromised. Consistently, Mal3 localization and binding between Mal3 and Atb2-983 are impaired significantly, and a mal3 single mutant, such as atb2-983, displays prolonged Bub1 kinetochore localization. Furthermore in atb2-983 back-and-forth centromere oscillation during prometaphase is abolished. Intriguingly, this oscillation still occurs in the mal3 mutant, indicating that there is another defect independent of Mal3. These results show that microtubule dynamics is important for coordinated execution of mitotic events, in which Mal3 plays a vital role.  相似文献   

13.
End binding 1 (EB1) is a plus-end-tracking protein (+TIP) that localizes to microtubule plus ends where it modulates their dynamics and interactions with intracellular organelles. Although the regulating activity of EB1 on microtubule dynamics has been studied in cells and purified systems, the molecular mechanisms involved in its specific activity are still unclear. Here, we describe how EB1 regulates the dynamics and structure of microtubules assembled from pure tubulin. We found that EB1 stimulates spontaneous nucleation and growth of microtubules, and promotes both catastrophes (transitions from growth to shrinkage) and rescues (reverse events). Electron cryomicroscopy showed that EB1 induces the initial formation of tubulin sheets, which rapidly close into the common 13-protofilament-microtubule architecture. Our results suggest that EB1 favours the lateral association of free tubulin at microtubule-sheet edges, thereby stimulating nucleation, sheet growth and closure. The reduction of sheet length at microtubule growing-ends together with the elimination of stressed microtubule lattices may account for catastrophes. Conversely, occasional binding of EB1 to the microtubule lattice may induce rescues.  相似文献   

14.
Plus end tracking proteins (+TIPs) are a unique group of microtubule binding proteins that dynamically track microtubule (MT) plus ends. EB1 is a highly conserved +TIP with a fundamental role in MT dynamics, but it remains poorly understood in part because reported EB1 activities have differed considerably. One reason for this inconsistency could be the variable presence of affinity tags used for EB1 purification. To address this question and establish the activity of native EB1, we have measured the MT binding and tubulin polymerization activities of untagged EB1 and EB1 fragments and compared them with those of His-tagged EB1 proteins. We found that N-terminal His tags directly influence the interaction between EB1 and MTs, significantly increasing both affinity and activity, and that small amounts of His-tagged proteins act synergistically with larger amounts of untagged proteins. Moreover, the binding ratio between EB1 and tubulin can exceed 1:1, and EB1-MT binding curves do not fit simple binding models. These observations demonstrate that EB1 binding is not limited to the MT seam, and they suggest that EB1 binds cooperatively to MTs. Finally, we found that removal of tubulin C-terminal tails significantly reduces EB1 binding, indicating that EB1-tubulin interactions are mediated in part by the same tubulin acidic tails utilized by other MAPs. These binding relationships are important for helping to elucidate the complex of proteins at the MT tip.  相似文献   

15.
Kinesins are microtubule-based motor proteins that transport cargo to specific locations within the cell. However, the mechanisms by which cargoes are directed to specific cellular locations have remained elusive. Here, we investigated the in vivo movement of the Schizosaccharomyces pombe kinesin Tea2 to establish how it is targeted to microtubule tips and cell ends. Tea2 is loaded onto microtubules in the middle of the cell, in close proximity to the nucleus, and then travels using its intrinsic motor activity primarily at the tips of polymerizing microtubules. The microtubule-associated protein Mal3, an EB1 homologue, is required for loading and/or processivity of Tea2 and this function can be substituted by human EB1. In addition, the cell-end marker Tea1 is required to anchor Tea2 to cell ends. Movement of Tea1 and the CLIP170 homologue Tip1 to cell ends is abolished in Tea2 rigor (ATPase) mutants. We propose that microtubule-based transport from the vicinity of the nucleus to cell ends can be precisely regulated, with Mal3 required for loading/processivity, Tea2 for movement and Tea1 for cell-end anchoring.  相似文献   

16.
The R753Q polymorphism in the Toll-IL-1 receptor domain of Toll-like receptor 2 (TLR2) has been linked to increased incidence of tuberculosis and other infectious diseases, but the mechanisms by which it affects TLR2 functions are unclear. Here, we studied the impact of the R753Q polymorphism on TLR2 expression, hetero-dimerization with TLR6, tyrosine phosphorylation, and recruitment of myeloid differentiation primary response protein (MyD) 88 and MyD88 adapter-like (Mal). Complementation of HEK293 cells with transfected WT or R753Q TLR2 revealed their comparable total levels and only minimal changes in cell surface expression of the mutant species. Notably, even a 100-fold increase in amounts of transfected R753Q TLR2 versus WT variant did not overcome the compromised ability of the mutant TLR2 to activate nuclear factor κB (NF-κB), indicating that a minimal decrease in cell surface levels of the R753Q TLR2 cannot account for the signaling deficiency. Molecular modeling studies suggested that the R753Q mutation changes the electrostatic potential of the DD loop and results in a discrete movement of the residues critical for protein-protein interactions. Confirming these predictions, biochemical assays demonstrated that R753Q TLR2 exhibits deficient agonist-induced tyrosine phosphorylation, hetero-dimerization with TLR6, and recruitment of Mal and MyD88. These proximal signaling deficiencies correlated with impaired capacities of the R753Q TLR2 to mediate p38 phosphorylation, NF-κB activation, and induction of IL-8 mRNA in transfected HEK293 cells challenged with inactivated Mycobacterium tuberculosis or mycobacterial components. Thus, the R753Q polymorphism renders TLR2 signaling-incompetent by impairing its tyrosine phosphorylation, dimerization with TLR6, and recruitment of Mal and MyD88.  相似文献   

