首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hsp90 assembles with steroid receptors and other client proteins in association with one or more Hsp90-binding cochaperones, some of which contain a common tetratricopeptide repeat (TPR) domain. Included in the TPR cochaperones are the Hsp70-Hsp90-organizing protein Hop, the FK506-binding immunophilins FKBP52 and FKBP51, the cyclosporin A-binding immunophilin CyP40, and protein phosphatase PP5. The TPR domains from these proteins have similar x-ray crystallographic structures and target cochaperone binding to the MEEVD sequence that terminates Hsp90. However, despite these similarities, the TPR cochaperones have distinctive properties for binding Hsp90 and assembling with Hsp90.steroid receptor complexes. To identify structural features that differentiate binding of FKBP51 and FKBP52 to Hsp90, we generated an assortment of truncation mutants and chimeras that were compared for coimmunoprecipitation with Hsp90. Although the core TPR domain (approximately amino acids 260-400) of FKBP51 and FKBP52 is required for Hsp90 binding, the C-terminal 60 amino acids (approximately 400-end) also influence Hsp90 binding. More specifically, we find that amino acids 400-420 play a critical role for Hsp90 binding by either FKBP. Within this 20-amino acid region, we have identified a consensus sequence motif that is also present in some other TPR cochaperones. Additionally, the final 30 amino acids of FKBP51 enhance binding to Hsp90, whereas the corresponding region of FKBP52 moderates binding to Hsp90. Taking into account the x-ray crystal structure for FKBP51, we conclude that the C-terminal regions of FKBP51 and FKBP52 outside the core TPR domains are likely to assume alternative conformations that significantly impact Hsp90 binding.  相似文献   

2.
3.
Hsp90 is required for the normal function of steroid receptors, but its binding to steroid receptors is mediated by Hsc70 and several hsp-associated accessory proteins. An assortment of Hsp90 mutants were tested for their abilities to interact with each of the following accessories: Hop, Cyp40, FKBP52, FKBP51, and p23. Of the 11 Hsp90 mutants tested, all were defective to some extent in associating with progestin (PR) complexes. In every case, however, reduced PR binding correlated with a defect in binding of one or more accessories. Co-precipitation of mutant Hsp90 forms with individual accessories was used to map Hsp90 sequences required for accessory protein interactions. Mutation of Hsp90's highly conserved C-terminal EEVD to AAVD resulted in diminished interactions with several accessory proteins, most particularly with Hop. Deletion of amino acids 661–677 resulted in loss of Hsp90 dimerization and also caused diminished interactions with all accessory proteins. Binding of p23 mapped most strongly to the N-terminal ATP-binding domain of Hsp90 while binding of TPR proteins mapped to the C-terminal half of Hsp90. These results and others further suggest that the N- and C-terminal regions of Hsp90 maintain important conformational links through intramolecular interactions and/or intermolecular influences in homodimers.  相似文献   

4.
Interaction of the Hsp90 cochaperone cyclophilin 40 with Hsc70   总被引:1,自引:0,他引:1       下载免费PDF全文
The high-affinity ligand-binding form of unactivated steroid receptors exists as a multicomponent complex that includes heat shock protein (Hsp)90; one of the immunophilins cyclophilin 40 (CyP40), FKBP51, or FKBP52; and an additional p23 protein component. Assembly of this heterocomplex is mediated by Hsp70 in association with accessory chaperones Hsp40, Hip, and Hop. A conserved structural element incorporating a tetratricopeptide repeat (TPR) domain mediates the interaction of the immunophilins with Hsp90 by accommodating the C-terminal EEVD peptide of the chaperone through a network of electrostatic and hydrophobic interactions. TPR cochaperones recognize the EEVD structural motif common to both Hsp90 and Hsp70 through a highly conserved clamp domain. In the present study, we investigated in vitro the molecular interactions between CyP40 and FKBP52 and other stress-related components involved in steroid receptor assembly, namely Hsp70 and Hop. Using a binding protein-retention assay with CyP40 fused to glutathione S-transferase immobilized on glutathione-agarose, we have identified the constitutively expressed form of Hsp70, heat shock cognate (Hsc)70, as an additional target for CyP40. Deletion mapping studies showed the binding determinants to be similar to those for CyP40-Hsp90 interaction. Furthermore, a mutational analysis of CyP40 clamp domain residues confirmed the importance of this motif in CyP40-Hsc70 interaction. Additional residues thought to mediate binding specificity through hydrophobic interactions were also important for Hsc70 recognition. CyP40 was shown to have a preference for Hsp90 over Hsc70. Surprisingly, FKBP52 was unable to compete with CyP40 for Hsc70 binding, suggesting that FKBP52 discriminates between the TPR cochaperone-binding sites in Hsp90 and Hsp70. Hop, which contains multiple units of the TPR motif, was shown to be a direct competitor with CyP40 for Hsc70 binding. Similar to Hop, CyP40 was shown not to influence the adenosine triphosphatase activity of Hsc70. Our results suggest that CyP40 may have a modulating role in Hsc70 as well as Hsp90 cellular function.  相似文献   

