首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Food restriction (FR) retards animals' growth. Understanding the underlying mechanisms of this phenomenon is important to conceptual problems in life-history theory, as well as to applied problems in animal husbandry and biomedicine. Despite a considerable amount of empirical data published since the 1930s, there is no relevant general theoretical framework that predicts how animals vary their energy budgets and life-history traits under FR. In this paper, we develop such a general quantitative model based on fundamental principles of metabolic energy allocation during ontogeny. This model predicts growth curves under varying conditions of FR, such as the compensatory growth, different age at which FR begins, its degree and its duration. Our model gives a quantitative explanation for the counterintuitive phenomenon that under FR, lower body temperature and lower metabolism lead to faster growth and larger adult size. This model also predicts that the animals experiencing FR reach the same fraction of their adult mass at the same age as their ad libitum counterparts. All predictions are well supported by empirical data from mammals and birds of varying body size, under different conditions of FR.  相似文献   

2.
田相利  董双林  吴立新  王芳 《生态学报》2005,25(11):2811-2817
对比研究了模拟自然昼夜温度变化节律的4个变温(22±2)、(25±2)、(28±2)和(31±2)℃与相应的恒温22、25、28和31℃下中国对虾(F ennerop enaeus ch inensis O sbeck)生长和能量收支的差异。结果表明,对虾在(22±2)℃、(25±2)℃和(28±2)℃变温条件下的生长率显著高于相应的恒温,但(31±2)℃与恒温31℃相比没有显著差异。与相应的恒温相比,(25±2)℃、(28±2)℃和(31±2)℃变温下对虾的摄食量显著增大,(22±2)℃、(25±2)℃和(28±2)℃变温下对虾的饵料转化率则显著提高。但变温下对虾对食物的消化率与相应的恒温相比没有显著差异。能量收支研究结果则发现,(22±2)℃、(25±2)℃和(28±2)℃变温下对虾摄食能中,用于生长的能量比例显著增加,而(31±2)℃与31℃相比则未见显著差异。从而表明,变温促长的主要机制可归因于变温下摄食量的增大、饵料转化率的提高及其摄食能中用于生长能比例的增加。  相似文献   

3.
饶小珍  林岗  张殿彩  陈寅山  许友勤 《生态学报》2010,30(23):6530-6537
龟足(Capitulum mitella Linnaeus)在我国主要分布于长江口以南海浪剧烈冲击的暴露型岩相海岸的中、高潮区,是一种颇具养殖潜力和市场前景的新品种。研究温度(24、27、30、33℃)和盐度(28,31,34)对龟足胚胎发育和幼虫生长的协同影响,可为龟足的人工育苗提供依据。结果如下(1):33℃-28温盐度组合胚胎发育时间最短144h,27℃-28温盐度组合胚胎相对孵化率最高。温度与盐度对胚胎发育时间没有显著影响;但温度和盐度对胚胎孵化率有极显著影响,温度与盐度间的交互作用显著。胚胎发育最适宜的温盐度组合是27℃-28。(2):27℃的3个盐度组、30℃-31温盐度组合无节幼虫持续时间最短。在同一盐度条件下以27℃的存活率较高,在同一温度条件下以盐度31的存活率较高,其中以27℃-31温盐度组合的存活率最高;存活率1和存活率2分别高达99.0%、90.7%。27℃-28、27℃-31温盐度组合变态率最高,变态率分别为81.8%、73.7%。34高盐组幼虫的存活率和变态率均很低甚至为零。温度和盐度对幼虫存活率和变态率有极显著影响,两者的交互作用极为显著。综合无节幼虫持续时间、存活和变态情况,27℃-31温盐度组合为幼虫生长发育的最佳组合条件。龟足胚胎发育、无节幼虫的生长和变态对温度盐度的敏感性有所不同,这是由龟足的自身繁殖特点及生活环境决定的。  相似文献   

