首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetically-encoded calcium indicators (GECIs) facilitate imaging activity of genetically defined neuronal populations in vivo. The high intracellular GECI concentrations required for in vivo imaging are usually achieved by viral gene transfer using adeno-associated viruses. Transgenic expression of GECIs promises important advantages, including homogeneous, repeatable, and stable expression without the need for invasive virus injections. Here we present the generation and characterization of transgenic mice expressing the GECIs GCaMP6s or GCaMP6f under the Thy1 promoter. We quantified GCaMP6 expression across brain regions and neurons and compared to other transgenic mice and AAV-mediated expression. We tested three mouse lines for imaging in the visual cortex in vivo and compared their performance to mice injected with AAV expressing GCaMP6. Furthermore, we show that GCaMP6 Thy1 transgenic mice are useful for long-term, high-sensitivity imaging in behaving mice.  相似文献   

2.
Genetically-encoded calcium indicators (GECIs) hold the promise of monitoring [Ca(2+)] in selected populations of neurons and in specific cellular compartments. Relating GECI fluorescence to neuronal activity requires quantitative characterization. We have characterized a promising new genetically-encoded calcium indicator-GCaMP2-in mammalian pyramidal neurons. Fluorescence changes in response to single action potentials (17+/-10% DeltaF/F [mean+/-SD]) could be detected in some, but not all, neurons. Trains of high-frequency action potentials yielded robust responses (302+/-50% for trains of 40 action potentials at 83 Hz). Responses were similar in acute brain slices from in utero electroporated mice, indicating that long-term expression did not interfere with GCaMP2 function. Membrane-targeted versions of GCaMP2 did not yield larger signals than their non-targeted counterparts. We further targeted GCaMP2 to dendritic spines to monitor Ca(2+) accumulations evoked by activation of synaptic NMDA receptors. We observed robust DeltaF/F responses (range: 37%-264%) to single spine uncaging stimuli that were correlated with NMDA receptor currents measured through a somatic patch pipette. One major drawback of GCaMP2 was its low baseline fluorescence. Our results show that GCaMP2 is improved from the previous versions of GCaMP and may be suited to detect bursts of high-frequency action potentials and synaptic currents in vivo.  相似文献   

3.
Genetically encoded calcium indicators (GECIs) permit imaging intracellular calcium transients. Among GECIs, the GFP-based GCaMPs are the most widely used because of their high sensitivity and rapid response to changes in intracellular calcium concentrations. Here we report that the fluorescence of GCaMPs—including GCaMP3, GCaMP5 and GCaMP6—can be converted from green to red following exposure to blue-green light (450–500 nm). This photoconversion occurs in both insect and mammalian cells and is enhanced in a low oxygen environment. The red fluorescent GCaMPs retained calcium responsiveness, albeit with reduced sensitivity. We identified several amino acid residues in GCaMP important for photoconversion and generated a GCaMP variant with increased photoconversion efficiency in cell culture. This light-induced spectral shift allows the ready labeling of specific, targeted sets of GCaMP-expressing cells for functional imaging in the red channel. Together, these findings indicate the potential for greater utility of existing GCaMP reagents, including transgenic animals.  相似文献   

4.
细胞核钙离子是基因转录等细胞核反应过程重要的调控因子.然而,细胞核内钙离子信号的调控机制尚不清楚.缺乏稳定的、敏感的细胞核钙指示剂,是导致其调控机制难以研究的重要原因之一.针对这一问题,设计了能够在细胞核内特异性表达的、具有核定位功能的钙指示剂.以基因编码钙指示剂(GECIs)家族成员GCaMP6为模板,首先融合了对钙离子不敏感的红色荧光蛋白tdTomato来对局部的钙信号进行量化,其次融合了核定位信号(NLS),使GCaMP6能够特异定位于细胞核中.结果表明,NLS-GCaMP6-tdTomato能够在细胞核中有效发挥作用,并且在钙敏感性与动力学上,也与GCaMP6相当. 这一新型细胞核钙指示剂将为研究细胞核钙离子的功能及其调控机制提供新的方法与途径.  相似文献   

