首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transfer of the phosphopantetheine chain from coenzyme A (CoA) to the acyl carrier protein (ACP), a key protein in both fatty acid and polyketide synthesis, is catalyzed by ACP synthase (AcpS). Streptomyces coelicolor AcpS is a doubly promiscuous enzyme capable of activation of ACPs from both fatty acid and polyketide synthesis and catalyzes the transfer of modified CoA substrates. Five crystal structures have been determined, including those of ligand-free AcpS, complexes with CoA and acetyl-CoA, and two of the active site mutants, His110Ala and Asp111Ala. All five structures are trimeric and provide further insight into the mechanism of catalysis, revealing the first detailed structure of a group I active site with the essential magnesium in place. Modeling of ACP binding supported by mutational analysis suggests an explanation for the promiscuity in terms of both ACP partner and modified CoA substrates.  相似文献   

2.
Acyl carrier protein (ACP) synthase (AcpS) catalyzes the transfer of the 4'-phosphopantetheine moiety from coenzyme A (CoA) onto a serine residue of apo-ACP, resulting in the conversion of apo-ACP to the functional holo-ACP. The holo form of bacterial ACP plays an essential role in mediating the transfer of acyl fatty acid intermediates during the biosynthesis of fatty acids and phospholipids. AcpS is therefore an attractive target for therapeutic intervention. In this study, we have purified and characterized the AcpS enzymes from Escherichia coli, Streptococcus pneumoniae, and Mycoplasma pneumoniae, which exemplify gram-negative, gram-positive, and atypical bacteria, respectively. Our gel filtration column chromatography and cross-linking studies demonstrate that the AcpS enzyme from M. pneumoniae, like E. coli enzyme, exhibits a homodimeric structure, but the enzyme from S. pneumoniae exhibits a trimeric structure. Our biochemical studies show that the AcpS enzymes from M. pneumoniae and S. pneumoniae can utilize both short- and long-chain acyl CoA derivatives but prefer long-chain CoA derivatives as substrates. On the other hand, the AcpS enzyme from E. coli can utilize short-chain CoA derivatives but not the long-chain CoA derivatives tested. Finally, our biochemical studies show that M. pneumoniae AcpS is kinetically a very sluggish enzyme compared with those from E. coli and S. pneumoniae. Together, the results of these studies show that the AcpS enzymes from different bacterial species exhibit different native structures and substrate specificities with regard to the utilization of CoA and its derivatives. These findings suggest that AcpS from different microorganisms plays a different role in cellular physiology.  相似文献   

3.
The acyl carrier proteins (ACPs) of fatty acid synthase and polyketide synthase as well as peptidyl carrier proteins (PCPs) of nonribosomal peptide synthetases are modified by 4'-phosphopantetheinyl transferases from inactive apo-enzymes to their active holo forms by transferring the 4'-phosphopantetheinyl moiety of coenzyme A to a conserved serine residue of the carrier protein. 4'-Phosphopantetheinyl transferases have been classified into two types; the AcpS type accepts ACPs of fatty acid synthase and some ACPs of type II polyketide synthase as substrates, whereas the Sfp type exhibits an extraordinarily broad substrate specificity. Based on the previously published co-crystal structure of Bacillus subtilis AcpS and ACP that provided detailed information about the interacting residues of the two proteins, we designed a novel hybrid PCP by replacing the Bacillus brevis TycC3-PCP helix 2 with the corresponding helix of B. subtilis ACP that contains the interacting residues. This was performed for the PCP domain as a single protein as well as for the TycA-PCP domain within the nonribosomal peptide synthetase module TycA from B. brevis. Both resulting proteins, designated hybrid PCP (hPCP) and hybrid TycA (hTycA), were modified in vivo during heterologous expression in Escherichia coli (hPCP, 51%; hTycA, 75%) and in vitro with AcpS as well as Sfp to 100%. The designated hTycA module contains two other domains: an adenylation domain (activating phenylalanine to Phe-AMP and afterward transferring the Phe to the PCP domain) and an epimerization domain (converting the PCP-bound l-Phe to d-Phe). We show here that the modified PCP domain of hTycA communicates with the adenylation domain and that the co-factor of holo-hPCP is loaded with Phe. However, communication between the hybrid PCP and the epimerization domain seems to be disabled. Nevertheless, hTycA is recognized by the next proline-activating elongation module TycB1 in vitro, and the dipeptide is formed and released as diketopiperazine.  相似文献   

