首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tropical forests absorb large amounts of atmospheric CO2 through photosynthesis but elevated temperatures suppress this absorption and promote monoterpene emissions. Using 13CO2 labeling, here we show that monoterpene emissions from tropical leaves derive from recent photosynthesis and demonstrate distinct temperature optima for five groups (Groups 1–5), potentially corresponding to different enzymatic temperature‐dependent reaction mechanisms within β‐ocimene synthases. As diurnal and seasonal leaf temperatures increased during the Amazonian 2015 El Niño event, leaf and landscape monoterpene emissions showed strong linear enrichments of β‐ocimenes (+4.4% °C?1) at the expense of other monoterpene isomers. The observed inverse temperature response of α‐pinene (?0.8% °C?1), typically assumed to be the dominant monoterpene with moderate reactivity, was not accurately simulated by current global emission models. Given that β‐ocimenes are highly reactive with respect to both atmospheric and biological oxidants, the results suggest that highly reactive β‐ocimenes may play important roles in the thermotolerance of photosynthesis by functioning as effective antioxidants within plants and as efficient atmospheric precursors of secondary organic aerosols. Thus, monoterpene composition may represent a new sensitive ‘thermometer’ of leaf oxidative stress and atmospheric reactivity, and therefore a new tool in future studies of warming impacts on tropical biosphere‐atmosphere carbon‐cycle feedbacks.  相似文献   

2.
Fifteen chalcone derivatives 3a – 3o were synthesized, and evaluated as multifunctional agents against Alzheimer's disease. In vitro studies revealed that these compounds inhibited self-induced Aβ1-42 aggregation effectively ranged from 45.9–94.5 % at 20 μM, and acted as potential antioxidants. Their structure-activity relationships were summarized. In particular, (2E)-3-[4-(dimethylamino)phenyl]-1-(pyridin-2-yl)prop-2-en-1-one ( 3g ) exhibited an excellent inhibitory activity of 94.5 % at 20 μM, and it could disassemble the self-induced Aβ1-42 aggregation fibrils with ratio of 57.1 % at 20 μM concentration. In addition, compound 3g displayed good chelating ability for Cu2+, and could effectively inhibit and disaggregate Cu2+-induced Aβ aggregation. Moreover, compound 3g exerted low cytotoxicity, significantly reversed Aβ1-42-induced SH-SY5Y cell damage. More importantly, compound 3g remarkably ameliorated scopolamine-induced memory impairment in mice. In summary, all the results revealed compound 3g was a potential multifunctional agent for AD therapy.  相似文献   

3.
Rates of photosynthesis by the marine macroalga Ulva lactuca were measured in a factorial experiment at five concentrations of HCO3? and CO32- between 0·20 and 1·26 mol m?3, but very low concentrations of CO2. The results demonstrated that HCO3? was available for use, but an analysis of variance showed that CO32- had neither an inhibiting nor a stimulating effect on rates of photosynthesis over this concentration range. Over the experiment, pH varied from 8·46 to 10·06 and this also had no significant effect on rates of photosynthesis. The lack of a stimulatory effect of high concentrations of CO32- on the rate of photosynthesis at low concentrations of HCO3? was taken as circumstantial evidence for direct uptake of HCO3? rather than proton extrusion and external production of CO2. In the rockpools in which U. lactuca grows, pH values up to 10·35 have been recorded, and for much of the time, CO32- was the major form of inorganic carbon available. The apparent lack of an ability to use CO32- under these conditions suggests that direct use of CO32- as a source of inorganic carbon for photosynthesis is unlikely to be widespread.  相似文献   