5.
Yun BG  Huang W  Leach N  Hartson SD  Matts RL 《Biochemistry》2004,43(25):8217-8229
Hsp90 functions to facilitate the folding of newly synthesized and denatured proteins. Hsp90 function is modulated through its interactions with cochaperones and the binding and hydrolysis of ATP. Recently, novobiocin has been shown to bind to a second nucleotide binding site located within the C-terminal domain of Hsp90. In this report, we have examined the effect of novobiocin on Hsp90 function in reticulocyte lysate. Novobiocin specifically inhibited the maturation of the heme-regulated eIF2alpha kinase (HRI) in a concentration-dependent manner. Novobiocin induced the dissociation of Hsp90 and Cdc37 from immature HRI, while the Hsp90 cochaperones p23, FKBP52, and protein phosphatase 5 remained associated with immature HRI. Proteolytic fingerprinting of Hsp90 indicated that novobiocin had a distinct effect on the conformation of Hsp90, and molybdate lowered the concentration of novobiocin required to alter Hsp90's conformation by 10-fold. The recombinant C-terminal domain of Hsp90 adopted a proteolytic resistant conformation in the presence of novobiocin, indicating that alteration of Hsp90/cochaperone interactions was not the cause of the novobiocin-induced protease resistance within Hsp90's C-terminal domain. The concentration dependence of this novobiocin-induced conformation change correlated with the dissociation of Hsp90 and Cdc37 from immature HRI and novobiocin-induced inhibition of Hsp90/Cdc37-dependent activation of HRI's autokinase activity. The data suggest that binding of novobiocin to the C-terminal nucleotide binding site of Hsp90 induces a change in Hsp90's conformation leading to the dissociation of bound kinase. The unique structure and properties of novobocin-bound Hsp90 suggest that it may represent the "client-release" conformation of the Hsp90 machine.  相似文献   

6.
The hsp90 chaperoning pathway is a multiprotein system that is required for the production or activation of many cell regulatory proteins, including the progesterone receptor (PR). We report here the identity of GCUNC-45 as a novel modulator of PR chaperoning by hsp90. GCUNC-45, previously implicated in the activities of myosins, can interact in vivo and in vitro with both PR-A and PR-B and with hsp90. Overexpression and knockdown experiments show GCUNC-45 to be a positive factor in promoting PR function in the cell. GCUNC-45 binds to the ATP-binding domain of hsp90 to prevent the activation of its ATPase activity by the cochaperone Aha1. This effect limits PR chaperoning by hsp90, but this can be reversed by FKBP52, a cochaperone that is thought to act later in the pathway. These findings reveal a new cochaperone binding site near the N terminus of hsp90, add insight on the role of FKBP52, and identify GCUNC-45 as a novel regulator of the PR signaling pathway.  相似文献   

