首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA capping by partially purified HeLa cell GTP:RNA guanylyltransferase has been shown to occur in the following sequence of two partial reactions involving a covalent protein-guanylate intermediate: (i) E(P68) + GTP in equilibrium E(P68-GMP) + PPi (ii) E(P68-GMP) + ppRNA in equilibrium GpppRNA + E(P68) Initially, the enzyme reacts with GTP in the absence of an RNA cap acceptor to form a covalent protein-guanylate complex. This complex consists of a GMP residue linked via a phosphoamide bond to a Mr = 68,000 protein. The enzyme then transfers the guanylate residue from the Mr = 68,000 polypeptide to the 5' end of diphosphate-terminated poly(a) to yield the capped derivative GpppA(pA)n. Both partial reactions have been shown to be reversible. In the reverse of Reaction i, E(P68--GMP) reacts with PPi to regenerate GTP. In the reverse of Reaction ii, the enzyme catalyzes the transfer of the 5'-GMP from capped RNA to the Mr = 68,000 protein to form protein-guanylate complex. A divalent cation is required for both partial reactions. The Mr = 68,000 protein is presumed to be a subunit of the HeLa guanylyltransferase. This interpretation is consistent with the sedimentation coefficient of 4.2 S of the native enzyme. Preliminary studies of RNA guanylyltransferase from mouse myeloma tumors suggest a similar mechanism of transguanylylation involving a Mr = 68,000 protein-guanylate complex. These data, in conjunction with previous studies of vaccinia virus guanylyltransferase (Shuman, S., and Hurwitz, J. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 187-191) suggests that covalent GMP-enzyme intermediates may be a general feature of the RNA capping reaction.  相似文献   

2.
DNA ligase II has been purified about 4,000-fold to apparent homogeneity from a calf thymus extract. The ligase consists of a single polypeptide with a molecular weight of 68,000 as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. On fluorography after electrophoresis, a DNA ligase-[3H]AMP complex gave a single band corresponding to a molecular weight of 68,000. The Km values of the ligase for ATP and nicked DNA (5'-phosphoryl ends) were obtained to be 40 and 0.04 microM, respectively. Antibody against calf thymus DNA ligase II was prepared by injecting the purified enzyme into a rabbit. The antibody cross-reacted with DNA ligase II but not with calf thymus DNA ligase I. DNA ligase II was not affected by antibody against calf thymus DNA ligase I with a molecular weight of 130,000 (Teraoka, H. and Tsukada, K. (1982) J. Biol. Chem. 257, 4758-4763). These results indicate that DNA ligase II (Mr = 68,000) is immunologically distinct from DNA ligase I (Mr = 130,000).  相似文献   

3.
It has been previously shown that trypsin treatment of rat liver plasma membranes causes the solubilization of a guanylate cyclase of Mr = 140,000 (Lacombe, M. L., Haguenauer-Tsapis, R., Stengel, D., Ben Salah, A., and Hanoune, J. (1980) FEBS Lett. 116, 79-84). In this study, we observed that addition of Mn-GTP during this step greatly protected the enzyme from proteolytic degradation. This effect was specific for guanine nucleotides, being weaker for other nucleotides triphosphate and GDP, and absent for cyclic GMP and GMP. Metal-GTP complex was required with a strict specificity for Mn2+. In addition to the Mr = 140,000 enzyme, trypsin solubilization in the presence of Mn-GTP led to the formation of a small and active form of guanylate cyclase. Based on its behavior on Ultrogel AcA 34 and sucrose gradients, its apparent Mr was calculated to be 68,000. Both forms could be well separated by high performance liquid chromatography and were shown to be sequentially solubilized (the larger appearing before the smaller species). Mr = 140,000 species, but not the cytosolic enzyme, was able to generate the Mr = 68,000 enzyme upon tryptic treatment in the presence of Mn-GTP. The Mr = 140,000 and 68,000 enzymes exhibited Michaelis-Menten kinetics (Hill coefficient = 1) with Km for Mn-GTP of 130 and 70 microM, respectively. The proteolytically solubilized enzymes were strickingly heat labile and highly protected by Mn-GTP. These results support the hypothesis that the rat liver membrane-bound guanylate cyclase has a dimeric structure similar to that of the cytosolic enzyme. They also suggest a possible role for GTP in limiting the degradation rate of membrane guanylate cyclase in vivo and, thus, in regulating the active enzyme concentration.  相似文献   