4.
Summary The effect of trace elements (Fe, Ni) and chelating compounds on the activity of hydrogen (H2) uptake (Hup) hydrogenase, nitrogenase and rate and yield of H2 photoproduction from l-lactate in photosynthetic cultures of Rhodospirillum rubrum was investigated. Hup activity depended on the availability of Ni2+ and was inhibited by EDTA (0.3–0.5 mm ethylenedinitrilotetraacetic acid). Addition of EDTA (0.5 mm) to the culture medium caused a nearly complete inactivation of Hup activity and activation of nitrogenase, which was paralleled by a threefold increase in total H2 photoproduced from lactate. Hup mutants, isolated by transposon Tn5 mutagenesis, produced maximally twofold more H2 than the wild-type. Experiments with different chelating agents [EDTA, NTA (nitrilotriacetic acid), citrate, isocitrate] and varying concentrations of Fe2+ and Fe3+ showed that photosynthetic growth and nitrogenase activity of R. rubrum were strongly influenced by the iron supply. It is concluded that EDTA enhanced H2 photoproduction by (I) inhibition of biosynthesis of Hup hydrogenase and (II) mobilization of iron, thereby activating the biosynthesis of the nitrogenase complex. Correspondence to: M. Kern  相似文献   

5.
The 3-hydroxypyran-4-one moiety (maltol) was incorporated into the structure of resveratrol to achieve a series of resveratrol-maltol hybrids (8a8k) as novel multi-target-directed ligands (MTDLs). In vitro biological evaluation of the MTDLs revealed these compounds to have a triple function, namely inhibition of self-induced Aβ1–42 aggregation, antioxidation, and metal chelating activity. Among all the evaluated MTDLs, compounds 8i and 8j showed the most promise, demonstrating micromolar IC50 values for Aβ1–42 aggregation inhibition, more potent ABTS+ scavenging activity than Trolox, and good metal chelating activities.  相似文献   

6.
The antioxidant potential of N-acetylcysteine amide (NACA), also known as AD4, was assessed by employing different in vitro assays. These included reducing power, free radical scavenging capacities, peroxidation inhibiting activity through linoleic acid emulsion system and metal chelating capacity, as compared to NAC and three widely used antioxidants, α-tocopherol, ascorbic acid and butylated hydroxytoluene (BHT). Of the antioxidant properties that were investigated, NACA was shown to possess higher 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging ability and reducing power than NAC, at all the concentrations, whereas the scavenging ability of H2O2 differed with concentration. While NACA had greater H2O2 scavenging capacity at the highest concentration, NAC was better than NACA at lower concentrations. NAC and NACA had a 60% and 55% higher ability to prevent β-carotene bleaching, respectively, as compared to control. The chelating activity of NACA was more than 50% that of the metal chelating capacity of EDTA and four and nine times that of BHT and α-tocopherol, respectively. When compared to NACA and NAC; α-tocopherol had higher DPPH scavenging abilities and BHT and α-tocopherol had better β-carotene bleaching power. These findings provide evidence that the novel antioxidant, NACA, has indeed enhanced the antioxidant properties of NAC.  相似文献   

7.
The dried rhizomes of Veratrum album were individually extracted with CHCl3, acetone, and NH4OH/benzene to test the toxic effects against the Colorado potato beetle, Leptinotarsa decemlineata, which is an important agricultural pest. Fifteen compounds in various amounts were isolated from the extracts using column and thin‐layer chromatography. The chemical structures of 14 compounds were characterized as octacosan‐1‐ol ( 1 ), β‐sitosterol ( 2 ), stearic acid ( 3 ), diosgenin ( 4 ), resveratrol ( 5 ), wittifuran X ( 6 ), oxyresveratrol ( 7 ), β‐sitosterol 3‐Oβ‐D ‐glucopyranoside ( 8 ), diosgenin 3‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐glucopyronoside ( 9 ), oxyresveratrol 3‐Oβ‐D ‐glucopyranoside ( 10 ), jervine ( 11 ), pseudojervine ( 13 ), 5,6‐dihydro‐1‐hydroxyjervine ( 14 ), and saccharose ( 15 ) using UV, IR, MS, 1H‐ and 13C‐NMR, and 2D‐NMR spectroscopic methods. However, the chemical structure of 12 , an oligosaccharide, has not fully been elucidated. Compounds 4, 6, 9 , and 10 were isolated from V. album rhizomes for the first time in the current study. The toxic effects of three extracts (acetone, CHCl3, and NH4OH/benzene) and six metabolites, 2, 2 + 4, 5, 7, 8 , and 11 , were evaluated against the Colorado potato beetle. The assay revealed that all three extracts, and compounds 7, 8 , and 11 exhibited potent toxic effects against this pest. This is the first report on the evaluation of the toxic effects of the extracts and secondary metabolites of V. album rhizomes against L. decemlineata. Based on these results, it can be concluded that the extracts can be used as natural insecticides.  相似文献   