7.
The sequential binding of different tetratricopeptide repeat (TPR) proteins to heat shock protein 90 (hsp90) is essential to its chaperone function in vivo. We have previously shown that three basic residues in the TPR domain of PP5 are required for binding to the acidic C-terminal domain of hsp90. We have now tested which acidic residues in this C-terminal domain are required for binding to three different TPR proteins as follows: PP5, FKBP52, and Hop. Mutation of Glu-729, Glu-730, and Asp-732 at the C terminus of hsp90 interfered with binding of all three TPR proteins. Mutation of Glu-720, Asp-722, Asp-723, and Asp-724 inhibited binding of FKBP52 and PP5 but not of Hop. Mutation of Glu-651 and Asp-653 did not affect binding of FKBP52 or PP5 but inhibited both Hop binding and hsp90 chaperone activity. We also found that a conserved Lys residue required for PP5 binding to hsp90 was critical for the binding of FKBP52 but not for the binding of Hop to hsp90. These results suggest distinct but overlapping binding sites on hsp90 for different TPR proteins and indicate that the binding site for Hop, which is associated with hsp90 in intermediate stages of protein folding, overlaps with a site of chaperone activity.  相似文献   

8.
The Hsp90 chaperoning pathway and its model client substrate, the progesterone receptor (PR), have been used extensively to study chaperone complex formation and maturation of a client substrate in a near native state. This chaperoning pathway can be reconstituted in vitro with the addition of five proteins plus ATP: Hsp40, Hsp70, Hop, Hsp90, and p23. The addition of these proteins is necessary to reconstitute hormone-binding capacity to the immuno-isolated PR. It was recently shown that the first step for the recognition of PR by this system is binding by Hsp40. We compared type I and type II Hsp40 proteins and created point mutations in Hsp40 and Hsp70 to understand the requirements for this first step. The type I proteins, Ydj1 and DjA1 (HDJ2), and a type II, DjB1 (HDJ1), act similarly in promoting hormone binding and Hsp70 association to PR, while having different binding characteristics to PR. Ydj1 and DjA1 bind tightly to PR whereas the binding of DjB1 apparently has rapid on and off rates and its binding cannot be observed by antibody pull-down methods using either purified proteins or cell lysates. Mutation studies indicate that client binding, interactions between Hsp40 and Hsp70, plus ATP hydrolysis by Hsp70 are all required to promote conformational maturation of PR via the Hsp90 pathway.  相似文献   

9.
The highly abundant molecular chaperone Hsp90 functions with assistance from auxiliary factors, collectively referred to as Hsp90 cochaperones, and the Hsp70 system. Hsp104, a molecular chaperone required for stress tolerance and for maintenance of [psi(+)] prions in the budding yeast Saccharomyces cerevisiae, appears to collaborate only with the Hsp70 system. We now report that several cochaperones previously thought to be dedicated to Hsp90 are shared with Hsp104. We show that the Hsp90 cochaperones Sti1, Cpr7, and Cns1, which utilize tetratricopeptide repeat (TPR) domains to interact with a common surface on Hsp90, form complexes with Hsp104 in vivo and that Sti1 and Cpr7 interact with Hsp104 directly in vitro. The interaction is Hsp90 independent, as further emphasized by the fact that two distinct TPR domains of Sti1 are required for binding Hsp90 and Hsp104. In a striking parallel to the sequence requirements of Hsp90 for binding TPR proteins, binding of Sti1 to Hsp104 requires a related acidic sequence at the C-terminal tail of Hsp104. While Hsp90 efficiently sequesters the cochaperones during fermentative growth, respiratory conditions induce the interaction of a fraction of Hsp90 cochaperones with Hsp104. This suggests that cochaperone sharing may favor adaptation to altered metabolic conditions.  相似文献   