4.
四纹豆象CallosobruchusmaculatusFabricius是一种世界性分布害虫,危害多种豆类因而具有重要的经济学意义。为准确掌握四纹豆象的生物学特性,并为其综合防治提供一定的理论依据,以绿豆为食料,在20,25,28,32,35和37℃等6个温度和相对湿度75%的条件下,通过逐日观察法对四纹豆象各虫态的发育历期、存活率、成虫寿命及产卵量等生物学特性进行研究。结果表明:四纹豆象卵期、豆内幼虫及蛹期、未成熟期发育点温度分别为12.67,13.86和13.53℃;温度与世代存活率及周限增长率均呈二次抛物线关系,根据相应抛物线方程可知,四纹豆象理论最适生存温度和最适种群增长温度分别为30.2℃和33.7℃,其生长发育繁殖的最适温区为30~34℃。  相似文献   

5.
Although largely ignored until recently, parental effects on the phenotypes of their offspring are both ubiquitous in nature and of a potentially great importance to evolution. Our study examines the presence of extra-nuclear (maternal and paternal) effects in growth traits, development time and adult size in the sand cricket Gryllus firmus using a diallel cross of inbred lines. Sex linkage was shown to be nonsignificant for development time but the other traits could not be tested. We assume that they are nonsignificant but use the term 'reciprocal' effects to include this effect. We show that reciprocal effects are present in the growth traits and development time, where they account for 10-30% of the phenotypic variance. They are not present in adult size as indexed by head width. We demonstrate that reciprocal effects are due, at least in part, to maternal effects by an analysis of the positive correlation between egg size, a maternal trait, and the growth traits. The growth rate traits show no significant decline with age either with respect to extra-nuclear contributions to variance or difference between phenotypic means of reciprocal pairs. This study demonstrates that extra-nuclear effects are important contributors to the phenotypic variation in life history traits of G. firmus.  相似文献   

6.
日本大螯蜚( Grandidierella jap onica)生长发育的适温范围为 20~26℃。不同发育期耐受温度范围不同,刚孵化幼体温度下限为11℃,上限为32℃,以后随着幼体发育,其对低温的适应力逐渐增强。雄性个体对极限温度的忍耐力低于雌性。在耐受温度范围内,幼体的生长发育随着温度的提高而加快。研究结果表明,日本大螯蜚实验室培养温度宜选择在20~26℃,用其进行的沉积物急性和慢性毒性生物检验的实验温度均宜选择在 20℃。  相似文献   

7.
Fifth-instar larvae of Manduca sexta were reared from hatching on artificial diet at 15, 20, 25, 30 and 35°C. Total development time decreased with increasing temperature. Very few larvae (12%) survived at 15°C, so this temperature was not considered further. There was some mortality at 30°C (11%), and at 35°C (50%).The absolute rate of growth in the fifth instar was faster at 25 than at 20°C, but was similar at 25, 30 and 35°C. This was true both for caterpillars that were chronically exposed to experimental temperatures (i.e. since hatching) and for those acutely exposed (i.e. reared up to fifth instar at 25°C).There was a progressive decrease with higher rearing temperatures in both the initial and final sizes of chronically exposed fifth-instar larvae. Acutely exposed caterpillars matched for initial size showed smaller temperature related differences in final size. Because of these size differences there were differences in relative growth rate which did not reflect true differences in absolute growth rate.Total food consumed by chronically exposed caterpillars was greatest at the lowest temperature (20°C), and decreased progressively with increasing temperature. The absolute rate of food consumption increased from 20 to 25°C, but did not vary significantly between 25 and 35°C. Differences in the sizes of the insects at the different temperatures meant that there were differences among relative measures of consumption that did not reflect absolute food consumption.For chronically exposed caterpillars, none of the three usual indices of food conversion efficiency (AD, ECI and ECD) varied significantly with temperature between 20 and 35°C. This implies that the effects of temperature on metabolic costs are closely matched to food consumption.Oxygen consumption increased with temperature between 20 and 25°C but was temperature compensated between 25 and 35°C.These findings are discussed in terms of their implications for the optimal temperature for growth in Manduca.  相似文献   