8.
The effects of different salinities ranging from 7–68‰ on the internal inorganic and organic solute concentrations, and on the photosynthesis and respiration have been investigated in the green alga Bladingia minima (Näg. ex Kütz.) Kylin. The levels of the main osmotic solutes K+, sucrose and proline increased with increasing salinities and vice versa, while Na+, Mg2+, Cl? and PO3–4 played a minor role in the osmotic acclimation. In contrast to related Enteromorpha species, B. minima exhibited high NO?3 concentrations, which decreased under hypo- and hypersaline conditions. B. minima differs also from Enteromorpha by accumulating the tertiary sulphonium compound DMSP in osmotically significant amounts under gentle hypersaline conditions. B. minima revealed typical characteristics of a “sun-plant” having a high light compensation point together with a saturation of photosynthesis at high photon flux densities. The alga showed a broad photosynthetic stability under osmotic stress; only with extreme hypersaline conditions was photosynthesis partly inhibited. The rate of respiration remained constant in hypersaline media, and was stimulated under hyposaline conditions.  相似文献   

9.
Alzheimer's disease (AD) is a well‐known neurodegenerative disorder affecting millions of old people worldwide and the corresponding epidemiological data emphasize the importance of the disease. As AD is a multifactorial illness, various single target directed drugs that have reached clinical trials have failed. Therefore, various factors associated with outset of AD have been considered in targeted drug discovery. In this work, various benzochromenoquinolinones were synthesized and evaluated for their cholinesterase and BACE1 inhibitory activities as well as neuroprotective and metal‐chelating properties. Among the synthesized compounds, 14‐amino‐13‐(3‐nitrophenyl)‐2,3,4,13‐tetrahydro‐1H‐benzo[6,7]chromeno[2,3‐b]quinoline‐7,12‐dione ( 6m ) depicted the best inhibitory activity toward acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50s of 0.86 and 6.03 μm , respectively. Also, the compound could inhibit β‐secretase 1 (BACE1) with IC50=19.60 μm and showed metal chelating ability toward Cu2+, Fe2+, and Zn2+. In addition, docking study demonstrated desirable interactions of compound 6m with amino acid residues characterizing AChE, BChE, and BACE1.  相似文献   

10.
Prednisolone, a synthetic adrenal corticosteroid drug, is known to have anti-inflammatory and autoimmune activity. Biotransformation of prednisolone was carried out to obtain more bioactive prednisolone derivatives. Among six different fungi, Penicillium aurantiacum proved to be the best prednisolone hydroxylator. As a result of prednisolone biotransformation by P. aurantiacum, whole cells four different prednisolone derivatives were investigated. 20β-Hydroxyprednisolone (1) and 21,21-dimethoxy-11β-hydroxypregn-1,4-dien-3,20-dione (2) were detected as the main metabolites. These metabolites together with other two metabolites, 11β-hydroxyandrost-1,4-dien-3,17-dione (3) and 11β,17β-dihydroxyandrost-1,4-dien-3- one (4), were purified and assigned by an interpretation of their spectral data using mass spectroscopy (MS), proton nuclear magnetic resonance (1H-NMR), carbon nuclear magnetic resonance (13C-NMR) and infrared spectroscopy (IR) analyses. The best fermentation conditions for production of compounds 1–4 were as follows: medium (3) consisting of (g/l): glucose 20; l-asparagine 0.7; MgSO4.7H2O 0.5; KH2PO4 1.52; KCl 0.52; Cu (NO3)2 traces; ZnSO4.7H2O traces, supplemented with prednisolone concentration of 0.3?mg/ml, inoculated by 10% of microorganism and incubated for 72?h. Under these optimized conditions, ~94.8% of the added prednisolone was converted to aforementioned derivatives, which have the potential to be used in industrial production of important pharmaceutical compounds.  相似文献   

