首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ong RC  Stopfer M 《Chemical senses》2012,37(5):455-461
Animals can be innately attracted to certain odorants. Because these attractants are particularly salient, they might be expected to induce relatively strong responses throughout the olfactory pathway, helping animals detect the most relevant odors but limiting flexibility to respond to other odors. Alternatively, specific neural wiring might link innately preferred odors to appropriate behaviors without a need for intensity biases. How nonpheromonal attractants are processed by the general olfactory system remains largely unknown. In the moth Manduca sexta, we studied this with a set of innately preferred host plant odors and other, neutral odors. Electroantennogram recordings showed that, as a population, olfactory receptor neurons (ORNs) did not respond with greater intensity to host plant odors, and further local field potential recordings showed that no specific amplification of signals induced by host plant odors occurred between the first olfactory center and the second. Moreover, when odorants were mutually diluted to elicit equally intense output from the ORNs, moths were able to learn to associate all tested odorants equally well with food reward. Together, these results suggest that, although nonpheromonal host plant odors activate broadly distributed responses, they may be linked to attractive behaviors mainly through specific wiring in the brain.  相似文献   

2.
This article is part of a Special Issue “Chemosignals and Reproduction”.Most mammalian species possess two parallel circuits that process olfactory information. One of these circuits, the accessory system, originates with sensory neurons in the vomeronasal organ (VNO). This system has long been known to detect non-volatile pheromonal odorants from conspecifics that influence numerous aspects of social communication, including sexual attraction and mating as well as the release of luteinizing hormone from the pituitary gland. A second circuit, the main olfactory system, originates with sensory neurons in the main olfactory epithelium (MOE). This system detects a wide range of non-pheromonal odors relevant to survival (e.g., food and predator odors). Over the past decade evidence has accrued showing that the main olfactory system also detects a range of volatile odorants that function as pheromones to facilitate mate recognition and activate the hypothalamic-pituitary-gonadal neuroendocrine axis. We review early studies as well as the new literature supporting the view that the main olfactory system processes a variety of different pheromonal cues that facilitate mammalian reproduction.  相似文献   

3.
What is the spatial and temporal nature of odor representations within primary olfactory networks at the threshold of an animal's ability to discriminate? Although this question is of central importance to olfactory neuroscience, it can only be answered in model systems where neural representations can be measured and discrimination thresholds between odors can be characterized. Here, we establish these thresholds for a panel of odors using a Pavlovian paradigm in the moth Manduca sexta. Moths were differentially conditioned to respond to one odor (CS+) but not another (CS-) using undiluted odorants to minimize salience-dependent learning effects. At 24 and 48 h postconditioning, moths were tested for the presence of a conditioned response (CR) with a blank, then the CS+ and CS- (pseudorandomly) across a 5-log step series of increasing concentration. Results identified discrimination thresholds and established that differential CRs to the CS+ and CS- increased with stimulus concentration. Next, 3 separate groups of moths were differentially conditioned at either one-log step below, at, or one log step above the identified discrimination threshold. At 24 and 48 h postconditioning, moths were tested sequentially with a blank, the concentration used for conditioning, and then undiluted odor. Conditioning at one log step below the discrimination threshold established a CR, indicating both stimulus detection and learning, but was insufficient to establish evidence of discrimination. Moths conditioned at the discrimination threshold were able to discriminate but only when stimulated with undiluted odors, indicating learning, but discrimination measures were hampered. When conditioned above the discrimination threshold, moths had no difficulty in discriminating. These results establish methods for psychophysical characterization of discrimination and indicate that differential conditioning at lowered concentrations biases threshold measures.  相似文献   

4.
The neurophysiology and antennal lobe projections of olfactory receptor neurons housed within short trichoid sensilla of female Heliothis virescens F. (Noctuidae: Lepidoptera) were investigated using a combination of cut-sensillum recording and cobalt-lysine staining techniques. Behaviorally relevant odorants, including intra- and inter-sexual pheromonal compounds, plant and floral volatiles were selected for testing sensillar responses. A total of 184 sensilla were categorized into 25 possible sensillar types based on odor responses and sensitivity. Sensilla exhibited both narrow (responding to few odors) and broad (responding to many odors) response spectra. Sixty-six percent of the sensilla identified were stimulated by conspecific odors; in particular, major components of the male H. virescens hairpencil pheromone (hexadecanyl acetate and octadecanyl acetate) and a minor component of the female sex pheromone, (Z)-9-tetradecenal. Following characterization of the responses, olfactory receptor neurons within individual sensilla were stained with cobalt lysine (N=39) and traced to individual glomeruli in the antennal lobe. Olfactory receptor neurons with specific responses to (Z)-9-tetradecenal, a female H. virescens sex pheromone component, projected to the female-specific central large female glomerulus (cLFG) and other glomeruli. Terminal arborizations from sensillar types containing olfactory receptor neurons sensitive to male hairpencil components and plant volatiles were also localized to distinct glomerular locations. This information provides insight into the representation of behaviorally relevant odorants in the female moth olfactory system. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