10.
The molecular chaperone Hsp90 is abundant, ubiquitous, and catholic to biological processes in eukaryotes, controlling phosphorylation cascades, protein stability and turnover, client localization and trafficking, and ligand-receptor interactions. Not surprisingly, Hsp90 does not accomplish these activities alone. Instead, an ever-growing number of cochaperones have been identified, leading to an explosion of reports on their molecular and cellular effects on Hsp90 chaperoning of client substrates. Notable among these clients are many members of the steroid receptor family, such as glucocorticoid, androgen, estrogen and progesterone receptors. Cochaperones typically associated with the mature, hormone-competent states of these receptors include p23, the FK506-binding protein 52 (FKBP52), FKBP51, protein phosphatase 5 (PP5) and cyclophilin 40 (Cyp40). The ultimate relevance of these cochaperones to steroid receptor action depends on their physiological effects. In recent years, the first mouse genetic models of these cochaperones have been developed. This work will review the complex and intriguing phenotypes so far obtained in genetically-altered mice and compare them to the known molecular and cellular impacts of cochaperones on steroid receptors. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).  相似文献   

11.
FKBP38 is a negative effector of the anti-apoptotic Bcl-2 protein in neuroblastoma cells. The interaction with Bcl-2 and the enzyme activity of FKBP38 depend on prior binding of calmodulin-Ca(2+) (CaM-Ca(2+)) at high Ca(2+) concentrations. The FKBP38 protein structure contains three tetratricopeptide repeat (TPR) motifs corresponding to the Hsp90 interaction sites of other immunophilins. In this study we show that the TPR domain of FKBP38 interacts with the C-terminal domain of Hsp90, but only if the FKBP38-CaM-Ca(2+) complex is preformed. Hence, FKBP38 is the first example of a TPR-containing immunophilin that interacts cofactor-dependently with Hsp90. In the ternary Hsp90-FKBP38-CaM-Ca(2+) complex the active site of FKBP38 is blocked, thus preventing interactions with Bcl-2. The dual control of the active site cleft of FKBP38 by CaM-Ca(2+) and Hsp90 highlights the importance of the enzyme activity of the FKBP38-CaM-Ca(2+) complex in the regulation of programmed cell death.  相似文献   

12.
13.
Two structures of cyclophilin 40: folding and fidelity in the TPR domains   总被引:7,自引:0,他引:7  
BACKGROUND: The "large immunophilin" family consists of domains of cyclophilin or FK506 binding protein linked to a tetratricopeptide (TPR) domain. They are intimately associated with steroid receptor complexes and bind to the C-terminal domain of Hsp90 via the TPR domain. The competitive binding of specific large immunophilins and other TPR-Hsp90 proteins provides a regulatory mechanism for Hsp90 chaperone activity. RESULTS: We have solved the X-ray structures of monoclinic and tetragonal forms of Cyp40. In the monoclinic form, the TPR domain consists of seven helices of variable length incorporating three TPR motifs, which provide a convincing binding surface for the Hsp90 C-terminal MEEVD sequence. The C-terminal residues of Cyp40 protrude out beyond the body of the TPR domain to form a charged helix-the putative calmodulin binding site. However, in the tetragonal form, two of the TPR helices have straightened out to form one extended helix, providing a dramatically different conformation of the molecule. CONCLUSIONS: The X-ray structures are consistent with the role of Cyclophilin 40 as a multifunctional signaling protein involved in a variety of protein-protein interactions. The intermolecular helix-helix interactions in the tetragonal form mimic the intramolecular interactions found in the fully folded monoclinic form. These conserved intra- and intermolecular TPR-TPR interactions are illustrative of a high-fidelity recognition mechanism. The two structures also open up the possibility that partially folded forms of TPR may be important in domain swapping and protein recognition.  相似文献   

14.
Hsp90 is an essential molecular chaperone required for the normal functioning of many key regulatory proteins in eukaryotic cells. Vertebrates have two closely related isoforms of cytosolic Hsp90 (Hsp90alpha and Hsp90beta). However, specific functions for each isoform are largely unknown, and no Hsp90 co-chaperone has been reported to distinguish between the two isoforms. In this study, we show that the Hsp90 co-chaperone GCUNC45 bound preferentially to the beta isoform of Hsp90 in vitro. GCUNC45 efficiently blocked the progression of progesterone receptor chaperoning in an in vitro functional system when Hsp90beta was used, but did so with much less efficacy when Hsp90alpha was used. Knockdown experiments in HeLa cells showed that GCUNC45 is required for the normal cellular distribution of Hsp90beta, but not Hsp90alpha. This is the first example of a co-chaperone with isoform selectivity, and this approach may open novel avenues to understanding the functional differences between Hsp90 isoforms.  相似文献   

