首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In eukaryotic cells, ubiquitylation of proteins plays a critical role in regulating diverse cell processes by the ubiquitin activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin protein ligase (E3). E3 is the key component that confers specificity to ubiquitylation and directs the conjugation of ubiquitin to a specific target protein. RING domains are small structured protein domains that require the coordination of zinc ions for a stable tertiary fold and some of them are involved in the E3 family. In this study, we reported the detailed relationships between the two zinc ions and the structural stability of the c-Cbl RING domain by molecular dynamics simulations. Our results show that these two zinc ions play an important role in maintaining both the secondary and tertiary structural stabilities of the c-Cbl RING domain. Our results also reveal that the secondary structural stability of the c-Cbl RING domain is mainly determined by the hydrogen-bonding networks in or near the two zinc ion binding sites. Our results further demonstrate that zinc ion binding site 2 is more structurally stable than site 1.  相似文献   

2.
3.
RING domains are found in a large number of eukaryotic proteins. Most function as E3 ubiquitin-protein ligases, catalyzing the terminal step in the ubiquitination process. Structurally, these domains have been characterized as binding two zinc ions in a stable cross-brace motif. The tumorigenic human gamma-herpesvirus Kaposi's sarcoma-associated herpesvirus encodes a ubiquitin-protein ligase termed K3, which functions as an immune evasion molecule by ubiquitinating major histocompatibility complex class I. K3 possesses at its N terminus a domain related to cellular RING domains but with an altered zinc ligand arrangement. This domain was initially characterized as a plant homeodomain, a structure not previously known to function as an E3. Here, it is conclusively demonstrated that the K3 N-terminal domain is a variant member of the RING domain family and not a plant homeodomain. The domain is found to interact with the cellular ubiquitin-conjugating enzymes UbcH5A to -C and UbcH13, which dock to the equivalent surface as on classical cellular RING domains. Interaction with UbcH13 suggests a possible role for K3 in catalyzing Lys(63)-linked ubiquitination.  相似文献   

4.
RBBP6 (retinoblastoma binding protein 6) is a 250-kDa multifunctional protein that interacts with both p53 and pRb and has been implicated in mRNA processing. It has also been identified as a putative E3 ubiquitin ligase due to the presence of a RING finger domain, although no substrate has been identified up to now. Using the RING finger domain as bait in a yeast two-hybrid screen, we identified YB-1 (Y-box binding protein 1) as a binding partner of RBBP6, localising the interaction to the last 62 residues of YB-1. We showed, furthermore, that both full-length RBBP6 and the isolated RING finger domain were able to ubiquitinate YB-1, resulting in its degradation in the proteosome. As a result, RBBP6 was able to suppress the levels of YB-1 in vivo and to reduce its transactivational ability. In the light of the important role that YB-1 appears to play in tumourigenesis, our results suggest that RBBP6 may be a relevant target for therapeutic drugs aimed at modifying the activity of YB-1.  相似文献   

5.
Protein quality control: U-box-containing E3 ubiquitin ligases join the fold   总被引:13,自引:0,他引:13  
Molecular chaperones act with folding co-chaperones to suppress protein aggregation and refold stress damaged proteins. However, it is not clear how slowly folding or misfolded polypeptides are targeted for proteasomal degradation. Generally, selection of proteins for degradation is mediated by E3 ubiquitin ligases of the mechanistically distinct HECT and RING domain sub-types. Recent studies suggest that the U-box protein family represents a third class of E3 enzymes. CHIP, a U-box-containing protein, is a degradatory co-chaperone of heat-shock protein 70 (Hsp70) and Hsp90 that facilitates the polyubiquitination of chaperone substrates. These data indicate a model for protein quality control in which the interaction of Hsp70 and Hsp90 with co-chaperones that have either folding or degradatory activity helps to determine the fate of non-native cellular proteins.  相似文献   

6.