5.
Combinatorial receptor codes for odors   总被引:64,自引:0,他引:64  
Malnic B  Hirono J  Sato T  Buck LB 《Cell》1999,96(5):713-723
The discriminatory capacity of the mammalian olfactory system is such that thousands of volatile chemicals are perceived as having distinct odors. Here we used a combination of calcium imaging and single-cell RT-PCR to identify odorant receptors (ORs) for odorants with related structures but varied odors. We found that one OR recognizes multiple odorants and that one odorant is recognized by multiple ORs, but that different odorants are recognized by different combinations of ORs. Thus, the olfactory system uses a combinatorial receptor coding scheme to encode odor identities. Our studies also indicate that slight alterations in an odorant, or a change in its concentration, can change its "code," potentially explaining how such changes can alter perceived odor quality.  相似文献   

6.
《L' Année biologique》1998,37(2):69-93
This paper reviews biochemical and functional properties of a family of proteins involved in the transduction process of chemical signals. Odorant-binding proteins (OBPs) are small soluble proteins highly concentrated in the chemosensory organs of Insects and Vertebrates. They are preferentially expressed in the nasal mucus of Vertebrates and in the sensillar lymph of Insects. They have been found to bind reversibly small hydrophobic molecules detected via the olfactory system. The vertebrate OBPs bind non-specific odorants with low affinities. They belong to the lipocalin family as well as other proteins involved in chemical communication and associated to different organs and functions. Nevertheless, no specific ligand for OBPs has been yet identified in Vertebrates. However, the large microdiversity of OBPs in the same animal suggests that OBPs could be involved in the discrimination of odors. Chemical communication in Noctuid moths was used as a model to study the molecular mechanisms of odor recognition. The pheromonal system is extremely sensitive and specific since the male is able to detect only few molecules of the pheromone and to recognize specific blends of the same molecules. The chemical signals were identified for a large number of Lepidopteran species and the associated behaviours they elicit were fully characterized. The Lepidopteran OBPs are divided into two sub-classes according to their ligands: pheromone-binding proteins (PBP) are expressed in sensilla trichodea responding to pheromonal compounds while general odorant binding proteins (GOBP) are associated with sensilla basiconica tuned to the detection of general odors, such as plant volatiles. The PBPs selectively bind components of the female sex-pheromone with measurable affinities. The ligand binding site was localized in the 40–60 aminoacids region. Substitutions in the binding site of different proteins are correlated with the fixation of different ligands, leading to the hypothesis that the primary structure encodes the ligand specificity. Other proteins expressed in chemosensory organs of other orders of Insects were cloned or purified. In absence of functional data, they were called OBP-like. Some of them were localized in the gustatory organs and could be common carriers of odors in both olfactory and gustatory systems. Many arguments are in accordance with an active role of the OBPs in the early steps of odor discrimination. The heterogeneity of OBPs inside species and between species, the spatial segregation in their expression and the different binding affinities of PBPs towards pheromonal compounds support the hypothesis that the coding of odors is realized as soon as the level of OBPs. More, the complex OBP/odor could be the stimulus for olfactory receptors cloned in Vertebrates and still putative in Insects. This hypothesis suggests that OBPs take part as an essential element of the chemosensory transduction.  相似文献   

7.
Pheromone-source orientation behavior can be modified by coexisting plant volatiles. Some host plant volatiles enhance the pheromonal responses of olfactory receptor neurons and increase the sensitivity of orientation behavior in the Lepidoptera species. Although many electrophysiological studies have focused on the pheromonal response of olfactory interneurons, the response to the mixture of pheromone and plant odor is not yet known. Using the silkmoth, Bombyx mori, we investigated the physiology of interneurons in the antennal lobe (AL), the primary olfactory center in the insect brain, in response to a mixture of the primary pheromone component bombykol and cis-3-hexen-1-ol, a mulberry leaf volatile. Application of the mixture enhanced the pheromonal responses of projection neurons innervating the macroglomerular complex in the AL. In contrast, the mixture of pheromone and cis-3-hexen-1-ol had little influence on the responses of projection neurons innervating the ordinary glomeruli whereas other plant odors dynamically modified the response. Together this suggests moths can process plant odor information under conditions of simultaneous exposure to sex pheromone.  相似文献   