4.
4'-Phosphopantetheine transferases (PPTases) transfer the 4'-phosphopantetheine moiety of coenzyme A onto a conserved serine residue of acyl carrier proteins (ACPs) of fatty acid and polyketide synthases as well as peptidyl carrier proteins (PCPs) of nonribosomal peptide synthetases. This posttranslational modification converts ACPs and PCPs from their inactive apo into the active holo form. We have investigated the 4'-phosphopantetheinylation reaction in Bacillus subtilis, an organism containing in total 43 ACPs and PCPs but only two PPTases, the acyl carrier protein synthase AcpS of primary metabolism and Sfp, a PPTase of secondary metabolism associated with the nonribosomal peptide synthetase for the peptide antibiotic surfactin. We identified and cloned ydcB encoding AcpS from B. subtilis, which complemented an Escherichia coli acps disruption mutant. B. subtilis AcpS and its substrate ACP were biochemically characterized. AcpS also modified the d-alanyl carrier protein but failed to recognize PCP and an acyl carrier protein of secondary metabolism discovered in this study, designated AcpK, that was not identified by the Bacillus genome project. On the other hand, Sfp was able to modify in vitro all acyl carrier proteins tested. We thereby extend the reported broad specificity of this enzyme to the homologous ACP. This in vitro cross-interaction between primary and secondary metabolism was confirmed under physiological in vivo conditions by the construction of a ydcB deletion in a B. subtilis sfp(+) strain. The genes coding for Sfp and its homolog Gsp from Bacillus brevis could also complement the E. coli acps disruption. These results call into question the essential role of AcpS in strains that contain a Sfp-like PPTase and consequently the suitability of AcpS as a microbial target in such strains.  相似文献   

5.
The Bacillus subtilis Sfp protein activates the peptidyl carrier protein (PCP) domains of surfactin synthetase by transferring the 4'-phosphopantetheinyl moiety of coenzyme A (CoA) to a serine residue conserved in all PCPs. Its wide PCP substrate spectrum renders Sfp a biotechnologically valuable enzyme for use in combinatorial non-ribosomal peptide synthesis. The structure of the Sfp-CoA complex determined at 1.8 A resolution reveals a novel alpha/beta-fold exhibiting an unexpected intramolecular 2-fold pseudosymmetry. This suggests a similar fold and dimerization mode for the homodimeric phosphopantetheinyl transferases such as acyl carrier protein synthase. The active site of Sfp accommodates a magnesium ion, which is complexed by the CoA pyrophosphate, the side chains of three acidic amino acids and one water molecule. CoA is bound in a fashion that differs in many aspects from all known CoA-protein complex structures. The structure reveals regions likely to be involved in the interaction with the PCP substrate.  相似文献   

6.
Acyl carrier protein synthase (AcpS) catalyzes the formation of holo-ACP, which mediates the essential transfer of acyl fatty acid intermediates during the biosynthesis of fatty acids and lipids in the cell. Thus, AcpS plays an important role in bacterial fatty acid and lipid biosynthesis, making it an attractive target for therapeutic intervention. We have determined, for the first time, the crystal structure of the Streptococcus pneumoniae AcpS and AcpS complexed with 3'5'-ADP, a product of AcpS, at 2.0 and 1.9 A resolution, respectively. The crystal structure reveals an alpha/beta fold and shows that AcpS assembles as a tightly packed functional trimer, with a non-crystallographic pseudo-symmetric 3-fold axis, which contains three active sites at the interface between protomers. Only two active sites are occupied by the ligand molecules. Although there is virtually no sequence similarity between the S.pneumoniae AcpS and the Bacillus subtilis Sfp transferase, a striking structural similarity between both enzymes was observed. These data provide a starting point for structure-based drug design efforts towards the identification of AcpS inhibitors with potent antibacterial activity.  相似文献   

