首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rRNA gene restriction pattern sof 110 strains belonging to 12 staphylococcal species have been determined. The strains, isolated from various sources, were epidemiologically unrelated. Total DNA was cleaved with restriction enzymes HindIII and EcoRI, electrophoretically separated and probed with radiolabelled 16S rDNA from Bacillus subtilis inserted in a plasmid vector, pBR322. Fourty-four distinct HindIII patterns and 44 distinct EcoRI patterns were observed. Strains belonging to different species had different patterns. Although distinct patterns were also observed with some species, a core of common bands could be discerned within each species or subspecies. Analysis of the patterns revealed two taxa in Staphylococcus xylosus which were not evident using phenotypic characteristics. Of 18 strains which were difficult to identify using phenotypic schemes, 15 showed patterns typical of known species. The three remaining atypical strains showed unusual patterns and may belong either to a known species, not included in the study, or to a new species. Since various patterns were observed within some species (e.g.S.aureus and S. epidermidis), rRNA gene restriction patterns may have epidemiological, as well as taxonomic interest.  相似文献   

2.
Amplified Ribosomal-DNA Restriction Analysis (ARDRA) was used to differentiate among 12 species and 4 subspecies of the genus Staphylococcus. With a universal primer pair a 2.4 kbp PCR-product was amplified, including the 16S rDNA, the 16S-23S rDNA interspacer region, and about 500 bp of the 23S rDNA. Species-specific restriction patterns were found using the restriction enzymes HindIII and XmnI separately. Cheese related staphylococci were clearly differentiated. ARDRA results were in good agreement with results of partial sequencing of the 16S rDNA. ARDRA could fully replace the biochemical identification with ID32 Staph (BioMerieux) which was less reliable when staphylococci of cheese origin were analysed. Genomic restriction digests of cheese-related S. equorum strains by SmaI and SacI gave unique strain-specific restriction patterns which can be used to identify starter staphylococci in a complex microbial environment such as the surface of Red-Smear cheeses.  相似文献   

3.
A cloned EcoRI fragment from Legionella pneumophila, which includes 16S and 23S rRNA genes, was used to identify bacteria belonging to the genus Legionella by hybridization to a series of species specific restriction fragments. Examination of the type strains of 28 species of legionellae gave different band patterns in every case. When further isolates of these species were tested the patterns obtained were usually either identical, or very similar, to those of the respective type strains. Thirty-one coded isolates were examined and of these 29 were allocated to the correct species. The remaining strains (a non-Legionella and a L. pneumophila) could not be identified using this technique. The rRNA gene probe method should be of great value in the identification of legionellae, particularly for those species which are at present very difficult to distinguish serologically.  相似文献   

4.
To facilitate genus and species level identification of a broad range of bacteria without the requirement of presumptive identification, we have developed a unified set of primers and polymerase chain reaction conditions to amplify spacer regions between the 16S and 23S genes in the prokaryotic rRNA genetic loci. Spacer regions within these loci show a significant level of length and sequence polymorphism across both genus and species lines. A generic pair of priming sequences was selected for the amplification of these polymorphisms from highly conserved sequences in the 16S and 23S genes occurring adjacent to these polymorphic regions. This single set of primers and reaction conditions was used for the amplification of 16S-23S spacer regions for over 300 strains of bacteria belonging to eight genera and 28 species or serotypes, including Listeria, Staphylococcus, and Salmonella species and additional species related to these pathogenic organisms. When the spacer amplification products were resolved by electrophoresis, the resulting patterns could be used to distinguish all of the species of bacteria within the test group. Unique elements in the amplification product patterns generally clustered at the species level, although some genus-specific characteristics were also observed. On the basis of the results obtained with our test group of 300 bacterial strains, amplification of the 16S-23S ribosomal spacer region is a suitable process for generating a data base for use in a polymerase chain reaction-based identification method, which can be comprehensively applied to the bacterial kingdom.  相似文献   