11.
β3‐Octaarginine chains were attached to the functional groups NH and CO2H of the antibacterial fluoroquinolones ciprofloxacin (→ 1 ) and enrofloxacin (→ 2 ), respectively, in order to find out whether the activity increases by attachment of the polycationic, cell‐penetrating peptide (CPP) moiety. For comparison, simple amides, 3 – 5 , of the two antimicrobial compounds and β3‐octaarginine amide ( βR8 ) were included in the antibacterial susceptibility tests to clarify the impact of chemical modification on the microbiological activity of either scaffold (Table).  相似文献   

12.
Continuing our search for herbicide models based on natural products, we investigated the action mechanisms of five alkaloids isolated from Swinglea glutinosa (Rutaceae): Citrusinine‐I ( 1 ), glycocitrine‐IV ( 2 ), 1,3,5‐trihydroxy‐10‐methyl‐ 2,8‐bis(3‐methylbut‐2‐en‐1‐yl)‐9(10H)‐acridinone ( 3 ), (2R)‐2‐tert‐butyl‐3,10‐dihydro‐4,9‐dihydroxy‐11‐methoxy‐10‐methylfuro[3,2‐b]acridin‐5(2H)‐one ( 4 ), and (3R)‐2,3,4,7‐tetrahydro‐3,5,8‐trihydroxy‐6‐methoxy‐2,2,7‐trimethyl‐12H‐pyrano[2,3‐a]acridin‐12‐one ( 5 ) on several photosynthetic activities in an attempt to find new compounds that affect photosynthesis. Through polarographic techniques, the compounds inhibited the non‐cyclic electron transport in the basal, phosphorylating, and uncoupled conditions from H2O to methylviologen (=MV). Therefore, they act as Hill reaction inhibitors. This approach still suggested that the compounds 4 and 5 had their interaction site located at photosystem I. Studies on fluorescence of chlorophyll a suggested that acridones ( 1 – 3 ) have different modes of interaction and inhibition sites on the photosystem II electron transport chain.  相似文献   

13.
Pithophora oedogonia (Mont.) Wittr. biomass in Surrey Lake, Indiana was greater in the littoral than in the pelagial region. Although mean soluble reactive phosphorus concentrations did not differ between the two areas, nitrate concentrations were almost six times higher in the cove than in the open water. Using laboratory cultures of Pithophora, the half saturation constant (Ks at 20° C relating filament growth to external concentrations of nitrate-nitrogen was determined to be 1.23 mg L?1 (=88 μM)and for phosphate-phosphorus, 0.1 mg L?1 (=3.22 μM). These values were used to calculate a NO3-N/PO4-P atomic ratio of 27.6. Comparison of this value with NO3-N/PO4-P ratios in Surrey Lake showed that nitrogen limiting conditions were prevalent in the open water section of the lake. Alkaline phosphatase and dark ammonia uptake analyses on field collected filaments from the shallow and deep water sections confirmed the hypothesis that nitrate is the major factor limiting growth of Pithophora in Surrey Lake.  相似文献   

14.
When photosynthesis of the blue-green alga Anacystis nidulans was measured as 14CO2-fixation, the inhibitory effect of DCMU at low concentrations was greatest when mainly Photosystem 1 (PS 1) (excitation at 446 or 687 nm) was operative. At concentrations above 10-6M the inhibition on 14CO2-fixation was greatest when mainly Photosystem 2 (PS 2) was operative (excitation at 619). During excitation of PS 1, the excretion of glycolate was stimulated at low concentrations of DCMU (5 × 10-8M and lower), while higher concentrations inhibited excretion. All concentrations of DCMU inhibited glycolate excretion when mainly PS 2 was excited. The curves showing the relative effect of DCMU on the two photosystems, measured as PS 1/PS 2, had opposite shapes for 14CO2-fixation and glycolate excretion. An increase in 14CO2-fixation coincided with a decrease in glycolate excretion and vice versa. It appears that the increased rate of photosynthesis when mainly PS 1 was operative relative to that when mainly PS 2 was excited, increases the consumption of glycolate in an oxidation process associated with the excitation of PS 1, resulting in less excretion of glycolate to the medium. The influence of DCMU inhibition on labelled amino acid pools connected to the glycolate pathway (glycine-serine) is quite similar to that for 14CO2-fixation. At concentrations below 10-6M DCMU, inhibition of 14CO2- incorporation into the amino acids was greatest when PS 1 was excited, while at the higher concentrations tested, inhibition was greater when PS 2 was excited. We conclude that the metabolism of glycine and serine is closely connected to the rate of photosynthesis.  相似文献   