8.
9.
Liu Q  Cai H  Xu Y  Li Y  Li R  Wang P 《Biosensors & bioelectronics》2006,22(2):318-322
Human olfactory system can distinguish thousands of odors. In order to realize the biomimetic design of electronic nose on the principle of mammalian olfactory system, this article reports an olfactory cell-based biosensor as a real bionic technique for odorants detection. Effective cultures of olfactory receptor neurons and olfactory bulb cells have been achieved on the semiconductor chip. Using light-addressable potentiometric sensor (LAPS) as sensing chip to monitor extracellular potential of the neurons, the response under stimulations of the odorants or neurotransmitters, such as acetic acid and glutamic acid, was tested. The results demonstrate that this kind of hybrid system of LAPS and olfactory neurons, which is sensitive to odorous changes, has great potential and is promising to be used as a novel neurochip of bioelectronic nose for detecting odors.  相似文献   

10.
In response to herbivore attack, plants release herbivore-induced plant volatiles (HIPVs) that represent important chemical cues for herbivore natural enemies. Additionally, HIPVs have been shown to mediate other ecological interactions with herbivores. Differently from natural enemies that are generally attracted to HIPVs, herbivores can be either attracted or repelled depending on several biological and ecological parameters. Our study aimed to assess the olfactory response of fall armyworm-mated female moths toward odors released by mechanically and herbivore-induced corn at different time intervals. Results showed that female moths strongly respond to corn volatiles, although fresh damaged corn odors (0?C1?h) are not recognized by moths. Moreover, females preferred volatiles released by undamaged plant over herbivore-induced plants at 5?C6?h. This preference for undamaged plants may reflect an adaptive strategy of moths to avoid competitors and natural enemies for their offspring. We discussed our results based on knowledge about corn volatile release pattern and raise possible explanations for fall armyworm moth behavior.  相似文献   

11.
Glomeruli within the antennal lobe (AL) of moths are convergence sites for a large number of olfactory receptor neurons (ORNs). The ORNs target single glomeruli. In the male-specific cluster of glomeruli, the macroglomerular complex (MGC), the input is chemotypic in that each glomerulus of the MGC receives information about a specific component of the conspecific female sex pheromone. Little is known about how neurons that detect other odorants arborize in and amongst glomeruli. The present study focuses on how sex pheromones and biologically relevant semiochemicals are represented in the ALs of both sexes of the moth Spodoptera littoralis. To assess this, we optically measured odour-evoked changes of calcium concentration in the ALs. Foci of calcium increase corresponded in size and shape with anatomical glomeruli. More than one glomerulus was normally activated by a specific non-pheromonal odorant and the same glomerulus was activated by several odorants. All odorants and pheromone components tested evoked unique patterns of glomerular activity that were highly reproducible at repeated stimulations within an individual. Odour-evoked patterns were similar between individuals for a given odorant, implicating a spatial olfactory code. In addition, we demonstrated that activity patterns evoked by host-plant related volatiles are similar between males and females.  相似文献   

12.
Two experiments are described that employ a Y-tube odor-trainingparadigm to address questions relating to olfactory perceptionin free-flying worker honey bees. The first is designed to evaluatehow easily bees can be conditioned to discriminate between twoodors and how willing they are to generalize between closelyrelated odors. In particular, we demonstrate that individualworker bees have no trouble learning to discriminate betweenalkyl ketones or alcohols that differ by only one carbon atom(e.g. heptanone versus octanone) or between a ketone and alcoholfunctional group attached to the same alkyl radical; but theygeneralize between compounds with the same functional groupmuch more readily than those with the same alkyl radical. Thesecond experiment is designed to explore the relationship betweenthe perception of a mixture of odorants and the perception ofthe individual odorants themselves. Our results suggest thatthere appears to be a stronger relationship between a two-odorantmixture and its constituents than would be suggested by themixture being an odor intermediate between the two constituentodorants. We also include a comprehensive discussion on theproblem of extracting quality and concentration informationfrom an odor stimulus and we explore ideas relating to the perceptionof the constituent odorant components of complex odors.  相似文献   