5.
AIMS: To develop a multiplex PCR that allows the identification of bacteria belonging to the Staphylococcus genus and in particular to the species Staphylococcus xylosus, S. saprophyticus, S. epidermidis and S. aureus isolated from food manufacturing plants. METHODS AND RESULTS: Five primer pairs were used in the multiplex PCR, one specific to the Staphylococcus genus and four specific to S. xylosus, S. saprophyticus, S. epidermidis and S. aureus species. All the 31 Staphylococcus reference strains yielded a specific PCR product with the genus-specific primers. Staphylococcus xylosus, S. saprophyticus, S. epidermidis and S. aureus gave a specific PCR fragment with the corresponding species-specific primers. No amplification with the Kocuria, Macrococcus and Micrococcus strains was observed in our conditions. This multiplex PCR was performed on 30 strains of Gram-positive cocci isolated from different workshops and fermented sausages. Among them, 28 belonged to the Staphylococcus genus and 14 were identified to S. saprophyticus, four to S. xylosus, two to S. aureus and one to S. epidermidis. CONCLUSIONS: This multiplex PCR provided reliable and repeatable PCR results. It allowed the identification of a major part of the isolates, highlighting the predominance of the S. saprophyticus species in the workshops studied. SIGNIFICANCE AND IMPACT OF THE STUDY: This tool is a useful way to screen the strains isolated from foodstuff and food environment and to monitor these species during the food processing.  相似文献   

6.
Separation of amplified V3 region from 16S rDNA by denaturing gradient gel electrophoresis (PCR-DGGE) and 16S-23S rDNA intergenic spacer region polymorphism (ISR-PCR) analyses were tested as tool for differentiation of staphylococcal strains commonly isolated from fermented sausages. Variable V3 regions of 25 staphylococcal reference strains and 96 wild strains of species belonging to the genera Staphylococcus, Micrococcus and Kocuria were analyzed. PCR-DGGE profiles obtained were species-specific for S. sciuri, S. haemolyticus, S. hominis, S. auricularis, S. condimenti, S. kloosi, S. vitulus, S. succinus, S. pasteuri, S. capitis and S. (Macrococcus) caseolyticus. Moreover, 7 groups could be distinguished gathering the remaining species as result of the separation of the V3 rDNA amplicons in DGGE. Furthermore, the combination of the results obtained by PCR-DGGE and ISR-PCR analyses allowed a clear differentiation of all the staphylococcal species analysed, with exception of the pairs S. equorum-S. cohnii and S. carnosus-S. schleiferi. The suitability of both molecular techniques and of the combination their results for the identification of staphylococci was validated analysing partial nucleotide sequence of the 16S rDNA of a representative number of wild strains.  相似文献   

7.
8.
The major staphylococcal autolysin Atl is an important player in cell separation and daughter cell formation. In this study, we investigated the amino acid sequences of Atl proteins derived from 15 staphylococcal and 1 macrococcal species representatives. The overall organization of the bifunctional precursor protein consisting of the signal peptide, a propeptide (PP), the amidase (AM), six repeat sequences (R(1) to R(6)), and the glucosaminidase (GL) was highly conserved in all of the species. The most-conserved domains were the enzyme domains AM and GL; the least-conserved regions were the PP and R regions. An Atl-based phylogenetic tree for the various species representatives correlated well with the corresponding 16S rRNA-based tree and also perfectly matched the phylogenetic trees based on core genome analysis. The phylogenetic distance analysis of 18 AtlA proteins of various Staphylococcus aureus strains and 15 AtlE proteins of S. epidermidis revealed that both species representatives formed a relatively homogeneous cluster. Two S. epidermidis strains, M23864:W1 and VCU116, were identified by Atl typing that clustered far more distantly and belonged to either S. caprae and S. capitis or a new subspecies. Here we show that Atl typing is a useful tool for staphylococcal genus and species typing by using either the highly conserved AM domain or the less-conserved PP domain.  相似文献   

9.
High-resolution melting analysis (HRMA) is a fast (post-PCR) high-throughput method to scan for sequence variations in a target gene. The aim of this study was to test the potential of HRMA to distinguish particular bacterial species of the Staphylococcus genus even when using a broad-range PCR within the 16S rRNA gene where sequence differences are minimal. Genomic DNA samples isolated from 12 reference staphylococcal strains (Staphylococcus aureus, Staphylococcus capitis, Staphylococcus caprae, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus intermedius, Staphylococcus saprophyticus, Staphylococcus sciuri, Staphylococcus simulans, Staphylococcus warneri, and Staphylococcus xylosus) were subjected to a real-time PCR amplification of the 16S rRNA gene in the presence of fluorescent dye EvaGreen?, followed by HRMA. Melting profiles were used as molecular fingerprints for bacterial species differentiation. HRMA of S. saprophyticus and S. xylosus resulted in undistinguishable profiles because of their identical sequences in the analyzed 16S rRNA region. The remaining reference strains were fully differentiated either directly or via high-resolution plots obtained by heteroduplex formation between coamplified PCR products of the tested staphylococcal strain and phylogenetically unrelated strain.  相似文献   