4.
NAD-dependent methylenetetrahydrofolate dehydrogenase is expressed in transformed or established mammalian cell lines in vitro but only in the developmental tissues of normal adult animals (Mejia, N. R. and MacKenzie, R. E. (1985) J. Biol. Chem. 260, 14616-14620). The enzyme, which contains methenyltetrahydrofolate cyclohydrolase activity as well, has been purified 6000-fold from Ehrlich ascites tumor cells. The preparation is homogeneous by sodium dodecyl sulfate gel electrophoresis (Mr = 34,000), and results from cross-linking with bis(sulfosuccinimidyl)suberate are consistent with a dimeric structure (Mr = 68,000) for the native bifunctional enzyme. The dehydrogenase is specific for NAD and requires both a divalent cation, Mg2+ or Mn2+, for activity and as well is stimulated by inorganic phosphate. When compared to the usual NADP-dependent methylenetetrahydrofolate dehydrogenase from mouse liver, the NAD-dependent dehydrogenase activity of the murine tumor enzyme shows a greater affinity for the polyglutamate forms of folate.  相似文献   

5.
An intracellular clotting factor, factor B, which is closely associated with the hemolymph coagulation system of horseshoe crab (Tachypleus tridentatus), was purified and characterized. The purified preparation gave a single band (Mr = 64,000) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the absence of 2-mercaptoethanol, while three bands (Mr = 64,000, 40,000, and 25,000) were detected on SDS-PAGE after reduction. This preparation was converted by limulus clotting factor C to an activated form, factor B, with Mr = 56,000 consisting of a heavy chain (Mr = 32,000) and a light chain (Mr = 25,000) bridged by disulfide linkage(s). The factor B, which was produced separately by treating the partially purified factor B with factor C, was also purified. It gave a single band on unreduced SDS-PAGE and two bands on reduced SDS-PAGE. The purified factor B had Mr of 56,000 consisting of a heavy chain (Mr = 32,000) and a light chain (Mr = 25,000). These results indicated that the purified factor B zymogen is a mixture of single-chain and two-chain forms, both of which have the same molecular weight of 64,000, and that these two forms are converted to factor B by factor C. The diisopropyl phosphorofluoridate-sensitive site of factor B was found in the heavy chain. The reconstitution studies using purified factor C, factor B, proclotting enzyme and coagulogen in the presence of lipopolysaccharide indicated that factor B is an essential component to complete sequential activation of the limulus clotting system, and that it specifically activates proclotting enzyme to the active clotting enzyme.  相似文献   

6.
A type 1 protein phosphatase from reticulocytes is shown to efficiently dephosphorylate the Mr = 68,000 phosphopeptide of the double-stranded RNA-dependent kinase that phosphorylates the alpha subunit of eukaryotic peptide initiation factor 2, eIF-2. The kinase, activated in the presence of double-stranded RNA with concomitant phosphorylation of the Mr = 68,000 peptide, causes inhibition of peptide initiation and thereby effects translational control of protein synthesis. The Mn2+-dependent phosphatase is classified as a type 1 enzyme in that it is inhibited by inhibitor 2 in nanomolar concentrations and appears to have a Mr = 35,000 catalytic subunit. Dephosphorylation of the Mr = 68,000 peptide by the phosphatase is directly associated with a loss in kinase activity which can be restored by incubation with double-stranded RNA in the presence of ATP. The results demonstrate that the eIF-2 alpha kinase can undergo cyclic activation-inactivation that appears to be directly related to the phosphorylation state of the Mr = 68,000 peptide. They strongly support the previous conclusion that double-stranded RNA is required only for activation of the kinase and phosphorylation of the Mr = 68,000 peptide.  相似文献   