7.
Mofid MR  Finking R  Essen LO  Marahiel MA 《Biochemistry》2004,43(14):4128-4136
The activation of apo-peptidyl carrier proteins (PCPs) of nonribosomal peptide synthetases (NRPSs), apo-acyl carrier proteins (ACPs) of polyketide synthases (PKSs), and fatty acid synthases (FASs) to their active holo form is accomplished with dedicated 4'-phosphopantetheinyl transferases (PPTases). They catalyze the transfer of the essential prosthetic group 4'-phosphopantetheine (4'-Ppant) from coenzyme A (CoA) to a highly conserved serine residue in all PCPs and ACPs. PPTases, based on sequence and substrate specifity, have been classified into three types: bacterial holo-acyl carrier protein synthase (AcpS), fatty acid synthase of eukaryotes (FAS2) and Sfp, a PPTase of secondary metabolism. The recently solved crystal structures of AcpS and Sfp-type PPTases with CoA revealed a common alpha + beta-fold with a beta(1)alpha(3)beta(2) motif and similarities in CoA binding and polymerization mode. However, it was not possible to discern neither the PCP binding region of Sfp nor the priming reaction mechanism from the Sfp-CoA cocrystal. In this work, we provide a model for the reaction mechanism based on mutational analysis of Sfp that suggests a reaction mechanism in which the highly conserved E151 deprotonates the hydroxyl group of the invariant serine of PCP. That, in turn, acts as a nucleophile to attack the beta-phosphate of CoA. The Sfp mutants K112, E117, and K120 further revealed that the loop region between beta4 and alpha5 (residues T111-S124) in Sfp is the PCP binding region. Also, residues T44, K75, S89, H90, D107, E109, E151, and K155 that have been shown in the Sfp-CoA cocrystal structure to coordinate CoA are now all confirmed by mutational and biochemical analysis.  相似文献   

8.
Holo-(acyl carrier protein) synthase (AcpS) post-translationally modifies apoacyl carrier protein (apoACP) via transfer of 4'-phosphopantetheine from coenzyme A (CoA) to the conserved serine 36 gamma-OH of apoACP. The resulting holo-acyl carrier protein (holo-ACP) is then active as the central coenzyme of fatty acid biosynthesis. The acpS gene has previously been identified and shown to be essential for Escherichia coli growth. Earlier mutagenic studies isolated the E. coli MP4 strain, whose elevated growth requirement for CoA was ascribed to a deficiency in holoACP synthesis. Sequencing of the acpS gene from the E. coli MP4 strain (denoted acpS1) showed that the AcpS1 protein contains a G4D mutation. AcpS1 exhibited a approximately 5-fold reduction in its catalytic efficiency when compared with wild type AcpS, accounting for the E. coli MP4 strain phenotype. It is shown that a conditional acpS mutant accumulates apoACP in vivo under nonpermissive conditions in a manner similar to the E. coli MP4 strain. In addition, it is demonstrated that the gene product, YhhU, of a previously identified E. coli open reading frame can completely suppress the acpS conditional, lethal phenotype upon overexpression of the protein, suggesting that YhhU may be involved in an alternative pathway for phosphopantetheinyl transfer and holoACP synthesis in E. coli.  相似文献   