10.
Bacteria associated with the marine macroalga Laminaria saccharina, collected from the Kiel Fjord (Baltic Sea, Germany), were isolated and tested for antimicrobial activity. From a total of 210 isolates, 103 strains inhibited the growth of at least one microorganism from the test panel including Gram-negative and Gram-positive bacteria as well as a yeast. Most common profiles were the inhibition of Bacillus subtilis only (30%), B. subtilis and Staphylococcus lentus (25%), and B. subtilis, S. lentus, and Candida albicans (11%). In summary, the antibiotic-active isolates covered 15 different activity patterns suggesting various modes of action. On the basis of 16S rRNA gene sequence similarities >99%, 45 phylotypes were defined, which were classified into 21 genera belonging to Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. Phylogenetic analysis of 16S rRNA gene sequences revealed that four isolates possibly represent novel species or even genera. In conclusion, L. saccharina represents a promising source for the isolation of new bacterial taxa and antimicrobially active bacteria.  相似文献   

11.
Four thousand six hundred forty– five quarter milk samples from 1179 cows from 20 commercial dairy herds were examined in order to determine the prevalence of bacterial species. A total of 859 isolates from 839 (18.1%) culture positive samples could be assigned to 34 different species and subspecies. Diagnostics of staphylococcal species was based on conventional procedures able to differentiate between all 36 species and subspecies presently acknowledged. Staphylococcus aureus was found in 10.2% of the samples and was the most common species isolated. Streptococcus dysgalactiae (1.6%) and Streptococcus uberis (1.4%) were the second and third most common species isolated. Seventeen different coagulase negative staphylococcal species (CNS) were found in 4.1% of the samples. The most frequently isolated CNS were S. epidermidis (1.3%), S. chromogenes (1.0%) and S. simulans (0.7%). Isolates of S. aureus were phage typed, and isolates of S. epidermidis were investigated by phage typing, antibiogram typing, and biotyping. A total of 378 (79.9%) isolates of S. aureus could be typed by phages, assigning them to 18 different phage types. However, 6 phage types accounted for 92.1% of the typable isolates. One to 2 phage types predominated within each herd. Eleven (18%) isolates of S. epidermidis could be typed by phages, assigning the isolates to 3 different types. Biotyping of S. epidermidis produced a total of 8 different types, the most common accounting for 29.5% of the isolates. A total of 6 different antibiogram types were observed among all isolates of S. epidermidis. Resistance towards penicillin (36.1%), tetracycline (9.8%) and streptomycin (9.8%), were recorded in the isolates of S. epidermidis. However, 35 (57.4%) of the isolates were susceptible to all 12 antibiotics tested.  相似文献   

12.
The use of Single Base C-Sequencing of the first 500 bases of the 16S rRNA-gene (SBCS) combined with capillary electrophoresis was evaluated for the identification of reference strains of 30 different species within the genus Streptococcus. For SBCS, only dd-CTP's are used in the sequencing reactions instead of the four dideoxy bases and the primer is fluorescently labeled. The reproducibility, interlaboratory exchangeability and discriminative power of this method were studied by comparing the patterns obtained in three laboratories under highly standardized conditions. The interlaboratory reproducibility proved to be high, enabling the construction of a common database for the identification of strains belonging to the streptococcal species studied. Most of the examined species generated distinguishable profiles. SBCS did not differentiate between the closely related species S. constellatus and S. intermedius. Also S. thermophilus and S. vestibularis as well as S. mitis and S. pneumoniae showed highly resembling profiles. The previously reported heterogeneity within the species S. equinus was reflected by SBCS. For all other species, strains belonging to the same species generated indistinguishable patterns. In conclusion, Single Base C-sequencing of the first 500 bases of the 16S rRNA-gene could be a useful and widely applicable method for the identification of bacteria at the species level, with the added advantage of being more rapid and easier to automatize than full sequence determination.  相似文献   

13.
AIMS: To compare accuracy of genus and species level identification of presumptive enterococci isolates from the marine environment using conventional biochemical testing, four commercial identification systems and 16S rRNA sequence analysis. METHODS AND RESULTS: Ninety-seven environmental bacterial isolates identified as presumptive enterococci on mEI media were tested using conventional and Enterococcus genus screen biochemical tests, four commercial testing systems and 16S rRNA sequencing. Conventional and Enterococcus genus screen biochemical testing, 16S rRNA sequencing and two commercial test systems achieved an accuracy of > or = 94% for Enterococcus genus confirmation. Conventional biochemical testing and 16S rRNA sequencing achieved an accuracy of > or = 90% for species level identification. CONCLUSIONS: For confirmation of Enterococcus genus from mEI media, conventional or genus screen biochemical testing, 16S rRNA sequencing and the four commercial systems were correct 79-100% of the time. For speciation to an accuracy of 90% or better, either conventional biochemical testing or 16S rRNA sequencing is required. SIGNIFICANCE AND IMPACT OF THE STUDY: Accurate identification of presumptive environmental Enterococcus isolates to genus and species level is an integral part of laboratory quality assurance and further characterization of Enterococcus species from pollution incidents. This investigation determines the ability of six different methods to correctly identify environmental isolates.  相似文献   