Background  

RBBP6 is a 250 kDa splicing-associated protein that has been identified as an E3 ligase due to the presence of a RING finger domain. In humans and mice it interacts with both p53 and Rb, and plays a role in the induction of apoptosis and regulation of the cell cycle. RBBP6 has recently been shown to be highly up-regulated in oesophageal cancer, and to be a promising target for immunotherapy against the disease.  相似文献   

7.
Retinoblastoma binding protein 6 (RBBP6) is a nuclear protein, previously implicated in the regulation of cell cycle and apoptosis. The human RBBP6 gene codes for three protein isoforms and isoform 3 consists of the domain with no name domain only whilst the other two isoforms, 1 and 2 comprise of additional zinc, RING, retinoblastoma and p53 binding domains. In this study, the localization of RBBP6 using RBBP6 variant 3 mRNA-specific probe was performed to investigate the expression levels of the gene in different tumours and find a link between RBBP6 and human carcinogenesis. Using FISH, real-time PCR and Western blotting analysis our results show that RBBP6 isoform 3 is down-regulated in human cancers. RBBP6 isoform 3 knock-down resulted in reduced G2/M cell cycle arrest whilst its over-expression resulted in increased G2/M cell cycle arrest using propidium iodide DNA staining. The results further demonstrate that the RBBP6 isoform 3 may be the cell cycle regulator and involved in mitotic apoptosis not the isoform 1 as previously reported for mice. In conclusion, these findings suggest that RBBP6 isoform 3 is a cell cycle regulator and may be de-regulated in carcinogenesis.  相似文献   

8.
The E3 ubiquitin ligase RING1B plays an important role in Polycomb-mediated gene silencing by monoubiquitinating histone H2A. Both the activity and stability of RING1B are controlled by ubiquitination in two distinct manners. Self ubiquitination of RING1B generates K6, K27 and K48-based mixed polyubiquitin chain, and is required for its activity as a ligase. On the other hand, its proteasomal degradation is mediated by another ligase; E6-AP catalyzes the formation of K48-based chains. Since these two modes of ubiquitination target the same lysine residues and are therefore mutually exclusive, an important mode of regulation of RING1B should be at the level of deubiquitination. Here we identify USP7 as a deubiquitinating enzyme that regulates the ubiquitination state of RING1B. RING1B interacts with USP7, which is mediated in part by its RING domain. In addition, USP7 was found in a complex with other Polycomb proteins, suggesting a broad role in regulating these complexes. Although, USP7 directly and specifically deubiquitinates RING1B in vitro and in vivo, it does not discriminate between the activating and proteolysis-targeting modes of ubiquitination, and therefore has a stabilizing effect on RING1B.  相似文献   

9.
10.
TRAF6, a crucial adaptor molecule in innate and adaptive immunity, contains three distinct functional domains. The C-terminal TRAF domain facilitates oligomerization and sequence-specific interaction with receptors or other adaptor proteins. In conjunction with the dimeric E2 enzyme Ubc13-Uev1A, the N-terminal RING domain of TRAF6 functions as an E3 ubiquitin (Ub) ligase that facilitates its own site-specific ubiquitination through the generation of a Lys-63-linked poly-Ub chain. This modification does not cause its proteasomal degradation but rather serves as a scaffold to activate both the IKK and stress kinase pathways. Connecting the N-and C-terminal regions, the four internal zinc finger (ZF) motifs have yet to be functionally defined. In this study, we examined the role of the ZF domains in interleukin-1, lipopolysaccharide, and RANKL signaling by reconstitution of TRAF6-deficient cells with point mutations or deletions of these ZF motifs. Although ZF domains 2-4 are dispensable for activating IKK, p38, and JNK by interleukin-1 and lipopolysaccharide, the first ZF domain together with an intact RING domain of TRAF6 is essential for activating these pathways. Furthermore, TRAF6 autoubiquitination and its interaction with Ubc13 are dependent on ZF1 and an intact RING domain. Additionally, expression of TRAF6 lacking ZF2-4 in TRAF6-deficient monocytes rescues RANKL-mediated osteoclast differentiation and LPS-stimulated interleukin-6 production. These data provide evidence for the critical role of the Ub ligase activity of TRAF6, which is coordinated via the RING domain and ZF1 to supply the necessary elements in signaling by cytokines dependent upon TRAF6.  相似文献   