9.
Acyl carrier protein synthase (AcpS) is an essential enzyme in the biosynthesis of fatty acids in all bacteria. AcpS catalyzes the transfer of 4'-phosphopantetheine from coenzyme A (CoA) to apo-ACP, thus converting apo-ACP to holo-ACP that serves as an acyl carrier for the biosynthesis of fatty acids and lipids. To further understand the physiological role of AcpS, we identified, cloned, and expressed the acpS and acpP genes of Streptococcus pneumoniae and purified both products to homogeneity. Both acpS and acpP form operons with the genes whose functions are required for other cellular metabolism. The acpS gene complements an Escherichia coli mutant defective in the production of AcpS and appears to be essential for the growth of S. pneumoniae. Gel filtration and cross-linking analyses establish that purified AcpS exists as a homotrimer. AcpS activity was significantly stimulated by apo-ACP at concentrations over 10 microm and slightly inhibited at concentrations of 5-10 microm. Double reciprocal analysis of initial velocities of AcpS at various concentrations of CoA or apo-ACP indicated a random or compulsory ordered bi bi type of reaction mechanism. Further analysis of the inhibition kinetics of the product (3',5'-ADP) suggested that it is competitive with respect to CoA but mixed (competitive and noncompetitive) with respect to apo-ACP. Finally, apo-ACP bound tightly to AcpS in the absence of CoA, but CoA failed to do so in the absence of apo-ACP. Together, these results suggest that AcpS may be allosterically regulated by apo-ACP and probably proceeds by an ordered reaction mechanism with the first formation of the AcpS-apo-ACP complex and the subsequent transfer of 4'-phosphopantetheine to the apo-ACP of the complex.  相似文献   

10.
Salmonella pathogenicity island 1 (SPI-1) carries genes required for the formation of a type 3 secretion system, which is necessary for the invasion process of Salmonella. Among the proteins encoded by SPI-1 is IacP, a homolog of acyl carrier proteins. Acyl carrier proteins are mainly involved in fatty acid biosynthesis, and they require posttranslational maturation by addition of a 4′-phosphopantetheine prosthetic group to be functional. In this study, we analyzed IacP maturation in vivo. By performing matrix-assisted laser desorption ionization–time-of-flight (MALDI-TOF) mass spectrometry analysis of intact purified proteins, we showed that IacP from Salmonella enterica serovar Typhimurium was matured by addition of 4′-phosphopantetheine to the conserved serine 38 residue. Therefore, we searched for the phosphopantetheinyl transferases in charge of IacP maturation. A bacterial two-hybrid approach revealed that IacP interacted with AcpS, an enzyme normally required for the maturation of the canonical acyl carrier protein (ACP), which is involved in fatty acid biosynthesis. The creation of a conditional acpS mutant then demonstrated that AcpS was necessary for the maturation of IacP. However, although IacP was similar to ACP and matured by using the same enzyme, IacP could not replace the essential function of ACP in fatty acid synthesis. Hence, the demonstration that IacP is matured by AcpS establishes a cross-connection between virulence and fatty acid biosynthesis pathways.  相似文献   

11.
12.
The source of malonyl groups for polyketide and fatty acid biosynthesis is malonyl CoA. During fatty acid and polyketide biosynthesis, malonyl groups are normally transferred to the acyl carrier protein (ACP) component of the synthase by a malonyl CoA:holo-ACP transacylase (MCAT) enzyme. The fatty acid synthase (FAS) malonyl CoA:ACP transacylase from Streptomyces coelicolor was expressed in Escherichia coli as a hexahistidine-tagged (His(6)) fusion protein in high yield. The His(6)-MCAT was purified to homogeneity using standard techniques, and kinetic analysis of the malonylation of S. coelicolorFAS holo-ACP, catalyzed by His(6)-MCAT, gave K(infinity) (M) values of 73 (ACP) and 60 microM (malonyl CoA). A catalytic constant k (infinity) (M) of 450 s(-1) and specificity constants k (infinity) (M)/K (infinity) (M) of 6.2 (ACP) and 7.5 microM(-1) s(-1) (malonyl CoA) were measured. Malonyl transfer to the E. coli FAS holo-ACP, catalyzed by His(6)-MCAT, was less efficient (k (infinity) (M)/K (infinity) (M) was 10% of that of the S. coelicolor ACP). Incubation of MCAT with the serine specific agent PMSF caused inhibition of malonyl transfer to FAS ACPs, and an S97A MCAT mutant was incapable of catalyzing malonyl transfer. Our results show that in the reaction with FAS holo-ACPs the S. coelicolor MCAT is very similar to the E. coli MCAT paradigm in terms of its kinetic mechanism and active site residues. These results indicate that no other active site nucleophile is involved in catalysis as has been suggested to explain recently reported observations.  相似文献   