14.
The aim of this work was to characterize the cultivable obligate anaerobic bacterial population in paper mill environments. A total of 177 anaerobically grown bacterial isolates were screened for aerotolerance, from which 67 obligate anaerobes were characterized by automated ribotyping and 41 were further identified by partial 16S rDNA sequencing. The mesophilic isolates indicated 11 different taxa (species) within the genus Clostridium and the thermophilic isolates four taxa within the genus Thermoanaerobacterium and one within Thermoanaerobacter (both formerly Clostridium). The most widespread mesophilic bacterium was closely related to C. magnum and occurred in three of four mills. One mill was contaminated with a novel mesophilic bacterium most closely related to C. thiosulfatireducens. The most common thermophile was T. thermosaccharolyticum, occurring in all four mills. The genetic relationships of the mill isolates to described species indicated that most of them are potential members of new species. On the basis of identical ribotypes clay could be identified to be the contamination source of thermophilic bacteria. Automated ribotyping can be a useful tool for the identification of clostridia as soon as comprehensive identification libraries are available.  相似文献   

15.
《Genomics》2021,113(5):3152-3162
Species and subspecies within the Salmonella genus have been defined for public health purposes by biochemical properties; however, reference laboratories have increasingly adopted sequence-based, and especially whole genome sequence (WGS), methods for surveillance and routine identification. This leads to potential disparities in subspecies definitions, routine typing, and the ability to detect novel subspecies. A large-scale analysis of WGS data from the routine sequencing of clinical isolates was employed to define and characterise Salmonella subspecies population structure, demonstrating that the Salmonella species and subspecies were genetically distinct, including those previously identified through phylogenetic approaches, namely: S. enterica subspecies londinensis (VII), subspecies brasiliensis (VIII), subspecies hibernicus (IX) and subspecies essexiensis (X). The analysis also identified an additional novel subspecies, reptilium (XI). Further, these analyses indicated that S. enterica subspecies arizonae (IIIa) isolates were divergent from the other S. enterica subspecies, which clustered together and, on the basis of ANI analysis, subspecies IIIa was sufficiently distinct to be classified as a separate species, S. arizonae. Multiple phylogenetic and statistical approaches generated congruent results, suggesting that the proposed species and subspecies structure was sufficiently biologically robust for routine application. Biochemical analyses demonstrated that not all subspecies were distinguishable by these means and that biochemical approaches did not capture the genomic diversity of the genus. We recommend the adoption of standardised genomic definitions of species and subspecies and a genome sequence-based approach to routine typing for the identification and definition of novel subspecies.  相似文献   

16.
Despite the importance of arbuscular mycorrhizal fungi in the majority of terrestrial ecosystems, their ecology, genetics, and evolution are poorly understood, partly due to difficulties associated with detecting and identifying species. We explored the inter- and intraspecies variations of the 18S rRNA genes of the genus Gigaspora to assess the use of this marker for the discrimination of Gigaspora isolates and of Gigasporaceae populations from environmental samples. Screening of 48 Gigaspora isolates by PCR-denaturing gradient gel electrophoresis (DGGE) revealed that the V3-V4 region of the 18S rRNA gene contained insufficient variation to discriminate between different Gigaspora species. In contrast, the patterns of 18S ribosomal DNA (rDNA) heterogeneity within the V9 region of this marker could be used for reliable identification of all recognized species within this genus. PCR-DGGE patterns provided insight into some putative misidentifications and could be used to differentiate geographic isolates of G. albida, G. gigantea, and G. margarita but not G. rosea. Two major clusters were apparent based upon PCR-DGGE ribotype patterns, one containing G. albida, G. candida, G. ramisporophora, and G. rosea and the other containing G. decipiens and G. margarita. Dissection of the DGGE patterns by cloning, DGGE screening, and sequencing confirmed these groupings and revealed that some ribotypes were shared across species boundaries. Of the 48 isolates examined, only two displayed any spore-to-spore variation, and these exceptions may be indicative of coisolation of more than one species or subspecies within these cultures. Two Brazilian agricultural soils were also analyzed with a Gigasporaceae-specific nested PCR approach, revealing a dominance of G. margarita within this family.  相似文献   