13.
Sorensen  P.W. 《Chemical senses》1996,21(2):245-256
When exposed to the odor of conspecifics, most organisms exhibitan adaptive behavioral response, particularly if the individualsare sexually mature. Evidence increasingly suggests that behavioralresponsiveness to these odors, which are termed ‘pheromones’,reflects neuroethological mechanisms associated with olfactoryfunction. Reproductive pheromones, which are the best understood,are commonly used by both invertebrates and vertebrates. Inboth instances they are generally comprised of mixtures of compoundsand behavioral responsiveness to them is largely instinctual,sexually-dimorphic, and attributable to a specialized component(s)of the olfactory system. While pheromonal responsiveness insome systems (e.g. moths) appears highly stereotypic and symptomaticof a relatively simple ‘labeled line’, behavioralresponsiveness of other animals (e.g. rodents) can be modifiedby experience, suggesting a more complex underlying centralmechanism. In any case, our understanding of these fascinatingsystems is progressing only because of an active dialogue betweenbehavioral and neurological investigations. This review brieflyexamines how behavioral studies have provided fundamental insightinto the neuroethology of olfactory function by drawing comparisonsbetween some of the better understood sex pheromone systemswhich have been described in heliothine moths, the goldfish,and the pig. Many similarities between invertebrate and vertebratepheromone systems are noted. Chem. Senses 21, 245–256,1996.  相似文献   

14.
An open question in olfactory coding is the extent of interglomerular connectivity: do olfactory glomeruli and their neurons regulate the odorant responses of neurons innervating other glomeruli? In the olfactory system of the moth Manduca sexta, the response properties of different types of antennal olfactory receptor cells are known. Likewise, a subset of antennal lobe glomeruli has been functionally characterized and the olfactory tuning of their innervating neurons identified. This provides a unique opportunity to determine functional interactions between glomeruli of known input, specifically, (1) glomeruli processing plant odors and (2) glomeruli activated by antennal stimulation with pheromone components of conspecific females. Several studies describe reciprocal inhibitory effects between different types of pheromone-responsive projection neurons suggesting lateral inhibitory interactions between pheromone component-selective glomerular neural circuits. Furthermore, antennal lobe projection neurons that respond to host plant volatiles and innervate single, ordinary glomeruli are inhibited during antennal stimulation with the female’s sex pheromone. The studies demonstrate the existence of lateral inhibitory effects in response to behaviorally significant odorant stimuli and irrespective of glomerular location in the antennal lobe. Inhibitory interactions are present within and between olfactory subsystems (pheromonal and non-pheromonal subsystems), potentially to enhance contrast and strengthen odorant discrimination.  相似文献   

15.
In moths, sex pheromone components are detected by pheromone-specific olfactory receptor neurons (ph-ORNs) housed in sensilla trichodea in the male antennae. In Grapholita molesta, ph-ORNs are highly sensitive and specific to the individual sex pheromone components, and thus help in the detection and discrimination of the unique conspecific pheromone blend. Plant odors interspersed with a sub-optimal pheromone dose are reported to increase male moth attraction. To determine if the behavioral synergism of pheromone and plant odors starts at the ph-ORN level, single sensillum recordings were performed on Z8-12:Ac and E8-12:Ac ph-ORNs (Z-ORNs and E-ORNs, respectively) stimulated with pheromone–plant volatile mixtures. First, biologically meaningful plant-volatile doses were determined by recording the response of plant-specific ORNs housed in sensilla auricillica and trichodea to several plant odorants. This exploration provided a first glance at plant ORNs in this species. Then, using these plant volatile doses, we found that the spontaneous activity of ph-ORNs was not affected by the stimulation with plant volatiles, but that a binary mixture of sex pheromone and plant odorants resulted in a small (about 15%), dose-independent, but statistically significant, reduction in the spike frequency of Z-ORNs with respect to stimulation with Z8-12:Ac alone. The response of E-ORNs to a combination of E8-12:Ac and plant volatiles was not different from E8-12:Ac alone. We argue that the small inhibition of Z-ORNs caused by physiologically realistic plant volatile doses is probably not fully responsible for the observed behavioral synergism of pheromone and plant odors.  相似文献   