8.
Winter wheat was sown on 2 dates with 3 levels of nitrogen fiertiliser (0, 50 and 200 kg N ha−1) in one year and on 2 sites in a followign season. Shoot and root development and growth were measured between emergence and anthesis in the first season and emergence and 7 mainstem leaves in the second. Differences in temperature and light regime led to significant differences in shoot and root development and growth between sowing dates. A thermal time-scale, based on soil surface or air temperatures, with a base of 0°C, adequately described the production of mainstem leaves and nodal root axes over all treatments. Autumn applied nitrogen had little effect on development. Shoot growth and green area index increased exponentially with thermal time prior to spring nitrogen application and the completion of canopy development. Early-sown crops had larger root systems than late-sown crops prior to winter and this divergence was retained until anthesis. The relationship between root growth and thermal time was little better than with days after sowing and was not improved by either varying the site of temperature measurement or the base temperature used for calculation. Differences in soil texture and drainage, between sites, led to significant changes in root length distribution. Although spring applied nitrogen generally increased root length, its effects were inconsistent. There was a curvilinear relation between root length and the amount of photosynthetically active radiation (PAR) intercepted; this relation was unaffected by sowing date or nitrogen treatment. The amount of root produced per unit PAR decreased as the season progressed, reflecting the decrease in the proportion of total dry matter partitioned to the root system.  相似文献   

9.
Activity budgets influence the expression of life history traits as well as population dynamics. For ectotherms, a major constraint on activity is environmental temperature. Nonetheless, we currently lack a comprehensive conceptual framework for understanding thermal constraints on activity, which hinders our ability to rigorously apply activity data to answer ecological and evolutionary questions. Here, we integrate multiple aspects of temperature‐dependent activity into a single unified framework that has general applicability. We also provide examples of the implementation of this framework to address fundamental questions in ecology relating to climate change vulnerability and species’ distributions using empirical data from a tropical lizard.  相似文献   

10.
李娜 《昆虫知识》2006,43(2):186-188
澳洲黑蟋蟀Teleogryllus commodusWalker若虫在22℃下,有9个龄期,在28℃下,只有8个龄期。若虫在22℃和28℃的平均历期分别是159d和79d,并且若虫胸部和腹部相对于头部的生长速率在低温条件下均小于高温条件下的若虫。  相似文献   

11.
12.
The effect of incubation temperature (2, 4, 6, 8 and 10° C) on haddock Melanogrammus aeglefinus development and growth during the embryonic period and in subsequent ontogeny in a common post‐hatch thermal environment (6° C) was investigated. Hatching times were inversely proportional to incubation temperature and ranged from 20·3 days at 2° C to 9·1 days at 10° C. Growth rates were directly proportional to incubation temperature during both the embryonic and larval periods. There was a significant decline in growth rates following hatch in all temperature groups. Compared to the endogenously feeding embryos, growth rates in the exogenous period declined by 4·4‐fold at 4° C to 3·9‐fold at 8° C, indicative of the demarcation between the endogenous and exogenous feeding periods. Yolk utilization varied from 17 days at 2° C to 6 days at 10° C and followed a three‐stage sigmoidal pattern with the initial lag period inversely proportional to incubation temperature. Time to 50% yolk depletion varied inversely with temperature but occurred 1–1·5 days post‐hatch at all temperatures. Additionally, the period between 10 and 90% yolk depletion also decreased with increased temperature. Overall developmental rate was sequential with and directly proportional (2·3‐fold increase) to incubation temperature while the time spent in each developmental stage was inversely proportional to temperature. Larger embryos tended to be produced at lower temperatures but this pattern reversed following hatch, as larvae from higher temperature groups grew more rapidly than those from other temperature groups. Larvae from all temperatures achieved a similar length (c.total length 4·5 mm) upon complete yolk absorption. The study demonstrated the significant impact that temperature has upon developmental and growth rates in both endogenous and exogenous feeding periods. It also illustrated that temperature changes during embryogenesis had significant and persistent effects on growth in subsequent ontogeny.  相似文献   