17.
From 50 infected surgical wounds of orthopaedic patients, 43 (86%) staphylococcal strains were isolated. 34 of all these staphylococci belonged to Staphylococcus aureus species (i.e. 68 % of all isolates from surgical wounds; 79% of staphylococcal isolates); 9 were coagulase-negative staphylococci (i.e. 21% of all isolates from surgical wounds; 18% of staphylococcal isolates). Among microorganisms isolated from the wounds we also found 2 (4%) of the Enterobacteriaceae family; 2 (4%) of the Pseudomonas genus; 3 (6%) of the Streptococcus genus. Thus, orthopaedic surgical wounds were infected by staphylococci (mainly S. aureus) more frequently than by other micro-organisms. All the staphylococcal strains were screened for methicillin resistance by agar disk diffusion testing and for the presence of mecA gene responsible for methicillin resistance by PCR. 32% of the S. aureus and 33% of the S. epidermidis strains resulted methicillin resistant and mecA-positive. The data confirm the diffusion of methicillin resistant S. aureus in surgical site infections and shows that the so-called "new pathogens", i.e. S. epidermidis and other coagulase-negative staphylococci, also exhibit a frequent and hazardous methicillin-resisting ability.  相似文献   

18.
The possibility of using PCR for rapid identification of food-borne Staphylococcus aureus isolates was evaluated as an alternative to the API-Staph system. A total of 158 strains, 15 S. aureus, 12 other staphylococcal species, and 131 isolates recovered from 164 food samples were studied. They were phenotypically characterized by API-Staph profiles and tested for PCR amplification with specific primers directed to thermonuclease (nuc) and enterotoxin (sea to see) genes. Disagreement between the PCR results and API-Staph identification was further assessed by the analysis of randomly amplified polymorphic DNA (RAPD) profiles obtained with three universal primers (M13, T3, and T7) and 16S rDNA sequencing. Forty out of 131 isolates (31%) tested positive for PCR enterotoxin. Of these, 14 (11%) were positive for sea, 22 (17%) for sec, one (0.8%) for sed, and three (2.2%) for sea and sec. No amplification corresponding to seb nor see was obtained. Cluster analysis based on RAPD profiles revealed that most of the sec positive food isolates grouped together in three clusters. Cluster analysis combining the three RAPD fingerprints (M 13, T3, and T7), PCR-enterotoxin genotype and API-Staph profiles, grouped the nuc PCR positive isolates together with S. aureus reference strains and the nuc PCR negative isolates with reference strains of other staphylococcal species. The only nuc PCR positive food isolate that remained unclustered was a sed positive strain identified by 16S rDNA sequence as S. simulans. The high concordance between S. aureus and nuc PCR positive strains (99%) corroborates the specificity of the primers used and the suitability of nuc PCR for rapid identification of S. aureus in routine food analysis.  相似文献   

19.
The study of 467 microbial strains obtained from collections and from clinical sources revealed that microorganisms of the genus Staphylococcus were highly sensitive to batumin, a new antibiotic obtained from bacteria of the genus Pseudomonas. 378 strains of 15 Staphylococcus species proved to be highly sensitive to the diagnostic preparation "Diastaph", developed on the basis of batumin (antibiotic-impregnated discs); After 18-hour incubation the diameter of the growth inhibition zones on agar-containing culture media was 18-38 mm. Strains belonging to the genera Micrococcus, Dermacoccus, Kocuria and Kytococcus, as well as the tested representatives of other taxa (Planococcus, Streptococcus, Corynebacterium, Acinetobacter, Pseudomonas, Neisseria, the representatives of all tested genera of the family Enterobacteriaceae, fungi of the genus Candida) were insensitive to the diagnosticum. "Diastaph" permits not only the rapid identification of staphylococci pure cultures, but also the determination of their presence in association with other microbial species directly in pathological material, which makes it possible to recommend this diagnostic preparation for use in medical, veterinary and sanitary microbiology.  相似文献   

20.
In this study, a total of fifteen staphylococcal strains belonging to different species were characterized by whole-cell and extracellular protein profiles using sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The results are presented as dendrograms after quantitative analysis of the band patterns with a computer program. Visual inspection of protein bands and cluster analysis of protein patterns of 15 strains representing 10 Staphylococcus species showed that whole-cell and extracellular protein profiles differed in several protein bands in Staphylococcus aureus, S. epidermidis, S. simulans and other species of Staphylococcus; however, the differences were insufficient for reliable differentiation of Staphylococcus species by the SDS-PAGE method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号