13.
Seed oils enriched in omega‐7 monounsaturated fatty acids, including palmitoleic acid (16:1?9) and cis‐vaccenic acid (18:1?11), have nutraceutical and industrial value for polyethylene production and biofuels. Existing oilseed crops accumulate only small amounts (<2%) of these novel fatty acids in their seed oils. We demonstrate a strategy for enhanced production of omega‐7 monounsaturated fatty acids in camelina (Camelina sativa) and soybean (Glycine max) that is dependent on redirection of metabolic flux from the typical ?9 desaturation of stearoyl (18:0)‐acyl carrier protein (ACP) to ?9 desaturation of palmitoyl (16:0)‐acyl carrier protein (ACP) and coenzyme A (CoA). This was achieved by seed‐specific co‐expression of a mutant ?9‐acyl‐ACP and an acyl‐CoA desaturase with high specificity for 16:0‐ACP and CoA substrates, respectively. This strategy was most effective in camelina where seed oils with ~17% omega‐7 monounsaturated fatty acids were obtained. Further increases in omega‐7 fatty acid accumulation to 60–65% of the total fatty acids in camelina seeds were achieved by inclusion of seed‐specific suppression of 3‐keto‐acyl‐ACP synthase II and the FatB 16:0‐ACP thioesterase genes to increase substrate pool sizes of 16:0‐ACP for the ?9‐acyl‐ACP desaturase and by blocking C18 fatty acid elongation. Seeds from these lines also had total saturated fatty acids reduced to ~5% of the seed oil versus ~12% in seeds of nontransformed plants. Consistent with accumulation of triacylglycerol species with shorter fatty acid chain lengths and increased monounsaturation, seed oils from engineered lines had marked shifts in thermotropic properties that may be of value for biofuel applications.  相似文献   

14.
Pantothenate is the precursor of the essential cofactor coenzyme A (CoA). Pantothenate kinase (CoaA) catalyzes the first and regulatory step in the CoA biosynthetic pathway. The pantothenate analogs N-pentylpantothenamide and N-heptylpantothenamide possess antibiotic activity against Escherichia coli. Both compounds are substrates for E. coli CoaA and competitively inhibit the phosphorylation of pantothenate. The phosphorylated pantothenamides are further converted to CoA analogs, which were previously predicted to act as inhibitors of CoA-dependent enzymes. Here we show that the mechanism for the toxicity of the pantothenamides is due to the inhibition of fatty acid biosynthesis through the formation and accumulation of the inactive acyl carrier protein (ACP), which was easily observed as a faster migrating protein using conformationally sensitive gel electrophoresis. E. coli treated with the pantothenamides lost the ability to incorporate [1-(14)C]acetate to its membrane lipids, indicative of the inhibition of fatty acid synthesis. Cellular CoA was maintained at the level sufficient for bacterial protein synthesis. Electrospray ionization time-of-flight mass spectrometry confirmed that the inactive ACP was the product of the transfer of the inactive phosphopantothenamide moiety of the CoA analog to apo-ACP, forming the ACP analog that lacks the sulfhydryl group for the attachment of acyl chains for fatty acid synthesis. Inactive ACP accumulated in pantothenamide-treated cells because of the active hydrolysis of regular ACP and the slow turnover of the inactive prosthetic group. Thus, the pantothenamides are pro-antibiotics that inhibit fatty acid synthesis and bacterial growth because of the covalent modification of ACP.  相似文献   