13.
14.
研究了恒温对圆斑弯叶毛瓢虫Nephusryuguus(Kamiya)发育速率的影响。结果表明 :在 1 7~3 2℃范围内 ,各虫期的发育速率都随温度的升高而加快 ,当温度为 3 2℃以上时 ,发育速率有所平缓或回落 ;采用线性日度模型和Logistic模型对卵期、各龄幼虫期和蛹期的发育速率进行模拟分析 ,2种模型均能较好地反映各虫期发育的进度 ;用直接最优法对发育起点温度和有效积温进行估算 ,求得圆斑弯叶毛瓢虫世代发育起点温度为 1 3 7℃ ,有效积温为 3 71 .6日·度。  相似文献   

15.
为明确瓜实蝇对短时高温胁迫的耐受性。利用人工气候箱模拟短时高温胁迫,测定了不同高温处理(34、36、38、40、42、44、46、48℃)12 h,对不同发育阶段瓜实蝇的存活率和生长发育的影响。结果表明短时高温显著影响瓜实蝇的存活,随温度升高,瓜实蝇各虫态的存活率逐渐降低;高温处理12 h后瓜实蝇卵、幼虫、蛹、雌成虫、雄成虫的致死中温度LT 50分别为35.48、37.55、41.85、43.62、43.32℃;34~42℃短时高温胁迫对瓜实蝇各虫态的发育历期无明显影响,44℃时其发育历期均显著增长;46℃、48℃处理下各虫态死亡率较高,不能正常发育;随着处理温度的升高,雌成虫产卵前期不断增长,单雌产卵量呈下降趋势,成虫寿命不断缩短,后代雌性比增大。44℃及以上的短时高温胁迫不利于瓜实蝇的生长发育,40℃及以上的短时高温胁迫不利于瓜实蝇的繁殖,雌性瓜实蝇对短时高温的胁迫的适应性强于雄性,随着处理温度的升高,后代雌性比例增大。  相似文献   

16.
温度对中华虎凤蝶幼虫生存与生长发育的影响   总被引:1,自引:0,他引:1  
姚洪渭  袁德成 《昆虫知识》1999,36(4):199-202
本文就温度对中华虎凤蝶幼虫的生存与生长发育进行了研究。结果表明,1龄幼虫16~32℃范围内的死亡率无显著差异;2龄幼虫死亡率在32℃下达30.92%,显著高于其它温度;3~5龄幼虫32℃下全部死亡,其它温度下多以28℃为高。1~2龄幼虫在16~32℃和3~5龄幼虫在16~28℃范围内的发育历期随温度升高而显著缩短,而平均发育速率则反之。用Weibull分布函数能较好地拟合各龄幼虫的存活率曲线,并由此判断出各存活率曲线类型。此外,还测定了各龄幼虫的发育起点温度和有效积温。最后建议中华虎凤蝶1~2龄和3~5龄幼虫饲养适宜温度分别为28℃和20~24℃。  相似文献   

17.
Low temperature effects on photosynthesis and growth of grapevine   总被引:7,自引:0,他引:7  
Growth and photosynthesis of grapevine (Vitis vinifera L.) planted on two sloping cool climate vineyards were measured during the early growth season. At both vineyards, a small difference in mean minimum air temperature (1–3 °C) between two microsites accumulated over time, producing differences in shoot growth rate. The growth rates of the warmer (upper) microsite were 34–63% higher than the cooler (lower) site. Photosynthesis measurements of both east and west canopy sides revealed that the difference in carbon gain between the warmer and cooler microsites was due to low temperatures restricting the photosynthetic contribution of east‐facing leaves. East‐facing leaves at the warmer microsite experienced less time at suboptimal temperature while being exposed to high irradiance, contributing to an average 10% greater net carbon gain compared to the east‐facing leaves at the cooler microsite. This chilling‐induced reduction in photosynthesis was not due to net photo‐inhibition. Further analysis revealed that CO2‐ and light‐saturated photosynthesis of grapevines was restricted by stomatal closure from 15 to 25 °C and by a limitation of RuBP regeneration and/or end‐product limitation from 5 to 15 °C. Changes in photosynthetic carboxylation efficiency implied that Rubisco activity may also play a regulatory role at all temperatures. This restriction of total photosynthetic carbon gain is proposed to be a major contributor to the temperature dependence of growth rate at both vineyards during the early season growth period.  相似文献   