15.
Cyclophilin 40, a divergent loop cyclophilin first identified in association with the estrogen receptor α, contains a C-terminal tetratricopeptide repeat domain through which it shares structural identity with FK506-binding protein 52 (FKBP52) and other partner cochaperones in steroid receptor-heat shock protein 90 (Hsp90) complexes. By dynamically competing for Hsp90 interaction, the cochaperones allow the receptors to establish distinct Hsp90-chaperone complexes, with the potential to exert tissue-specific control over receptor activity. Cyclophilin 40 regulates Hsp90 ATPase activity during receptor-Hsp90 assembly. Functional deletion of the cyclophilin 40 yeast homologue, Cpr7, adversely affected estrogen receptor α and glucocorticoid receptor activity that could be fully restored, either with wild type Cpr7 or Cpr7 with a cyclophilin domain lacking isomerase activity. We draw parallels with the mechanism already established for FKBP52 and propose that the cyclophilin 40 divergent loop interfaces with a contact surface on the steroid receptor ligand-binding domain to achieve an optimal orientation for receptor activity.  相似文献   

16.
The Saccharomyces cerevisiae [PSI(+)] prion is believed to be a self-propagating cytoplasmic amyloid. Earlier characterization of HSP70 (SSA1) mutations suggested that [PSI(+)] propagation is impaired by alterations that enhance Ssa1p's substrate binding. This impairment is overcome by second-site mutations in Ssa1p's conserved C-terminal motif (GPTVEEVD), which mediates interactions with tetratricopeptide repeat (TPR) cochaperones. Sti1p, a TPR cochaperone homolog of mammalian Hop1 (Hsp70/90 organizing protein), activates Ssa1p ATPase, which promotes substrate binding by Ssa1p. Here we find that in SSA1-21 cells depletion of Sti1p improved [PSI(+)] propagation, while excess Sti1p weakened it. In contrast, depletion of Fes1p, a nucleotide exchange factor for Ssa1p that facilitates substrate release, weakened [PSI(+)] propagation, while overproducing Fes1p improved it. Therefore, alterations of Hsp70 cochaperones that promote or prolong Hsp70 substrate binding impair [PSI(+)] propagation. We also find that the GPTVEEVD motif is important for physical interaction with Hsp40 (Ydj1p), another Hsp70 cochaperone that promotes substrate binding but is dispensable for viability. We further find that depleting Cpr7p, an Hsp90 TPR cochaperone and CyP-40 cyclophilin homolog, improved [PSI(+)] propagation in SSA1 mutants. Although Cpr7p and Sti1p are Hsp90 cochaperones, we provide evidence that Hsp90 is not involved in [PSI(+)] propagation, suggesting that Sti1p and Cpr7p functionally interact with Hsp70 independently of Hsp90.  相似文献   

17.
18.
Localization of the chaperone domain of FKBP52   总被引:3,自引:0,他引:3  
FKBP52, a multidomain peptidyl prolyl cis/trans-isomerase (PPIase), is found in complex with the chaperone Hsp90 and the co-chaperone p23. It displays both PPIase and chaperone activity in vitro. To localize these two activities to specific regions of the protein, we created and analyzed a set of fragments of FKBP52. The PPIase activity toward both peptides and proteins is confined entirely to domain 1 (amino acids 1-148). The chaperone activity, however, resides in the C-terminal part of FKBP52, mainly in the region between amino acids 264 and 400 (domain 3). Interestingly, this domain also contains the tetratricopeptide repeats, which are responsible for the binding to C-terminal amino acids of Hsp90. Competition assays with a C-terminal Hsp90 peptide suggest that the non-native protein and Hsp90 are bound by different regions within this domain.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号