15.
Measurements of photosynthesis and respiration were made on leaves in summer in a Quercus rubra L. canopy at approximately hourly intervals throughout 5 days and nights. Leaves were selected in the upper canopy in fully sunlit conditions (upper) and in the lower canopy (lower). In addition, leaves in the upper canopy were shaded (upper shaded) to decrease photosynthesis rates. The data were used to test the hypothesis that total night‐time respiration is dependent on total photosynthesis during the previous day and that the response is mediated through changes in storage in carbohydrate pools. Measurements were made on clear sunny days with similar solar irradiance and air temperature, except for the last day when temperature, especially at night, was lower than that for the previous days. Maximum rates of photosynthesis in the upper leaves (18.7 μmol m?2 s?1) were approximately four times higher than those in the lower leaves (4.3 μmol m?2 s?1) and maximum photosynthesis rates in the upper shaded leaves (8.0 μmol m?2 s?1) were about half those in the upper leaves. There was a strong linear relationship between total night‐time respiration and total photosynthesis during the previous day when rates of respiration were normalized to a fixed temperature of 20°C, removing the effects of temperature from this relationship. Measurements of specific leaf area, nitrogen and chlorophyll concentration and calculations of the maximum rate of carboxylation activity, Vcmax, were not significantly different between upper and upper shaded leaves 5 days after the shading treatment was started. There were small, but significant decreases in the rate of apparent maximum electron transport at saturating irradiance, Jmax (P>0.05), and light use efficiency, ? (P<0.05), for upper shaded leaves compared with those for upper leaves. This suggests that the duration of shading in the experiment was sufficient to initiate changes in the electron transport, but not the carboxylation processes of photosynthesis. Support for the hypothesis was provided from analysis of soluble sugar and starch concentrations in leaves. Respiration rates in the upper shaded leaves were lower than those expected from a relationship between respiration and soluble sugar concentration for fully exposed upper and lower leaves. However, there was no similar difference in starch concentrations. This suggests that shading for the duration of several days did not affect sugar concentrations but reduced starch concentrations in leaves, leading to lower rates of respiration at night. A model was used to quantify the significance of the findings on estimated canopy CO2 exchange for the full growing season. Introducing respiration as a function of total photosynthesis on the previous day resulted in a decrease in growing season night‐time respiration by 23% compared with the value when respiration was held constant. This highlights the need for a process‐based approach linking respiration to photosynthesis when modelling long‐term carbon exchange in forest ecosystems.  相似文献   

16.
Four tuber-forming substances in Jerusalem artichoke were isolated from the leaves. The structures were established by spectroscopic methods as jasmonic acid (2), methyl β-D-glucopyranosyl tuberonate (3), and two new polyacetylene compounds, methyl β-D-glucopyranosyl helianthenate A (4, C19H24O8) and B (5, C17H22O8).  相似文献   