5.
While debate continues over whether somatosensory information is transmitted via labeled line, population coding, frequency coding, or some combination therein, researchers have begun to address this question at the level of the primary afferent by using optical approaches that enable the assessment of neural activity in hundreds to even thousands of neurons simultaneously. However, with limited availability of tools to optically assess electrical activity in large populations of neurons, researchers have turned to genetically encoded Ca2+ indicators (GECIs) including GCaMP to enable the detection of increases in cytosolic Ca2+ concentrations as a correlate for neuronal activity. One of the most widely used GECIs is GCaMP6, which is available in three different versions tuned for sensitivity (GCaMP6s), speed (GCaMP6f), or a balance of the two (GCaMP6m). In order to determine if these issues were unique to GCaMP6 itself, or if they were inherent to more than one generation of GCaMP, we also characterized jGCaMP7. In the present study, we sought to determine the utility of the three GCaMP6 isoforms to detect changes in activity in primary afferents at frequencies ranging from 0.1–30 Hz. Given the heterogeneity of sensory neurons, we also compared the performance of each GCaMP6 isoform in subpopulations of neurons defined by properties used to identify putative nociceptive afferents: cell body size, isolectin B4 (IB4) binding, and capsaicin sensitivity. Finally, we compared results generated with GCaMP6 with that generated from neurons expressing the next generation of GCaMP, jGCaMP7s and jGCaMP7f. A viral approach, with AAV9-CAG-GCaMP6s/m/f, was used to drive GECI expression in acutely dissociated rat trigeminal ganglion (TG) neurons, and neural activity was driven by electrical field stimulation. Infection efficiency with the AAV serotype was high >95 %, and the impact of GCaMP6 expression in TG neurons over the period of study (<10 days) on the regulation of intracellular Ca2+, as assessed with fura-2, was minimal. Having confirmed that the field stimulation evoked Ca2+ transients were dependent on Ca2+ influx secondary to the activation of action potentials and voltage-gated Ca2+ channels, we also confirmed that the signal-to-noise ratio for each of the isoforms was excellent, enabling detection of a single spike in>90% of neurons. However, the utility of the GCaMP6 isoforms to enable an assessment of the firing frequency let alone changes in firing frequency of each neuron was relatively limited and isoform specific: GCaMP6s and 6m had the lowest resolution, enabling detection of spikes at 3 Hz in 15% and 32% of neurons respectively, but it was possible to resolve discrete single spikes up to 10 Hz in 36% of GCaMP6f neurons. Unfortunately, using other parameters of the Ca2+ transient, such as magnitude of the transient or the rate of rise, did not improve the range over which these indicators could be used to assess changes in spike number or firing frequency. Furthermore, in the presence of ongoing neural activity, it was even more difficult to detect a change in firing frequency. The frequency response relationship for the increase in Ca2+ was highly heterogeneous among sensory neurons and was influenced by both the GCaMP6 isoform used to assess it, the timing between the delivery of stimulation trains (inter-burst interval), and afferent subpopulation. Notably, the same deficiencies were observed with jGCaMP7s and 7f in resolving the degree of activity as were present for the GCaMP6 isoforms. Together, these data suggest that while both GCaMP6 and jGCaMP7 are potentially useful tools in sensory neurons to determine the presence or absence of neural activity, the ability to discriminate changes in firing frequency ≥ 3 Hz is extremely limited. As a result, GECIs should probably not be used in sensory neurons to assess changes in activity within or between subpopulations of neurons.  相似文献   

6.
Calcium is a universal messenger that translates diverse environmental stimuli and developmental cues into specific cellular and developmental responses. While individual fungal species have evolved complex and often unique biochemical and structural mechanisms to exploit specific ecological niches and to adjust growth and development in response to external stimuli, one universal feature to all is that Ca(2+)-mediated signaling is involved. The lack of a robust method for imaging spatial and temporal dynamics of subcellular Ca(2+) (i.e., "Ca(2+) signature"), readily available in the plant and animal systems, has severely limited studies on how this signaling pathway controls fungal growth, development, and pathogenesis. Here, we report the first successful expression of a FRET (F?rster Resonance Energy Transfer)-based Ca(2+) biosensor in fungi. Time-lapse imaging of Magnaporthe oryzae, Fusarium oxysporum, and Fusarium graminearum expressing this sensor showed that instead of a continuous gradient, the cytoplasmic Ca(2+) ([Ca(2+)](c)) change occurred in a pulsatile manner with no discernable gradient between pulses, and each species exhibited a distinct Ca(2+) signature. Furthermore, occurrence of pulsatile Ca(2+) signatures was age and development dependent, and major [Ca(2+)](c) transients were observed during hyphal branching, septum formation, differentiation into specialized plant infection structures, cell-cell contact and in planta growth. In combination with the sequenced genomes and ease of targeted gene manipulation of these and many other fungal species, the data, materials and methods developed here will help understand the mechanism underpinning Ca(2+)-mediated control of cellular and developmental changes, its role in polarized growth forms and the evolution of Ca(2+) signaling across eukaryotic kingdoms.  相似文献   