11.
Approximately 5% of the Arabidopsis (Arabidopsis thaliana) proteome is predicted to be involved in the ubiquitination/26S proteasome pathway. The majority of these predicted proteins have identity to conserved domains found in E3 ligases, of which there are multiple types. The RING-type E3 is characterized by the presence of a cysteine-rich domain that coordinates two zinc atoms. Database searches followed by extensive manual curation identified 469 predicted Arabidopsis RING domain-containing proteins. In addition to the two canonical RING types (C3H2C3 or C3HC4), additional types of modified RING domains, named RING-v, RING-D, RING-S/T, RING-G, and RING-C2, were identified. The modified RINGs differ in either the spacing between metal ligands or have substitutions at one or more of the metal ligand positions. The majority of the canonical and modified RING domain-containing proteins analyzed were active in in vitro ubiquitination assays, catalyzing polyubiquitination with the E2 AtUBC8. To help identity regions of the proteins that may interact with substrates, domain analyses of the amino acids outside the RING domain classified RING proteins into 30 different groups. Several characterized protein-protein interaction domains were identified, as well as additional conserved domains not described previously. The two largest classes of RING proteins contain either no identifiable domain or a transmembrane domain. The presence of such a large and diverse number of RING domain-containing proteins that function as ubiquitin E3 ligases suggests that target-specific proteolysis by these E3 ligases is a complex and important part of cellular regulation in Arabidopsis.  相似文献   

12.
Almost all eukaryotic mRNAs must be polyadenylated at their 3′ ends to function in protein synthesis. This modification occurs via a large nuclear complex that recognizes signal sequences surrounding a poly(A) site on mRNA precursor, cleaves at that site, and adds a poly(A) tail. While the composition of this complex is known, the functions of some subunits remain unclear. One of these is a multidomain protein called Mpe1 in the yeast Saccharomyces cerevisiae and RBBP6 in metazoans. The three conserved domains of Mpe1 are a ubiquitin-like (UBL) domain, a zinc knuckle, and a RING finger domain characteristic of some ubiquitin ligases. We show that mRNA 3′-end processing requires all three domains of Mpe1 and that more than one region of Mpe1 is involved in contact with the cleavage/polyadenylation factor in which Mpe1 resides. Surprisingly, both the zinc knuckle and the RING finger are needed for RNA-binding activity. Consistent with a role for Mpe1 in ubiquitination, mutation of Mpe1 decreases the association of ubiquitin with Pap1, the poly(A) polymerase, and suppressors of mpe1 mutants are linked to ubiquitin ligases. Furthermore, an inhibitor of ubiquitin-mediated interactions blocks cleavage, demonstrating for the first time a direct role for ubiquitination in mRNA 3′-end processing.  相似文献   

13.
RING finger domain and RING finger-like ubiquitin ligases (E3s), such as U-box proteins, constitute the vast majority of known E3s. RING-type E3s function together with ubiquitin-conjugating enzymes (E2s) to mediate ubiquitination and are implicated in numerous cellular processes. In part because of their importance in human physiology and disease, these proteins and their cellular functions represent an intense area of study. Here we review recent advances in RING-type E3 recognition of substrates, their cellular regulation, and their varied architecture. Additionally, recent structural insights into RING-type E3 function, with a focus on important interactions with E2s and ubiquitin, are reviewed. This article is part of a Special Issue entitled: Ubiquitin–Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.  相似文献   

14.
Retinoblastoma-binding protein 1 (RBBP1) is a tumor and leukemia suppressor that binds both methylated histone tails and DNA. Our previous studies indicated that RBBP1 possesses a Tudor domain, which cannot bind histone marks. In order to clarify the function of the Tudor domain, the solution structure of the RBBP1 Tudor domain was determined by NMR and is presented here. Although the proteins are unrelated, the RBBP1 Tudor domain forms an interdigitated double Tudor structure similar to the Tudor domain of JMJD2A, which is an epigenetic mark reader. This indicates the functional diversity of Tudor domains. The RBBP1 Tudor domain structure has a significant area of positively charged surface, which reveals a capability of the RBBP1 Tudor domain to bind nucleic acids. NMR titration and isothermal titration calorimetry experiments indicate that the RBBP1 Tudor domain binds both double- and single-stranded DNA with an affinity of 10–100 μm; no apparent DNA sequence specificity was detected. The DNA binding mode and key interaction residues were analyzed in detail based on a model structure of the Tudor domain-dsDNA complex, built by HADDOCK docking using the NMR data. Electrostatic interactions mediate the binding of the Tudor domain with DNA, which is consistent with NMR experiments performed at high salt concentration. The DNA-binding residues are conserved in Tudor domains of the RBBP1 protein family, resulting in conservation of the DNA-binding function in the RBBP1 Tudor domains. Our results provide further insights into the structure and function of RBBP1.  相似文献   

