首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cathepsins K and L are related cysteine proteases that have been proposed to play important roles in osteoclast-mediated bone resorption. To further examine the putative role of cathepsin L in bone resorption, we have evaluated selective and potent inhibitors of human cathepsin L and cathepsin K in an in vitro assay of human osteoclastic resorption and an in situ assay of osteoclast cathepsin activity. The potent selective cathepsin L inhibitors (K(i) = 0.0099, 0.034, and 0.27 nm) were inactive in both the in situ cytochemical assay (IC(50) > 1 micrometer) and the osteoclast-mediated bone resorption assay (IC(50) > 300 nm). Conversely, the cathepsin K selective inhibitor was potently active in both the cytochemical (IC(50) = 63 nm) and resorption (IC(50) = 71 nm) assays. A recently reported dipeptide aldehyde with activity against cathepsins L (K(i) = 0.052 nm) and K (K(i) = 1.57 nm) was also active in both assays (IC(50) = 110 and 115 nm, respectively) These data confirm that cathepsin K and not cathepsin L is the major protease responsible for human osteoclastic bone resorption.  相似文献   

2.
Patients with pycnodysostosis, a rare skeletal dysplasia, present with bone abnormalities such as short stature, acroosteolysis of distal phalanges, and skull deformities. The disease is caused by a deficiency of the cysteine protease cathepsin K which is responsible for degradation of collagen type I and other bone proteins. Osteoclasts, bone cells of hematopoietic origin responsible for bone mineral as well as protein matrix degradation, are dysfunctional in patients with pycnodysostosis due to mutations in the cathepsin K gene. Cathepsin K deficient osteoclasts can demineralize bone but cannot degrade the protein matrix. Mutations in the cathepsin K gene disrupting wild type cathepsin K activity have been described in patients with pycnodysostosis. Animal models of cathepsin K deficiency have been created and provide a valuable tool to study osteoclast function and treatment for cathepsin K deficiency. Understanding the regulation and role of cathepsin K in osteoclast function is important for designing future therapies for pycnodysostosis. Cathepsin K inhibitors will be useful in pathological processes involving excess osteoclast activation and bone resorption such as osteoporosis, bone metastasis and multiple myeloma. This review will discuss the bone remodeling cycle, the human disease pycnodysostosis caused by cathepsin K deficiency and cathepsin K activity and regulation.  相似文献   

3.
Data in the literature suggest that site-specific differences exist in the skeleton with respect to digestion of bone by osteoclasts. Therefore, we investigated whether bone resorption by calvarial osteoclasts (intramembranous bone) differs from resorption by long bone osteoclasts (endochondral bone). The involvement of two major classes of proteolytic enzymes, the cysteine proteinases (CPs) and matrix metalloproteinases (MMPs), was studied by analyzing the effects of selective low molecular weight inhibitors of these enzymes on bone resorption. Mouse tissue explants (calvariae and long bones) as well as rabbit osteoclasts, which had been isolated from both skeletal sites and subsequently seeded on bone slices, were cultured in the presence of inhibitors and resorption was analyzed. The activity of the CP cathepsins B and K and of MMPs was determined biochemically (CPs and MMPs) and enzyme histochemically (CPs) in explants and isolated osteoclasts. We show that osteoclastic resorption of calvarial bone depends on activity of both CPs and MMPs, whereas long bone resorption depends on CPs, but not on the activity of MMPs. Furthermore, significantly higher levels of cathepsin B and cathepsin K activities were expressed by long bone osteoclasts than by calvarial osteoclasts. Resorption of slices of bovine skull or cortical bone by osteoclasts isolated from long bones was not affected by MMP inhibitors, whereas resorption by calvarial osteoclasts was inhibited. Inhibition of CP activity affected the resorption by the two populations of osteoclasts in a similar way. We conclude that this is the first report to show that significant differences exist between osteoclasts of calvariae and long bones with respect to their bone resorbing activities. Resorption by calvarial osteoclasts depends on the activity of CPs and MMPs, whereas resorption by long bone osteoclasts depends primarily on the activity of CPs. We hypothesize that functionally different subpopulations of osteoclasts, such as those described here, originate from different sets of progenitors.  相似文献   