7.
Primary and early subcultures (1st- to 3rd passage) of human umbilical vein endothelial cells produce tissue-type plasminogen activator (t-PA) antigen, consisting only of a major Mr 110,000 t-PA form. Later subcultures (greater than 4th passage) produce increasing amounts of t-PA antigen, consisting of a major Mr 110,000 and a minor Mr 68,000 form as well as increasing amounts of urokinase-type plasminogen activator (u-PA) antigen, consisting of a minor Mr 95,000 and major Mr 54,000 form. All of the major plasminogen activator forms were purified to homogeneity from 72 h serum-free conditioned media (3 liters, 1-1.8 x 10(9) cells) by a combination of immunoaffinity and gel filtration chromatography. Typically, 4th to 6th passage cultures produced/secreted t-PA-type proteins consisting of an inactive Mr 110,000 (220 IU/mg) and active Mr 68,000 (76,500 IU/mg) form representing about 39 and 8%, respectively, of the total starting sodium dodecyl sulfate stable t-PA activity, and u-PA-type proteins consisting of an inactive Mr 95,000 (700 IU/mg) and active Mr 54,000 (81,000 IU/mg) form representing about 9 and 38%, respectively, of the total starting sodium dodecyl sulfate stable u-PA activity. The isolated Mr 68,000 t-PA and Mr 54,000 u-PA proteins, exist only as two-chain forms in the absence of aprotinin and as mixtures of single- and two-chain proteins in the presence of aprotinin. Treatment with nucleophilic agents completely dissociated the Mr 110,000 t-PA and Mr 95,000 u-PA proteins into their respective Mr 68,000 t-PA and Mr 54,000 u-PA activity forms and a common Mr 46,000 protein, confirming the enzyme-inhibitor complex nature of these inactive plasminogen activator forms.  相似文献   

8.
A single molecular form (Mr = 68,000 approx) of a homogeneous preparation of rabbit testis proacrosin (S. K. Mukerji and S. Meizel (1979) J. Biol. Chem. 254, 117;21-11728) was initially converted by autoactivation into an acrosin (Mr = 68,000); both gave a single activity and protein bands with similar electrophoretic mobilities (Rm = 0.25) when subjected to polyacrylamide disc gel electrophoresis on 7.5% gel at pH 4.5. Two additional bands (Rm values of 0.395-0.412 and 0.497-0.519, respectively) were noticeable only when proacrosin was activated further after attaining maximum activity. The slowest- and the fastest-moving bands were separated into two acrosin activity peaks by Sephadex G-100 gel-filtration chromatography on a calibrated column. The molecular weights of the two proteins, determined by rechromatography on the same column, was estimated to be 68,000 and 34,000, respectively. Also, sodium dodecyl sulfate-polyacrylamide disc gel electrophoresis of three acrosins gave protein bands which corresponded to molecular weights of approximately 68,000, 52,000, and 34,000, respectively. Electrophoresis data suggest that the loss of acrosin activity generally observed following prolonged activation of proacrosin is caused by self-aggregation of the Mr 34,000 form of acrosin. This property was not shown by Mr 68,000 acrosin. Initial acrosin (Mr = 68,000) was activated by divalent cations such as Ca2+ and Mg2+. The enzyme was inhibited by Zn2+, Fe2+, Hg2+, and sulfhydryl blockers such as 5,5'-dithiobis(2-nitrobenzoic acid), p-hydroxymercuribenzoate, and iodoacetate, apparently due to their reaction with one out of six titratable sulfhydryl groups per mole of acrosin. Probably Zn2+ is involved in acrosomal stabilization. The initial rabbit acrosin (Mr = 68,000) appears to be the major and most stable form, and is generated from proacrosin with little structural alteration. This may be the functionally active form which plays an essential role in mammalian fertilization.  相似文献   