7.
8.
Genetically encoded Ca(2+) indicators (GECIs) are powerful tools to image activities of defined cell populations. Here, we developed an improved red fluorescent GECI, termed R-CaMP1.07, by mutagenizing R-GECO1. In HeLa cell assays, R-CaMP1.07 exhibited a 1.5-2-fold greater fluorescence response compared to R-GECO1. In hippocampal pyramidal neurons, R-CaMP1.07 detected Ca(2+) transients triggered by single action potentials (APs) with a probability of 95% and a signal-to-noise ratio >7 at a frame rate of 50 Hz. The amplitudes of Ca(2+) transients linearly correlated with the number of APs. The expression of R-CaMP1.07 did not significantly alter the electrophysiological properties or synaptic activity patterns. The co-expression of R-CaMP1.07 and channelrhodpsin-2 (ChR2), a photosensitive cation channel, in pyramidal neurons demonstrated that R-CaMP1.07 was applicable for the monitoring of Ca(2+) transients in response to optically evoked APs, because the excitation light for R-CaMP1.07 hardly activated ChR2. These technical advancements provide a novel strategy for monitoring and manipulating neuronal activity with single cell resolution.  相似文献   

9.
Fluorescent Ca(2+) indicator proteins (FCIPs) are attractive tools for studying Ca(2+) dynamics in live cells. Here we describe transgenic mouse lines expressing a troponin C (TnC)-based biosensor. The biosensor is widely expressed in neurons and has improved Ca(2+) sensitivity both in vitro and in vivo. This allows FCIP-based two-photon Ca(2+) imaging of distinct neurons and their dendrites in vivo, and opens a new avenue for structure-function analysis of intact neuronal circuits.  相似文献   

10.
Glycoprotein-deleted (ΔG) rabies virus is a powerful tool for studies of neural circuit structure. Here, we describe the development and demonstrate the utility of new resources that allow experiments directly investigating relationships between the structure and function of neural circuits. New methods and reagents allowed efficient production of 12 novel ΔG rabies variants from plasmid DNA. These new rabies viruses express useful neuroscience tools, including the Ca(2+) indicator GCaMP3 for monitoring activity; Channelrhodopsin-2 for photoactivation; allatostatin receptor for inactivation by ligand application; and rtTA, ER(T2)CreER(T2), or FLPo, for control of gene expression. These new tools allow neurons targeted on the basis of their connectivity to have their function assayed or their activity or gene expression manipulated. Combining these tools with in vivo imaging and optogenetic methods and/or inducible gene expression in transgenic mice will facilitate experiments investigating neural circuit development, plasticity, and function that have not been possible with existing reagents.  相似文献   

11.
Mitochondria as sensors and regulators of calcium signalling   总被引:1,自引:0,他引:1  
During the past two decades calcium (Ca(2+)) accumulation in energized mitochondria has emerged as a biological process of utmost physiological relevance. Mitochondrial Ca(2+) uptake was shown to control intracellular Ca(2+) signalling, cell metabolism, cell survival and other cell-type specific functions by buffering cytosolic Ca(2+) levels and regulating mitochondrial effectors. Recently, the identity of mitochondrial Ca(2+) transporters has been revealed, opening new perspectives for investigation and molecular intervention.  相似文献   

12.
Methods to record action potential (AP) firing in many individual neurons are essential to unravel the function of complex neuronal circuits in the brain. A promising approach is bolus loading of Ca(2+) indicators combined with multiphoton microscopy. Currently, however, this technique lacks cell-type specificity, has low temporal resolution and cannot resolve complex temporal firing patterns. Here we present simple solutions to these problems. We identified neuron types by colocalizing Ca(2+) signals of a red-fluorescing indicator with genetically encoded markers. We reconstructed firing rate changes from Ca(2+) signals by temporal deconvolution. This technique is efficient, dramatically enhances temporal resolution, facilitates data interpretation and permits analysis of odor-response patterns across thousands of neurons in the zebrafish olfactory bulb. Hence, temporally deconvolved Ca(2+) imaging (TDCa imaging) resolves limitations of current optical recording techniques and is likely to be widely applicable because of its simplicity, robustness and generic principle.  相似文献   