17.
In vitro screening of a Fe2+‐chelating effect using a Fenton's reaction–luminol chemiluminescence (CL) system is described. The luminescence between the reactive oxygen species generated by the Fenton's reaction and luminol was decreased on capturing Fe2+ using a chelator. The proposed method can prevent the consumption of expensive seed compounds (drug discovery candidates) owing to the high sensitivity of CL detection. Therefore, the assay could be performed using small volumes of sample solution (150 μL) at micromolar concentrations. After optimization of the screening conditions, the efficacies of conventional chelators such as ethylenediaminetetraacetic acid (EDTA), diethylentriaminepentaacetic acid (DETAPAC), deferoxamine, deferiprone and 1,10‐phenanthroline were examined. EC50 values for these compounds (except 1,10‐phenanthroline) were in the range 3.20 ± 0.87 to 9.57 ± 0.64 μM (n = 3). Rapid measurement of the Fe2+‐chelating effect with an assay run time of a few minutes could be achieved using the proposed method. In addition, the specificity of the method was discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
One of the most promising alternative technologies to antifouling (AF) biocides based on toxic heavy metals lies in the development of natural eco-friendly biocides. The present study evaluates the AF potential of structurally different compounds containing a 3-alkylpyridine moiety. The products, namely poly 3-alkylpyridinium salts, saraine, and haminols, were either extracted or derived from natural sources (the sponges Haliclona sp. and Reniera sarai and the mollusc Haminoea fusari), or obtained by chemical synthesis. All the molecules tested showed generally good anti-settlement activity against larvae of the barnacle Amphibalanus (=Balanus) amphitrite (EC50 values between 0.19 and 3.61?μg?ml?1) and low toxicity (LC50 values ranging from 2.04 to over 100?μg?ml?1) with non-target organisms. For the first time, the AF potential of a synthetic monomeric 3-alkylpyridine was demonstrated, suggesting that chemical synthesis is as a realistic way to produce large amounts of these compounds for future research and development of environmentally-friendly AF biocides.  相似文献   

19.
The dose- and time-response effects of single 4 h day-time exposures of 0.064, 0.166, 0.336, 0.452 or 0.693 μl l?1 (ppm) O3 followed by single 4 h night-time exposures of 0.078, 0.198, 0.378, 0.502 or 0.747 μl l?1 O3 on photosynthesis, transpiration and dark respiration were examined for nine Carpatho-Ukrainian (‘Rachovo’) half-sib families and for two populations. ‘Westerhof’ from the FRG and ‘Schmiedefeld’ from the GDR, of Norway spruce [Picea abies (L.) Karst.], all in their 4th growing season. Needles were scorched by 4 h exposures to 0.336 μl l?1 O3 and higher. The lag before photosynthesis and transpiration responded significantly to O3 decline took from a few minutes at the highest concentration to several hours at the lower concentrations. Recovery of photosynthesis and transpiration was absent or extremely slow. Photosynthesis of the different spruce types was affected significantly differently, the most sensitive spruce having its photosynthesis suppressed 1.9 times and its transpiration 1.6 times more than the most tolerant spruce. The physiological responses of ‘Westerhof’ were less sensitive than the average ‘Rachovo’ half-sibs. Neither night transpiration nor dark respiration were affected by high doses of night O3, preceded by day O3 exposures. The gradients of different photosynthesis and transpiration sensitivities of the young half-sibs (and ‘Westerhof’) demonstrated a significant, positive, mutual correlation, and significant positive correlations with the gradient of novel decline symptoms of their parents growing in Danish forests. The relative photosynthesis and transpiration sensitivities may thus serve as diagnostic parameters in laboratory tests for selection against novel spruce decline.  相似文献   

20.
Two Jerusalem artichoke (Helianthus tuberosus L.) genotypes, NY-1 and NY-7, were subjected to different seawater concentrations (0, 10, 20, 30, 40, and 50%) for various periods of time to determine the effects on seedling growth, ion content, and photosynthetic productivity in a greenhouse. Under different seawater concentrations, sprouting rates varied greatly among the genotypes. The differences in relative growth rate (RGR), leaf chlorophyll content, total leaf area (TLA), plant dry weight (PDW), photosynthetic rate (A), stomatal conductance (g s), and efficiency of the light harvesting of photosystem II (F v/F m) were significant between NY-1 and NY-7 after 12 days of stress at 40 and 50% seawater. Seawater treatments resulted in the reduction of almost all the growth parameters and coincident increases of Na+ and Ca2+ concentrations in plant tissues. Our results indicate that there is great variability for seawater tolerance among H. tuberosus varieties, and that greater photosynthesis capacity, higher RGR, and relatively higher tissue Na+ accumulation at high seawater concentrations appears to be associated with seawater tolerance in H. tuberosus varieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号