9.
Pseudomonas ochraceae produced inducibly a hydro-lyase which catalyzes the reversible conversion of gamma-oxalomesaconate into (-)-gamma-oxalocitramalate. The enzyme has been purified to homogeneity from the bacteria grown with phthalate. The enzyme was a dimeric protein (pI=4.9) with a Mr of 68,000 and showed a high specificity for gamma-oxalomesaconate (Km=14 microM) and (-)-gamma-oxalocitramalate (Km=6.4 microM). Equilibrium constant for the hydration of gamma-oxalomesaconate at pH 8.0 and 24 degrees C was 2.5. Various thiols activated the enzyme.  相似文献   

10.
Two peptides exhibiting kinin activity in an isolated rat uterus assay were purified from pasteurized skim bovine milk. The amino acid sequence of the more prominent peptide was found to be that of bradykinin. Partially purified kinin preparations were also obtained from N-tosyl-L-phenylalanyl chloromethyl ketone-treated trypsin digests of non-fat dry milk and insoluble lactalbumin. The application of fast atom bombardment/mass spectrometry permitted detection of the bradykinin protonated molecular ion in each of these samples. Collision-activated decomposition of the ion of m/z 1061 confirmed it to be the protonated molecular ion of bradykinin. Fast atom bombardment/mass spectrometry analysis further confirmed the occurrence of bradykinin in a pancreatic kallikrein digest of a partially purified bovine milk kininogen preparation. In apparent contrast with bovine plasma kininogens, the forms of kininogen which occur in milk include a high Mr kininogen (Mr greater than 68,000) and a low Mr kininogen (Mr 16,000-17,000). Kinin formation from the high Mr kininogen is catalyzed by porcine pancreatic kallikrein or trypsin.  相似文献   

11.
A neutral proteinase, capable of degrading gelatin, has been found in both an active and a latent form in the medium from the culture of rat mesangial cells. The latent form had an Mr of 80,000-100,000 and could be activated with either 4-aminophenylmercuric acetate or prolonged incubation at neutral pH. The active form of the enzyme was extensively purified. The estimated Mr of the purified enzyme on gel filtration was approximately 200,000, indicating that the active enzyme formed aggregates. However, analysis by SDS/polyacrylamide-gel electrophoresis under reducing conditions showed two protein bands, with Mr 68,000 and 66,000. Both proteins were found to contain proteolytic activity when run on SDS/substrate gels. The enzyme was inhibited by EDTA and 1,10-phenanthroline, but not by inhibitors for cysteine, serine or aspartic proteinases. The enzyme did not digest fibronectin, bovine serum albumin, proteoglycan or interstitial collagen. The enzyme degraded pepsin-solubilized placental type V collagen at 31 degrees C, whereas similarly solubilized type IV collagen was only degraded at higher temperatures. In addition, the neutral proteinase degraded native soluble type IV collagen. It also had activity on insoluble type IV collagen of glomerular basement membrane. The above properties suggest that the mesangial neutral proteinase belongs to the gelatinase group of metalloproteinases and that it may play a role in the normal turnover of extracellular glomerular matrix.  相似文献   