15.
We have solved the crystal structure of the acyl carrier protein synthase (AcpS) from Mycobacterium tuberculosis (Mtb) at 1.95 Å resolution. AcpS, a 4-phosphopantetheinyl transferase, activates two distinct acyl carrier proteins (ACPs) that are present in fatty acid synthase (FAS) systems FAS-I and FAS-II, the ACP-I domain and the mycobacterial ACP-II protein (ACPM), respectively. Mtb, the causal agent of tuberculosis (TB), and all other members of the Corynebacterineae family are unique in possessing both FAS systems to produce and to elongate fatty acids to mycolic acids, the hallmark of mycobacterial cell wall. Various steps in this process are prime targets for first-line anti-TB agents. A comparison of the Mtb AcpS structure determined here with those of other AcpS proteins revealed unique structural features in Mtb AcpS, namely, the presence of an elongated helix followed by a flexible loop and a moderately electronegative surface unlike the positive surface common to other AcpSs. A structure-based sequence comparison between AcpS and its ACP substrates from various species demonstrated that the proteins of the Corynebacterineae family display high sequence conservation, forming a segregated subgroup of AcpS and ACPs. Analysis of the putative interactions between AcpS and ACPM from Mtb, based on a comparison with the complex structure from Bacillus subtilis, showed that the Mtb AcpS and ACPM lack the electrostatic complementarity observed in B. subtilis. Taken together, the common characteristic of the Corynebacterineae family is likely reflected in the participation of different residues and interactions used for binding the Mtb AcpS to ACP-I and ACPM. The distinct features and essentiality of AcpS, as well as the mode of interaction with ACPM and ACP-I in Mtb, could be exploited for the design of AcpS inhibitors, which, similarly to other inhibitors of fatty acid synthesis, are expected to be effective anti-TB-specific drugs.  相似文献   

16.
To further investigate the mechanism and function of allosteric activation by chloride in some alpha-amylases, the structure of the bacterial alpha-amylase from the psychrophilic micro-organism Pseudoalteromonas haloplanktis in complex with nitrate has been solved at 2.1 A degrees, as well as the structure of the mutants Lys300Gln (2.5 A degrees ) and Lys300Arg (2.25 A degrees ). Nitrate binds strongly to alpha-amylase but is a weak activator. Mutation of the critical chloride ligand Lys300 into Gln results in a chloride-independent enzyme, whereas the mutation into Arg mimics the binding site as is found in animal alpha-amylases with, however, a lower affinity for chloride. These structures reveal that the triangular conformation of the chloride ligands and the nearly equatorial coordination allow the perfect accommodation of planar trigonal monovalent anions such as NO3-, explaining their unusual strong binding. It is also shown that a localized negative charge such as that of Cl-, rather than a delocalized charge as in the case of nitrate, is essential for maximal activation. The chloride-free mutant Lys300Gln indicates that chloride is not mandatory for the catalytic mechanism but strongly increases the reactivity at the active site. Disappearance of the putative catalytic water molecule in this weakly active mutant supports the view that chloride helps to polarize the hydrolytic water molecule and enhances the rate of the second step in the catalytic reaction.  相似文献   

17.
BACKGROUND: Acyl carrier protein (ACP) is a fundamental component of fatty acid biosynthesis in which the fatty acid chain is elongated by the fatty acid synthetase system while attached to the 4'-phosphopantetheine prosthetic group (4'-PP) of ACP. Activation of ACP is mediated by holo-acyl carrier protein synthase (ACPS) when ACPS transfers the 4'-PP moiety from coenzyme A (CoA) to Ser36 of apo-ACP. Both ACP and ACPS have been identified as essential for E. coli viability and potential targets for development of antibiotics. RESULTS: The solution structure of B. subtilis ACP (9 kDa) has been determined using two-dimensional and three-dimensional heteronuclear NMR spectroscopy. A total of 22 structures were calculated by means of hybrid distance geometry-simulated annealing using a total of 1,050 experimental NMR restraints. The atomic rmsd about the mean coordinate positions for the 22 structures is 0.45 +/- 0.08 A for the backbone atoms and 0.93 +/- 0.07 A for all atoms. The overall ACP structure consists of a four alpha-helical bundle in which 4'-PP is attached to the conserved Ser36 that is located in alpha helix II. CONCLUSIONS: Structural data were collected for both the apo and holo forms of ACP that suggest that the two forms of ACP are essentially identical. Comparison of the published structures for E. coli ACP and actinorhodin polyketide synthase acyl carrier protein (act apo-ACP) from Streptomyces coelicolor A3(2) with B. subtilis ACP indicates similar secondary structure elements but an extremely large rmsd between the three ACP structures (>4.3 A). The structural difference between B. subtilis ACP and both E. coli and act apo-ACP is not attributed to an inherent difference in the proteins, but is probably a result of a limitation in the methodology available for the analysis for E. coli and act apo-ACP. Comparison of the structure of free ACP with the bound form of ACP in the ACP-ACPS complex reveals a displacement of helix II in the vicinity of Ser36. The induced perturbation of ACP by ACPS positions Ser36 proximal to coenzyme A and aligns the dipole of helix II to initiate transfer of 4'-PP to ACP.  相似文献   