4.
Bone resorption in balance with bone formation is vital for the maintenance of the skeleton and is mediated by osteoclasts. Cathepsin K is the predominant protease in osteoclasts that degrades the bulk of the major bone forming organic component, type I collagen. Although the potent collagenase activity of cathepsin K is well known, its mechanism of action remains elusive. Here, we report a cathepsin K-specific complex with chondroitin sulfate, which is essential for the collagenolytic activity of the enzyme. The complex is an oligomer consisting of five cathepsin K and five chondroitin sulfate molecules. Only the complex exhibits potent triple helical collagen-degrading activity, whereas monomeric cathepsin K has no collagenase activity. The primary substrate specificity of cathepsin K is not altered by complex formation, suggesting that the protease-chondroitin sulfate complex primarily facilitates the destabilization and/or the specific binding of the triple helical collagen structure. Inhibition of complex formation leads to the loss of collagenolytic activity but does not impair the proteolytic activity of cathepsin K toward noncollagenous substrates. The physiological relevance of cathepsin K complexes is supported by the findings that (i) the content of chondroitin sulfate present in bone and accessible to cathepsin K activity is sufficient for complex formation and (ii) Y212C, a cathepsin K mutant that causes pycnodysostosis (a bone sclerosing disorder) and that has no collagenase activity but remains potent as a gelatinase, is unable to form complexes. These findings reveal a novel mechanism of bone collagen degradation and suggest that targeting cathepsin K complex formation would be an effective and specific treatment for diseases with excessive bone resorption such as osteoporosis.  相似文献   

5.
Cysteine proteases and matrix metalloproteinases (MMPs) are important factors in the degradation of organic matrix components of bone. Osteoprotegerin (OPG) is an osteoblast-secreted decoy receptor that inhibits osteoclast differentiation and activation. This study investigated the direct effects of human OPG on cathepsin K, MMP-9, MMP-2, and tissue inhibitors of metalloproteinases (TIMP1 and TIMP2) expressed by purified rabbit osteoclasts. The expression of two osteoclast markers, namely tartrate-resistant acid phosphatase (TRAP) and cathepsin K, was inhibited by 100 ng/mL hOPG, whereas MMP-9 expression was enhanced. Gelatinase activities were measured using a zymographic assay, and hOPG was shown to enhance both pro-MMP-9 and MMP-2 activities. Concomitantly, TIMP1 expression was greatly stimulated by hOPG, whereas TIMP2 mRNA levels were not modulated. Overall, these results show that hOPG regulates the proteases produced by purified osteoclasts differentially, producing a marked inhibitory effect on the expression of cathepsin K, the main enzyme involved in bone resorption.  相似文献   

6.
BACKGROUND: The cysteine proteinase cathepsin K has aroused intense interest as the main effector in the digestion of extracellular matrix during bone resorption by osteoclasts. The enzyme is not a housekeeping lysosomal hydrolase, but is instead expressed with striking specificity in osteoclasts. In this work, we present evidence for the association of cathepsin K with the granulomatous reaction. Granulomas are inflammatory tissue reactions against persistent pathogens or foreign bodies. We came across cathepsin K while working on Echinococcus granulosus, a persistent tissue-dwelling, cyst-forming parasite that elicits a granulomatous response. MATERIALS AND METHODS: The walls of hydatid cysts from infected cattle were solubilized. Strong proteolytic activity was detected in the extracts. The proteinase responsible was purified by anion exchange and gel filtration. The purified protein was subjected to N-terminal sequencing, and its identity further confirmed by Western blotting, with a cathepsin K-specific antibody. The same antibody was used to localize the proteinase in paraffin-embedded sections of the parasite and the local host response. RESULTS: A proteinase was purified to near homogeneity from hydatid cyst extracts. The enzyme was unequivocally identified as host cathepsin K. Both the proenzyme and the mature enzyme forms were found. Cathepsin K was then immunolocalized both to the parasite cyst wall and to the epithelioid and giant multinucleated cells of the host granulomatous response. CONCLUSIONS: In the granulomatous response to the hydatid cyst, cathepsin K is expressed by epithelioid and giant multinucleated cells. We propose that, by analogy with bone resorption, cathepsin K is secreted by the host in an attempt to digest the persistent foreign body. Both processes, bone resorption and granulomatous reactions, therefore tackle persistent extracellular material (the bone matrix or the foreign body), and utilize specialized cells of the monocytic lineage (osteoclasts or epithelioid/giant cells) secreting cathepsin K as an effector.  相似文献   