12.
Two major forms of human alpha-L-iduronidase have been individually purified over 175,000-fold to apparent homogeneity by sequential anion exchange, lectin affinity, and gel filtration chromatography. The two forms, initially designated as soluble and membrane-associated, were extracted from human lung in approximately equal amounts. Optimal solubilization of the membrane-associated form was facilitated by use of a non-ionic detergent or mannose 6-phosphate and saponin. Following detergent homogenization, the two forms were separated by anion exchange chromatography and then individually purified. The more electronegative form was membrane-associated, had a pI of approximately 5.9, and was selectively taken up (high uptake) by cultured Hurler syndrome fibroblasts; the more electropositive soluble form had a pI of about 6.6 and was incorporated into Hurler fibroblasts at a markedly lower rate (low uptake). After treatment with alkaline phosphatase, the pI values of both enzymes were about 7.8. Using 4-methylumbelliferyl-alpha-L-iduronide as substrate, the low and high uptake forms were each purified in milligram quantities to specific activities of 284,000 and 202,000 units/mg, respectively, with a combined yield greater than 35%. Each purified enzyme form migrated as a single protein band which also stained for enzymatic activity when electrophoresed in 7% native polyacrylamide disc gels at pH 4.3. By gel filtration, the high uptake form had an Mr = 85,000 whereas the Mr for the low uptake form was 68,000. Molecular weight estimates by analytical polyacrylamide gel electrophoresis were 82,000 and 70,000 for the high and low uptake forms, respectively. Rabbit anti-human low uptake alpha-L-iduronidase antibodies cross-reacted with the high uptake form as demonstrated by both immunotitration and Ouchterlony double immunodiffusion. Amino acid analysis revealed that the high uptake (higher molecular weight) form contained more arginine, glycine, alanine, glutamate or glutamine, leucine, isoleucine, histidine, and proline residues per molecule than the low uptake (lower molecular weight) form. Automated Edman degradation determined that the NH2-terminal residues of both forms were blocked. Both sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high performance liquid chromatography demonstrated that each purified form was composed of several components; each post-high performance liquid chromatographic component retained catalytic activity and was immunologically cross-reactive with antibodies against the low uptake form.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The porcine LH/hCG receptor. Characterization and purification   总被引:4,自引:0,他引:4  
Porcine luteal LH/hCG receptor (LH/hCG R) was solubilized with 70-80% recovery from the crude plasma membrane fraction by Triton X-100 in the presence of 25% glycerol and protease inhibitors. The solubilized receptor maintained 90% of original activity at -60 degrees C for 90 days. Equilibrium association constant (Ka) values of 1.92, 2.22, and 2.03 X 10(10) M-1 were observed for the whole homogenate, plasma membrane fraction, and solubilized LH/hCG R preparations, respectively. The specific binding capacity for the same fractions were 49, 70, 55 fmol/mg protein, respectively. Complexes of LH/hCG R and Triton X-100 were resolved into two components with approximate Mr = 2.7 X 10(5) and 5.4 X 10(5) by gel filtration on Sepharose 6B and two glycoprotein components by chromatography on concanavalin A-Sepharose. Solubilized porcine LH/hCG R was purified by two cycles of affinity chromatography on highly purified hCG-Sepharose with an overall recovery of 30-35% of the initial activity in the Triton extract. Purified porcine LH/hCG R had a specific binding capacity of 2300 pmol/mg protein and a Ka = 1.5 X 10(10) M-1. Silver staining of sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels demonstrated that the major protein in porcine LH/hCG R preparations has Mr = 68,000. A weakly staining band at Mr = 45,000 was also observed in the purified receptor preparation. Analysis of iodinated purified LH/hCG R by autoradiography has confirmed these results. Porcine LH/hCG R was purified 40,000-fold by this method.  相似文献   