18.
Although bacterial iterative Type I polyketide synthases are now known to participate in the biosynthesis of a small set of diverse natural products, the subsequent downstream modification of the resulting polyketide products remains poorly understood. Toward this goal, we report the X-ray structure determination at 2.5 A resolution and preliminary characterization of the putative orsellenic acid P450 oxidase (CalO2) involved in calicheamicin biosynthesis. These studies represent the first crystal structure for a P450 involved in modifying a bacterial iterative Type I polyketide product and suggest the CalO2-catalyzed step may occur after CalO3-catalyzed iodination and may also require a coenzyme A- (CoA) or acyl carrier protein- (ACP) bound substrate. Docking studies also reveal a putative docking site within CalO2 for the CLM orsellinic acid synthase (CalO5) ACP domain which involves a well-ordered helix along the CalO2 active site cavity that is unique compared with other P450 structures.  相似文献   

19.
Glycerol-3-phosphate 1-acyltransferase is a soluble chloroplast enzyme involved in glycerol-lipid biosynthesis associated with chilling resistance in plants (). Resistance is associated with higher selectivity for unsaturated acyl substrates over saturated ones. In vitro substrate selectivity assays performed under physiologically relevant conditions have been established that discriminate between selective and non-selective forms of the enzyme. A mutation, L261F, in the squash protein converts it from a non-selective enzyme into a selective one. The mutation lies within 10 A of the predicted acyl binding site and results in a higher K(m) for 16:0 acyl carrier protein (ACP). Site-directed mutagenesis was used to determine the importance of four residues, Arg(235), Arg(237), Lys(193), and His(194), implicated to be involved in binding of the phosphate group of glycerol 3-phosphate to the enzyme. All the proteins were highly homologous in structure to the wild type enzyme. Mutations in Arg(235), Arg(237), and Lys(193) resulted in inactive enzyme, while His(194) had reduced catalytic activity. The mutant proteins retained the ability to bind stoichiometric quantities of acyl-ACPs supporting the potential role of these residues in glycerol 3-phosphate binding.  相似文献   

20.
Prodiginines are a class of red-pigmented natural products with immunosuppressant, anticancer, and antimalarial activities. Recent studies on prodiginine biosynthesis in Streptomyces coelicolor have elucidated the function of many enzymes within the pathway. However, the function of RedJ, which was predicted to be an editing thioesterase based on sequence similarity, is unknown. We report here the genetic, biochemical, and structural characterization of the redJ gene product. Deletion of redJ in S. coelicolor leads to a 75% decrease in prodiginine production, demonstrating its importance for prodiginine biosynthesis. RedJ exhibits thioesterase activity with selectivity for substrates having long acyl chains and lacking a β-carboxyl substituent. The thioesterase has 1000-fold greater catalytic efficiency with substrates linked to an acyl carrier protein (ACP) than with the corresponding CoA thioester substrates. Also, RedJ strongly discriminates against the streptomycete ACP of fatty acid biosynthesis in preference to RedQ, an ACP of the prodiginine pathway. The 2.12 Å resolution crystal structure of RedJ provides insights into the molecular basis for the observed substrate selectivity. A hydrophobic pocket in the active site chamber is positioned to bind long acyl chains, as suggested by a long-chain ligand from the crystallization solution bound in this pocket. The accessibility of the active site is controlled by the position of a highly flexible entrance flap. These data combined with previous studies of prodiginine biosynthesis in S. coelicolor support a novel role for RedJ in facilitating transfer of a dodecanoyl chain from one acyl carrier protein to another en route to the key biosynthetic intermediate 2-undecylpyrrole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号