15.
Cbl proteins (Cbl, Cbl-b and Cbl-c) are ubiquitin ligases that are critical regulators of tyrosine kinase signaling. In this study we identify a new Cbl-c interacting protein, Hydrogen peroxide Induced Construct 5 (Hic-5). The two proteins interact through a novel interaction mediated by the RING finger of Cbl-c and the LIM2 domain of Hic-5. Further, this interaction is mediated and dependent on specific zinc coordinating complexes within the RING finger and LIM domain. Binding of Hic-5 to Cbl-c leads to an increase in the ubiquitin ligase activity of Cbl-c once Cbl-c has been activated by Src phosphorylation or through an activating phosphomimetic mutation. In addition, co-transfection of Hic-5 with Cbl-c leads to an increase in Cbl-c mediated ubiquitination of the EGFR. These data suggest that Hic-5 enhances Cbl-c ubiquitin ligase activity once Cbl-c has been phosphorylated and activated. Interactions between heterologous RING fingers have been shown to activate E3s. This is the first demonstration of enhancement of ubiquitin ligase activity of a RING finger ubiquitin ligase by the direct interaction of a LIM zinc coordinating domain.  相似文献   

16.
RING finger proteins are zinc finger proteins containing the RING motifs. They act mainly as E3 ubiq-uitin ligases, bind the ubiquitin E2 conjugating enzyme and promote degradation of targeted proteins, Many novel genes have been isolated and differentially expressed in human adult and embryo testis by a testis cDNA-array differential display technique. A novel RING finger cDNA is highly expressed in adult testis and at low level in fetal testis. It was named Spg2. It contains a 2055 nucleotide ORF, en-codes a 685-amino-acid RNF6 protein, and has a RING finger in its C terminal. NCBI Blast shows that the gene is located on chromosome 13 and contains five exons. A multiple tissue expression profile also indicates that it is highly expressed in human testis, so we speculate that it may be associated with human spermatogenesis by virtue of the action of its RING domain.  相似文献   

17.
Members of the Siah (seven in absentia homolog) family of RING domain proteins are components of E3 ubiquitin ligase complexes that catalyze ubiquitination of proteins. We have determined the crystal structure of the substrate-binding domain (SBD) of murine Siah1a to 2.6 A resolution. The structure reveals that Siah is a dimeric protein and that the SBD adopts an eight-stranded beta-sandwich fold that is highly similar to the TRAF-C region of TRAF (TNF-receptor associated factor) proteins. The TRAF-C region interacts with TNF-alpha receptors and TNF-receptor associated death-domain (TRADD) proteins; however, our findings indicate that these interactions are unlikely to be mimicked by Siah. The Siah structure also reveals two novel zinc fingers in a region with sequence similarity to TRAF. We find that the Siah1a SBD potentiates TNF-alpha-mediated NF-kappa B activation. Therefore, Siah proteins share important similarities with the TRAF family of proteins, including their overall domain architecture, three-dimensional structure and functional activity.  相似文献   

18.
RNF144A is involved in protein ubiquitination and functions as an ubiquitin‐protein ligase (E3) via its RING finger domain (RNF144A RING). RNF144A is associated with degradation of heat‐shock protein family A member 2 (HSPA2), which leads to the suppression of breast cancer cell proliferation. In this study, the solution structure of RNF144A RING was determined using nuclear magnetic resonance. Moreover, using a metallochromic indicator, we spectrophotometrically determined the stoichiometry of zinc ions and elucidated that RNF144A RING binds two zinc atoms. This structural analysis provided the position and range of the active site of RNF144A RING at the atomic level, which contributes to the creation of artificial RING fingers having the specific ubiquitin‐conjugating enzyme (E2)‐binding capability.  相似文献   

19.
20.
The ribosomal S6 kinase 2 (RSK2) is a member of the p90 ribosomal S6 kinase (p90RSK) family of proteins and plays a critical role in proliferation, cell cycle, and cell transformation. Here, we report that RSK2 phosphorylates caspase-8, and Thr-263 was identified as a novel caspase-8 phosphorylation site. In addition, we showed that EGF induces caspase-8 ubiquitination and degradation through the proteasome pathway, and phosphorylation of Thr-263 is associated with caspase-8 stability. Finally, RSK2 blocks Fas-induced apoptosis through its phosphorylation of caspase-8. These data provide a direct link between RSK2 and caspase-8 and identify a novel molecular mechanism for caspase-8 modulation by RSK2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号