14.
Seedlings and suspension-cultured cells of carrot (Daucus carota) contain a cell wall associated as well as a soluble form of beta-fructosidase (beta F). These two forms have different pH optima: 4.6 for cell wall beta F and 5.6 for soluble beta F. Soluble beta F is relatively more abundant in the seedlings and cell wall beta F is relatively much more abundant in the cultured cells. Protoplasts of cultured cells have only the soluble form (pH optimum 5.6) indicating that the cell wall associated form is indeed extracellular in situ. Cell wall beta F was purified to homogeneity and has an Mr = 63,000. Antibodies raised against the deglycosylated enzyme cross-reacted with two soluble enzyme forms: in cultured cells, the soluble enzyme has an Mr = 58,000 and, in seedlings, there are two forms of Mr = 58,000 and 52,000. Treatment of purified cell wall beta F with endoglycosidase H and trifluoromethanesulfonic acid (complete deglycosylation) indicated that the enzyme probably has one high mannose and two complex glycans. This was confirmed by HPLC analysis of [3H]GlcNAc- and [3H]fucose-labeled glycopeptides obtained after trypsin digestion of radioactively-labeled beta F. The amino acid composition shows that cell wall beta F has 18.6% glycine.  相似文献   

15.
Two-dimensional polyacrylamide gel analyses of purified human and monkey liver phenylalanine hydroxylase reveal that the enzyme consists of two different apparent molecular weight forms of polypeptide, designated H (Mr = 50,000) and L (Mr = 49,000), each containing three isoelectric forms. The two apparent molecular weight forms, H and L, represent the phosphorylated and dephosphorylated forms of phenylalanine hydroxylase, respectively. After incubation of purified human and monkey liver enzyme with purified cAMP-dependent protein kinase and [gamma-32P]ATP, only the H forms contained 32P. Treatment with alkaline phosphatase converted the phenylalanine hydroxylase H forms to the L forms. The L forms but not the H forms could be phosphorylated on nitrocellulose paper after electrophoretic transfer from two-dimensional gels. Phosphorylation and dephosphorylation of human liver phenylalanine hydroxylase is not accompanied by significant changes in tetrahydrobiopterin-dependent enzyme activity. Peptide mapping and acid hydrolysis confirm that the apparent molecular weight heterogeneity (and charge shift to a more acidic pI) in human and monkey liver enzyme results from phosphorylation of a single serine residue. However, phosphorylation by the catalytic subunit of cAMP-dependent protein kinase does not account for the multiple charge heterogeneity of human and monkey liver phenylalanine hydroxylase.  相似文献   

16.
Purification and characterization of human serum biotinidase   总被引:3,自引:0,他引:3  
Biotinidase has been purified from human serum to a specific activity of 1900 units/mg protein by a five-step procedure. After ammonium sulfate precipitation (33-55% cut) it was purified by DEAE-Sephacel, hydroxylapatite, octyl-Sepharose CL-4B, and Sephadex G-100 chromatography. The purified enzyme showed a single silver staining band with polyacrylamide gel electrophoresis under denaturing and non-denaturing conditions. Biotinidase is a glycoprotein. The sialic acid residues in the molecule are not required for enzyme activity. The Mr of human serum biotinidase estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Ferguson plot) and by sedimentation analysis was 68,000. Human serum biotinidase showed maximum activity in the pH range 6.0 to 7.5 with N-(d-biotinyl) p-aminobenzoate as substrate. However, with biocytin as substrate, the maximal activity of the enzyme was in the pH range 4.5 to 6.0. Using structural analogs of the substrate we have shown that biotinidase is not a general proteolytic enzyme and has specific structural requirements in the substrate for hydrolysis.  相似文献   

17.
Dextransucrases from Leuconostoc mesenteroides NRRL B-1416 and B-1375 strains were purified to electrophoretically homogeneous preparations. After successive column chromatographies, the enzyme fractions were treated with endodextranase, then subjected to preparative polyacrylamide gel electrophoresis. The purified dextransucrase from each strain had a dimeric structure of molecular weight 130,000~133,000. Alkaline treatment (pH 10.5) dissociated these dimer forms into the respective monomer forms having molecular weight of 64,000~68,000. The two enzymes were closely similar to each other in optimum conditions and thermal and pH stabilities. The purified B-1416 enzyme was activated 4.35-fold by the addition of exogenous dextran (0.5%), while the B-1375 enzyme was activated 2.76-fold. In the absence of exogenous dextran, both enzymes gave 5~10 min lag periods for reaction, which were abolished by the clinical dextran.  相似文献   