7.
We performed immunocytochemical localization of cathepsin D in osteoclasts of the proximal growth plate of the rat femurs using both the avidin-biotin-peroxidase complex method for cryo-semi-thin (1 micron) sections and the colloidal gold-labeled IgG method for K4M ultra-thin sections. At the light microscopic level, cathepsin D immunoreactivity in the osteoclasts appeared at the vesicles, granules, and/or small vacuoles. They were distributed throughout the cytoplasm of each cell and were relatively numerous close to the bone surface. This antigen could not be detected at the eroded bone surface. As for other cells, immunoreactivity was seen only in the lysosomes of osteoblast-like cells. Immunoreactivity in the osteoclasts was stronger and greater in the density and number than in osteoblast-like cells. At the electron microscopic level, osteoclasts with well-developed ruffled border possessed numerous cathepsin D-containing lysosomes, vacuoles, and coated vesicle-like structures. Cathepsin D-containing lysosomes fused with cathepsin-negative vacuoles and formed large secondary lysosomes. Osteoclasts with poorly developed ruffled border possessed fewer cathepsin D-containing lysosomes than those with well-developed ruffled border. No immunogold particles were seen in vacuole-like channel expansions of the ruffled borders, between the channels of the ruffled borders, or on the eroded bone surface. These findings demonstrate that osteoclasts contain a large amount of cathepsin D. They suggest that cathepsin D is necessary for osteoclastic bone resorption, that it plays an indirect rather than direct role.  相似文献   

8.
We have localized cathepsin K in rat osteoclasts and within exposed resorption pits by immuno-fluorescence microscopy. Intracellular staining using an antibody raised against recombinant mouse cathepsin K was vesicular and uniformly distributed throughout the cell. Confocal microscopy analysis did not reveal an accumulation of cathepsin K containing vesicles opposing the ruffled border and the resorption lacuna. Exposed resorption pits exhibited a uniform distribution of cathepsin K, and no differences were observed between the edges and the centers of the pits. The immunostaining of resorption pits with anti-cathepsin K antibodies demonstrates that the protease is secreted into the sub-osteoclastic compartment. Cathepsin K-specific inhibition using peptidyl vinyl sulfones as selective cysteine protease inactivators reduced bone resorption by 80% in a dose-dependent manner at sub-micromolar concentrations. No reduction of bone resorption was observed at those low concentrations using a potent cathepsin L, S, B-specific inhibitor. That the inhibition of bone resorption can be attributed to cathepsin K-like protease inhibition was corroborated by the selective inhibition of the osteoclastic Z-Gly-Pro-Arg-MbetaNA hydrolyzing activity by the cathepsin K, L, S, B-inhibitor, but not by the cathepsin L, B, and S inhibitor. Z-Gly-Pro-Arg-MbetaNA is efficiently hydrolyzed by cathepsin K but only poorly by cathepsins L, S, and B. On the contrary, the intracellular hydrolysis of the cathepsin B-specific substrate, Z-Arg-Arg-MbetaNA, was prevented by both types of inhibitors. The identification of cathepsin K in resorption pits and the inhibition of bone resorption and intracellular cathepsin K activity by selective vinyl sulfone inhibitors indicate the critical role of the protease in osteoclastic bone resorption.  相似文献   

9.
Summary We performed immunocytochemical localization of cathepsin D in osteoclasts of the proximal growth plate of the rat femurs using both the avidin-biotin-peroxidase complex method for cryo-semi-thin (1 m) sections and the colloidal gold-labeled IgG method for K4M ultra-thin sections.At the light microscopic level, cathepsin D immunoreactivity in the osteoclasts appeared at the vesicles, granules, and/or small vacuoles. They were distributed throughout the cytoplasm of each cell and were relatively numerous close to the bone surface. This antigen could not be detected at the eroded bone surface. As for other cells, immunoreactivity was seen only in the lysosomes of osteoblast-like cells. Immunoreactivity in the osteoclasts was stronger and greater in the density and number than in osteoblast-like cells. At the electron microscopic level, osteoclasts with well-developed ruffled border possessed numerous cathepsin D-containing lysosomes, vacuoles, and coated vesicle-like structures. Cathepsin D-containing lysosomes fused with cathepsinnegative vacuoles and formed large secondary lysosomes. Osteoclasts with poorly developed ruffled border possessed fewer cathepsin D-containing lysosomes than those with well-developed ruffled border. No immunogold particles were seen in vacuole-like channel expansions of the ruffled borders, between the channels of the ruffled borders, or on the eroded bone surface.These findings demonstrate that osteoclasts contain a large amount of cathepsin D. They suggest that cathepsin D is necessary for osteoclastic bone resorption, that it plays an indirect rather than direct role.  相似文献   