13.
1,4,5-trisphosphate (IP(3))-dependent Ca(2+) signaling regulates gonad function, fertility, and rhythmic posterior body wall muscle contraction (pBoc) required for defecation in Caenorhabditis elegans. Store-operated Ca(2+) entry (SOCE) is activated during endoplasmic reticulum (ER) Ca(2+) store depletion and is believed to be an essential and ubiquitous component of Ca(2+) signaling pathways. SOCE is thought to function to refill Ca(2+) stores and modulate Ca(2+) signals. Recently, stromal interaction molecule 1 (STIM1) was identified as a putative ER Ca(2+) sensor that regulates SOCE. We cloned a full-length C. elegans stim-1 cDNA that encodes a 530-amino acid protein with approximately 21% sequence identity to human STIM1. Green fluorescent protein (GFP)-tagged STIM-1 is expressed in the intestine, gonad sheath cells, and spermatheca. Knockdown of stim-1 expression by RNA interference (RNAi) causes sterility due to loss of sheath cell and spermatheca contractile activity required for ovulation. Transgenic worms expressing a STIM-1 EF-hand mutant that constitutively activates SOCE in Drosophila and mammalian cells are sterile and exhibit severe pBoc arrhythmia. stim-1 RNAi dramatically reduces STIM-1GFP expression, suppresses the EF-hand mutation-induced pBoc arrhythmia, and inhibits intestinal store-operated Ca(2+) (SOC) channels. However, stim-1 RNAi surprisingly has no effect on pBoc rhythm, which is controlled by intestinal oscillatory Ca(2+) signaling, in wild type and IP(3) signaling mutant worms, and has no effect on intestinal Ca(2+) oscillations and waves. Depletion of intestinal Ca(2+) stores by RNAi knockdown of the ER Ca(2+) pump triggers the ER unfolded protein response (UPR). In contrast, stim-1 RNAi fails to induce the UPR. Our studies provide the first detailed characterization of STIM-1 function in an intact animal and suggest that SOCE is not essential for certain oscillatory Ca(2+) signaling processes and for maintenance of store Ca(2+) levels in C. elegans. These findings raise interesting and important questions regarding the function of SOCE and SOC channels under normal and pathophysiological conditions.  相似文献   

14.
Genetically encoded calcium biosensors have become valuable tools in cell biology and neuroscience, but some aspects such as signal strength and response kinetics still need improvement. Here we report the generation of a FRET-based calcium biosensor employing troponin C as calcium-binding moiety that is fast, is stable in imaging experiments, and shows a significantly enhanced fluorescence change. These improvements were achieved by engineering magnesium and calcium-binding properties within the C-terminal lobe of troponin C and by the incorporation of circularly permuted variants of the green fluorescent protein. This sensor named TN-XL shows a maximum fractional fluorescence change of 400% in its emission ratio and linear response properties over an expanded calcium regime. When imaged in vivo at presynaptic motoneuron terminals of transgenic fruit flies, TN-XL exhibits highly reproducible fluorescence signals with the fastest rise and decay times of all calcium biosensors known so far.  相似文献   

15.
The regulation of cellular Ca(2+) homeostasis is essential for innumerable physiological and pathological processes. Stanniocalcin 1, a secreted glycoprotein hormone originally described in fish, is a well-established endocrine regulator of gill Ca(2+) uptake during hypercalcemia. While there are two mammalian Stanniocalcin homologs (STC1 and STC2), their precise molecular functions remain unknown. Notably, STC2 is a prosurvival component of the unfolded protein response. Here, we demonstrate a cell-intrinsic role for STC2 in the regulation of store-operated Ca(2+) entry (SOCE). Fibroblasts cultured from Stc2 knockout mice accumulate higher levels of cytosolic Ca(2+) following endoplasmic reticulum (ER) Ca(2+) store depletion, specifically due to an increase in extracellular Ca(2+) influx through store-operated Ca(2+) channels (SOC). The knockdown of STC2 expression in a hippocampal cell line also potentiates SOCE, and the overexpression of STC2 attenuates SOCE. Moreover, STC2 interacts with the ER Ca(2+) sensor STIM1, which activates SOCs following ER store depletion. These results define a novel molecular function for STC2 as a negative modulator of SOCE and provide the first direct evidence for the regulation of Ca(2+) homeostasis by mammalian STC2. Furthermore, our findings implicate the modulation of SOCE through STC2 expression as one of the prosurvival measures of the unfolded protein response.  相似文献   