17.
The regulation of cell migration is a highly complex process that is often compromised when cancer cells become metastatic. The microtubule cytoskeleton is necessary for cell migration, but how microtubules and microtubule-associated proteins regulate multiple pathways promoting cell migration remains unclear. Microtubule plus-end binding proteins (+TIPs) are emerging as important players in many cellular functions, including cell migration. Here we identify a +TIP, GTSE1, that promotes cell migration. GTSE1 accumulates at growing microtubule plus ends through interaction with the EB1+TIP. The EB1-dependent +TIP activity of GTSE1 is required for cell migration, as well as for microtubule-dependent disassembly of focal adhesions. GTSE1 protein levels determine the migratory capacity of both nontransformed and breast cancer cell lines. In breast cancers, increased GTSE1 expression correlates with invasive potential, tumor stage, and time to distant metastasis, suggesting that misregulation of GTSE1 expression could be associated with increased invasive potential.  相似文献   

18.
The end-binding protein 1 (EB1) family is a highly conserved group of proteins that localizes to the plus-ends of microtubules. EB1 has been shown to play an important role in regulating microtubule dynamics and chromosome segregation, but its regulation mechanism is poorly understood. We have determined the 1.45-A resolution crystal structure of the amino-terminal domain of EB1, which is essential for microtubule binding, and show that it forms a calponin homology (CH) domain fold that is found in many proteins involved in the actin cytoskeleton. The functional CH domain for actin binding is a tandem pair, whereas EB1 is the first example of a single CH domain that can associate with the microtubule filament. Although our biochemical study shows that microtubule binding of EB1 is electrostatic in part, our mutational analysis suggests that the hydrophobic network, which is partially exposed in our crystal structure, is also important for the association. We propose that, like other actin-binding CH domains, EB1 employs the hydrophobic interaction to bind to microtubules.  相似文献   

19.
The shift in mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis that is characteristic of the adenovirus E1A proteins is the result of posttranslational modification. In the present study, we demonstrate that phosphorylation of bacterially produced E1A in higher cell extracts occurs on serine and is responsible for the mobility shift. E1A protein expressed in Saccharomyces cerevisiae also undergoes the mobility shift due to serine phosphorylation. Site-directed mutagenesis was used to identify the serine residue responsible for the mobility shift. Six serine residues were altered to glycine within E1A. Substitution at serine residue 89 was shown to selectively prevent the mobility shift of both the 289R and 243R E1A proteins. We conclude that phosphorylation at serine 89 is the specific modification responsible for the mobility shift of E1A. Moreover, we demonstrate that the Ser-89-to-Gly mutation has no effect on trans activation or complementation of an E1A-deficient adenovirus. In contrast, the mutant protein does significantly reduce both the repression and transformation efficiency of E1A. The five other Ser-to-Gly mutation were also examined for functional effects. None affected trans activation, whereas repression and transformation functions were affected. One mutant affected transformation without affecting repression, suggesting that these functions are to some degree also separable. The relevance of phosphorylation to structure and activity of E1A and other nuclear oncogene proteins is discussed.  相似文献   

20.
The endoplasmic reticulum (ER) undergoes significant reorganization between interphase and mitosis, but the underlying mechanisms are unknown [1]. Stromal interaction molecule 1 (STIM1) is an ER Ca(2+) sensor that activates store-operated Ca(2+) entry (SOCE) [2, 3] and also functions in ER morphogenesis through its interaction with the microtubule?+TIP protein end binding 1 (EB1) [4]. We previously demonstrated that phosphorylation of STIM1 during mitosis suppresses SOCE [5]. We now show that STIM1 phosphorylation is a major regulatory mechanism that excludes ER from the mitotic spindle. In mitotic HeLa cells, the ER forms concentric sheets largely excluded from the mitotic spindle. We show that STIM1 dissociates from EB1 in mitosis and localizes to the concentric ER sheets. However, a nonphosphorylatable STIM1 mutant (STIM1(10A)) colocalized extensively with EB1 and drove ER mislocalization by pulling ER tubules into the spindle. This effect was rescued by mutating the EB1 interaction site of STIM1(10A), demonstrating that aberrant association of STIM1(10A) with EB1 is responsible for the ER mislocalization. A STIM1 phosphomimetic exhibited significantly impaired?+TIP tracking in interphase but was ineffective at inhibiting SOCE, suggesting different mechanisms of regulation of these two STIM1 functions by phosphorylation. Thus, ER spindle exclusion and ER-dependent Ca(2+) signaling during mitosis require multimodal STIM1 regulation by phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号