18.
温度对产虫茶昆虫紫斑谷螟生长发育的影响   总被引:1,自引:0,他引:1  
为探明温度对贵州主要产虫茶昆虫紫斑谷螟Pyralis farinalis (Linnaeus)生长发育的影响, 本研究以白茶Litsea coreana为寄主植物, 分别设置5个恒温(19, 22, 25, 28和31℃)条件, 研究温度对紫斑谷螟卵、 幼虫、 蛹和未成熟期平均发育历期、 发育速率和存活率的影响, 计算各虫态发育起点温度和有效积温。 结果表明: 温度对紫斑谷螟各虫态发育历期、 发育速率和存活率影响显著。 在19 ~ 31℃范围内, 各虫态的平均发育历期均随温度的升高而缩短, 卵期、 幼虫期、 蛹期及未成熟期均在31℃达到最小值, 分别为4.56±0.24, 43.33±1.50, 7.89±0.20和55.78±1.69 d。 紫斑谷螟各虫态发育速率与温度呈二次回归关系, 且极显著相关。 此外, 温度显著影响各虫态存活率, 卵的存活率在28℃时最高, 为93%; 幼虫和蛹的存活率则在25℃最高, 分别为88%和93%; 温度过高或过低均不利于其生长发育。 由直接最优法计算得到紫斑谷螟卵期、 幼虫期、 蛹期及未成熟期的发育起点温度分别为13.30, 15.48, 13.19和14.82℃, 有效积温依次为88.36, 679.51, 159.73和952.04日·度。 这些结果为紫斑谷螟的繁殖提供了基础参考数据, 对指导虫茶生产有实用参考价值。  相似文献   

19.
Specific growth rates of individually reared juvenile three-spined sticklebacks Gasterosteus aculeatus were investigated under laboratory conditions to parameterize a complete temperature-dependent growth model for this species. To test the applicability of experimentally derived optima in growth response rates to natural conditions, the effects of commercial pellets and natural prey on growth rates were investigated. In addition, to test for seasonal effects on growth, laboratory trials were performed in both spring and winter. Growth took place from 5 to 29° C with a temperature for optimum growth reaching a sharp peak at 21° C. Modelled optimal temperature for maximum growth was estimated to be 21.7° C and lower and upper temperatures for growth were estimated to be 3.6 and 30.7° C, respectively. There were no significant differences in growth rates between fish reared on invertebrates or commercial pellets. Seasonal effects on growth were pronounced, with reduced growth rates in the winter despite similar laboratory conditions. On average, 60% higher growth rates were achieved at the optimum temperature in summer compared to the winter. The strong seasonality in the growth patterns of G. aculeatus indicated here reduces the applicability of the model derived in this study to spring and summer conditions.  相似文献   

20.
A functional relationship between relative brain size and cognitive performance has been hypothesized. However, the influence of ontogenetic niche shifts on cognitive performance is not well understood. Increases in body size can affect niche use but distinguishing nonecologically relevant brain development from effects associated with ecology is difficult. If survival is enhanced by functional changes in ecocognitive performance over ontogeny, then brain size development should track ontogenetic shifts in ecology. We control for nonecologically relevant brain size development by comparing brain growth between two ecotypes of Pumpkinseed sunfish whose ecologies diverge over ontogeny from a shared juvenile niche. Brain size differs between ecotypes from their birth year onwards even though their foraging ecology appears to diverge at age 3. This finding suggests that the eco‐cognitive requirements of adult niches shape early life brain growth more than the requirements of juvenile ecology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号