16.
A prominent hypothesis for the function of the glomerular structures in the primary olfactory neuropil of many groups of vertebrate and invertebrate animals is that they enable the processing and coding of information about the chemical compounds that compose complex odors. Previous studies have indicated that various degrees of glomerulus formation in the antennal lobes of the brain of the moth Manduca sexta can be effected by reducing the number of olfactory sensory axons that grow from the antenna into the antennal lobe during metamorphosis. To test the hypothesis that the presence of glomerular structure is necessary to process and identify odors, we substantially reduced, by surgery, the number of antennal segments in developing moths and upon metamorphosis we observed and quantified behavioral responses known to be elicited by odors. Intact and lesioned adult female moths were challenged to fly upwind to the source of an attractive host-plant odor in a wind tunnel. Some of the moths that had developed with reduced olfactory input flew upwind to the odor source. The flight behavior of these individuals was similar to the odor-mediated flight typically observed in moths that had developed normally. Histological analysis of the moths antennal lobes revealed that the lobes of more than half of the respondents that had been lesioned during development lacked normal glomerular organization. The neuropil of these abnormally developed antennal lobes was mostly aglomerular, but with a few isolated, clearly abnormal glomerulus-like structures. This suggests either that even a few abnormal glomeruli are sufficient to mediate this specific behavior or that canonical glomerular organization per se is not necessary for this odor-mediated behavior.  相似文献   

17.
Single-cell recordings from olfactory sensory neurons (OSNs), housed in sensilla located at the base and at the tip of the antenna, showed selective responses to plant odors and female sex pheromone in this polyphagous moth. A spatial variation existed in sensitivity: OSNs present on the more proximal segment (P) were more sensitive than those on the more distal segment (D). OSNs of the 2 locations also differed in temporal characteristics: OSNs on P had shorter latency and displayed more phasic responses, whereas those on D had more tonic responses, especially at low stimulus concentrations. The 196 OSNs responding to our 35 monomolecular stimuli in the screening were housed in 32 functional sensillum types: 27 in basiconic, 3 in long-trichoid, 2 in coeloconic, and 3 in auricillic sensilla. The OSNs in basiconic, coeloconic, and auricillic sensilla responded to plant-associated odorants, whereas OSNs in long-trichoid sensilla responded to female-produced sex pheromone components. Short-trichoid sensilla showed spontaneous activity, but no responses to any odorant tested. OSN specificity to plant stimuli ranged from highly specific to broadly tuned, but it did not differ clearly from females in more specialized moths. OSN response diversity is discussed in terms of olfactory coding, behavior, and ecological specialization.  相似文献   

18.
The olfactory system of the sphinx moth Manduca sexta bears many similarities to its vertebrate counterpart in functional organization, physiology and development. In the moth, the antenna (the olfactory organ) and the antennal lobe (the primary olfactory center) of the brain arise during postembryonic metamorphic development and are accessible, independently manipulable, and structurally relatively simple. In addition, they house a conspicuous, sexually dimorphic subsystem specialized for detection of a specific pheromonal odor. These features make this system experimentally favorable for studies of development of olfactory glomeruli. Such studies have demonstrated the importance of regulatory interactions among sensory axons, glial cells and antennal-lobe neurons.  相似文献   

19.
20.
Gong Y  Plettner E 《Chemical senses》2011,36(3):291-300
Female gypsy moths emit a pheromone, (+)-disparlure, which the males follow until they locate the emitter. The male moths' antennae are covered with innervated sensory hairs, specialized in detection of the pheromone. The neurons in these sensory hairs are bathed by a solution rich in pheromone-binding protein (PBP). PBPs are soluble proteins that bind the pheromone and other odorants reversibly with variable thermodynamic and kinetic selectivity and are essential for olfactory responses. Here, we have studied the interaction between 2 gypsy moth PBPs with aromatic compounds that modulate the responses of male moth antennae to (+)-disparlure. The aromatic compounds do not elicit responses by themselves, but when administered together with pheromone, they inhibit, enhance, or prolong the electrophysiological response to the pheromone. Three interactions between the compounds and PBPs were studied: 1) the equilibrium binding of the compounds by themselves to the PBPs, 2) the equilibrium binding of the compounds in the presence of pheromone or a fluorescent reporter ligand, and 3) the effect of the compounds on the conformation of the pheromone-PBP complex. A subset of compounds causes a prolongation of the electroantennogram response, and from this study, we conclude that these compounds follow a structure-activity pattern and stabilize a particular conformer of the PBPs that appears to activate the olfactory response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号