18.
The novel alpha-amylase-pullulanase produced by Clostridium thermohydrosulfuricum E 101-69 was purified as two forms (I and II) from culture medium, by using gel filtration in 6 M-guanidine hydrochloride as the final step. Renatured alpha-amylase-pullulanase I and II had apparent Mr values of 370,000 +/- 85,000 and 330,000 +/- 85,000 respectively, as determined by native polyacrylamide-gradient-gel electrophoresis. Both forms appear to be dimers of two similar subunits, with Mr values of 190,000 +/- 30,000 for enzyme I and 180,000 +/- 30,000 for enzyme II according to SDS/polyacrylamide-gradient-gel electrophoresis. The two forms had similar amino acid compositions, the same N-terminal sequence (Glu-Ile-Asp-Thr-Ala-Pro-Ala-Ile) and the same pI of 4.25. Both forms contained sugars having mobilities identical with those of rhamnose, glucose, galactose and mannose. The amount of neutral hexoses relative to protein was 11-12% (w/w) for both forms.  相似文献   

19.
An NADP/thioredoxin system, consisting of NADPH, NADP-thioredoxin reductase (NTR), and its thioredoxin, thioredoxin h, has been previously described for heterotrophic plant tissues, i.e., wheat seeds and cultured carrot cells. Until now there was no evidence for this system in green leaves. Here, we report the identification of protein components of the NADP/thioredoxin system in leaves of several species. Thioredoxin h and NTR, which were both recovered in the extrachloroplastic fraction, were purified to apparent homogeneity from spinach leaves. This represents the first time that NTR has been characterized from a plant source. Similar to that from bacterial and mammalian sources, spinach leaf NTR was a flavoprotein (Mr 68,000) composed of two subunits of identical molecular mass (Mr 33,000) that resembled Escherichia coli NTR immunologically. Spinach thioredoxin h existed in two forms (Mr of 13,500 and 12,000) and was highly specific for plant NTR. Thioredoxin h and NTR partially purified from spinach roots showed properties similar to their counterparts from leaves. Spinach cytosolic thioredoxin h differed from chloroplast thioredoxin m or f from the same source but was similar to thioredoxin h from wheat seed in immunological properties.  相似文献   

20.
Two forms of pyrophosphate:D-fructose-6-phosphate 1-phosphotransferase have been isolated from wheat seedlings. One of these enzymes, termed PFP-1, has been purified to homogeneity. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that the enzyme is composed of two different polypeptide chains of Mr = 67,000 (alpha) and 60,000 (beta). PFP-1 has been assigned a molecular structure consisting of alpha 2 beta 2 based on an estimated Mr of 234,000 for the native enzyme. PFP-2, the other form of phosphotransferase, has also been purified extensively. Preliminary data suggest that the active form of PFP-2 is probably a dimer of a polypeptide chain of Mr = 60,000. Immunological studies indicate that the two enzyme preparations share common antigenic determinants. The two forms of enzyme have very similar kinetic properties. The phosphotransferases are activated by fructose 2,6-bisphosphate (Fru-2,6-P2) which lowers the Km of the enzymes for fructose 6-phosphate but not that for PPi. Interestingly, PFP-1 is significantly more active than PFP-2 in the absence of Fru-2,6-P2. Also, PFP-1 exhibits a greater affinity (Ka = 7 nM) than PFP-2 (Ka = 26 nM) for the activator. Based on kinetic, immunological, and physicochemical parameters, it is suggested that the two enzymic forms are related in that they share the same catalytic moiety, i.e. the 60,000-dalton or beta subunit. The beta subunit when in complex formation with the alpha subunit, as in PFP-1, becomes more active in the absence of Fru-2,6-P2 as well as exhibits a greater sensitivity toward the effector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号