16.
17.
Calmodulin (CaM) is the primary Ca(2+)-sensor that regulates a wide variety of cellular processes in eukaryotes. Although many Ca(2+)/CaM-binding proteins have been identified, very few such proteins could be found from the genome-wide protein-protein interaction maps of Caenorhabditis elegans constructed by yeast two-hybrid screening. Using a genotype-phenotype conjugation method called mRNA-display, we performed a selection for Ca(2+)/CaM-binding proteins from a proteome library of C. elegans. The method allowed the identification of 9 known and 47 previously uncharacterized Ca(2+)-dependent CaM-binding proteins from the adult worm proteome. The Ca(2+)/CaM-binding properties of these proteins were characterized and their binding motifs were identified. The availability of such information could facilitate our understanding of the signaling pathways mediated by Ca(2+)/CaM in C. elegans. Due to its simplicity and efficiency, the method could be readily applied to examine the Ca(2+)-dependent binding partners of numerous other Ca(2+)-binding proteins, which may play important roles in many signaling pathways in C. elegans.  相似文献   

18.
The nematode Caenorhabditis elegans provides numerous experimental advantages for developing an integrative molecular understanding of physiological processes and has proven to be a valuable model for characterizing Ca(2+) signaling mechanisms. This review will focus on the role of Ca(2+) release activated Ca(2+) (CRAC) channel activity in function of the worm gonad and intestine. Inositol 1,4,5-trisphosphate (IP(3))-dependent oscillatory Ca(2+) signaling regulates contractile activity of the gonad and rhythmic posterior body wall muscle contraction (pBoc) required for ovulation and defecation, respectively. The C. elegans genome contains a single homolog of both STIM1 and Orai1, proteins required for CRAC channel function in mammalian and Drosophila cells. C. elegans STIM-1 and ORAI-1 are coexpressed in the worm gonad and intestine and give rise to robust CRAC channel activity when coexpressed in HEK293 cells. STIM-1 or ORAI-1 knockdown causes complete sterility demonstrating that the genes are essential components of gonad Ca(2+) signaling. Knockdown of either protein dramatically inhibits intestinal cell CRAC channel activity, but surprisingly has no effect on pBoc, intestinal Ca(2+) oscillations or intestinal ER Ca(2+) store homeostasis. CRAC channels thus do not play obligate roles in all IP(3)-dependent signaling processes in C. elegans. Instead, we suggest that CRAC channels carry out highly specialized and cell specific signaling roles and that they may function as a failsafe mechanism to prevent Ca(2+) store depletion under pathophysiological and stress conditions.  相似文献   

19.
Cell-penetrating peptides (CPPs) promote the uptake of different cargo molecules, e.g. therapeutic compounds, making the harnessing of CPPs a promising strategy for drug design and delivery. However, the internalization mechanisms of CPPs are still under discussion, and it is not clear how cells compensate the disturbances induced by peptides in the plasma membrane. In this study, we demonstrate that the uptake of various CPPs enhances the intracellular Ca(2+) levels in Jurkat and HeLa cells. The elevated Ca(2+) concentration in turn triggers plasma membrane blebbing, lysosomal exocytosis, and membrane repair response. Our results indicate that CPPs split into two major classes: (i) amphipathic CPPs that modulate the plasma membrane integrity inducing influx of Ca(2+) and activating downstream responses starting from low concentrations; (ii) non-amphipathic CPPs that do not evoke changes at relevant concentrations. Triggering of the membrane repair response may help cells to replace distorted plasma membrane regions and cells can recover from the influx of Ca(2+) if its level is not drastically elevated.  相似文献   

20.
Recently, candidates for umami receptors have been identified in taste cells, but the precise transduction mechanisms of the downstream receptor remain unknown. To investigate how intracellular Ca(2+) increases in the umami transduction pathway, we measured changes in intracellular Ca(2+) levels in response to umami stimuli monosodium glutamate (MSG), IMP, and MSG + IMP in mouse taste receptor cells (TRCs) by Ca(2+) imaging. Even when extracellular Ca(2+) was absent, 1/3 of umami-responsive TRCs exhibited increased intracellular Ca(2+) levels. When intracellular Ca(2+) was depleted, half of the TRCs retained their response to umami. These results suggest that umami-responsive TRCs increase their intracellular Ca(2+) levels through two pathways: by releasing Ca(2+) from intracellular stores and by an influx of Ca(2+) from extracellular sources. We conclude that the Ca(2+) influx from extracellular source might play an important role in the synergistic effect between MSG and IMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号