10.
《Matrix biology》2006,25(3):149-157
Degradation of organic bone matrix requires proteinase activity. Cathepsin K is a major osteoclast proteinase needed for bone resorption, although osteoclasts also express a variety of other cysteine- and matrix metalloproteinases that are involved in bone remodellation. Cystatin B, an intracellular cysteine proteinase inhibitor, exhibits a lysosomal distribution preferentially in osteoclasts but it's role in osteoclast physiology has remained unknown. The current paper describes a novel regulatory function for cystatin B in bone-resorbing osteoclasts in vitro. Rat osteoclasts were cultured on bovine bone and spleen-derived cystatin B was added to the cultures. Nuclear morphology was evaluated and the number of actively resorbing osteoclasts and resorption pits was counted. Intracellular cathepsin K and tartrate-resistant acid phosphatase (TRACP) activities were monitored using fluorescent enzyme substrates and immunohistology was used to evaluate distribution of cystatin B in rat metaphyseal bone. Microscopical evaluation showed that cystatin B inactivated osteoclasts, thus resulting in impaired bone resorption. Cathepsin K and TRACP positive vesicles disappeared dose-dependently from the cystatin B-treated osteoclasts, indicating a decreased intracellular trafficking of bone degradation products. At the same time, cystatin B protected osteoclasts from experimentally induced apoptosis. These data show for the first time that, in addition to regulating cysteine proteinase activity and promoting cell survival in the nervous system, cystatin B inhibits bone resorption by down-regulating intracellular cathepsin K activity despite increased osteoclast survival.  相似文献   

11.
Cathepsin K is the key regulator in the osteoclast-mediated bone resorption. Here, we found the correlation between the inhibitory activities of carbonitrile derivatives in the enzymatic activity of cathepsin K and their binding scores predicted using FlexX-Pharm docking program. The binding pattern of [1-(2-cyano-tetrahydro-pyridazine-1-carbonyl)-2-methy-propyl]-carbamic acid benzyl ester (8), one member of this series, was similar to that of the reference. In a bone pit formation assay, compound 8 was shown to dose-dependently inhibit the bone resorptive activity of mature osteoclasts.  相似文献   

12.
The localization of cathepsins B, D, and L was studied in rat osteoclasts by immuno-light and-electron microscopy using the avidin-biotin-peroxidase complex (ABC) method. In cryosections prepared for light microscopy, immunoreactivity for cathepsin D was found in numerous vesicles and vacuoles but was not detected along the resorption lacunae of osteoclasts. However, immunoreactivity for cathepsins B and L occurred strongly along the lacunae, and only weak intracellular immunoreactivity was observed in the vesicles and peripheral part of the vacuoles near the ruffled border. In control sections that were not incubated with the antibody, no cathepsins were found in the osteoclasts or along the resorption lacunae of osteoclasts. At the electron microscopic level, strong intracellular reactivity of cathepsin D was found in numerous vacuoles and vesicles, while extracellular cathepsin D was only slightly detected at the base of the ruffled border but was not found in the eroded bone matrix. Most osteoclasts showed strong extracellular deposition of cathepsins B and L on the collagen fibrils and bone matrix under the ruffled border. The extracellular deposition was stronger for cathepsin L than for cathepsin B. Furthermore cathepsins B and L immunolabled some pits and part of the ampullar extracellular spaces, appearing as vacuoles in the sections. Conversely, the intracellular reactivity for cathepsins B and L was weak: cathepsin-containing vesicles and vacuoles as primary and secondary lysosomes occurred only sparsely. These findings suggest that cathepsins B and L, unlike cathepsin D, are rapidly released into the extracellular matrix and participate in the degradation of organic bone matrix containing collagen fibrils near the tip of the ruffled border. Cathepsin L may be more effective in the degradation of bone matrix than cathepsin B.  相似文献   

13.
Osteoclasts are specialized cells that secrete lysosomal acid hydrolases at the site of bone resorption, a process critical for skeletal formation and remodeling. However, the cellular mechanism underlying this secretion and the organization of the endo-lysosomal system of osteoclasts have remained unclear. We report that osteoclasts differentiated in vitro from murine bone marrow macrophages contain two types of lysosomes. The major species is a secretory lysosome containing cathepsin K and tartrate-resistant acid phosphatase (TRAP), two hydrolases critical for bone resorption. These secretory lysosomes are shown to fuse with the plasma membrane, allowing the regulated release of acid hydrolases at the site of bone resorption. The other type of lysosome contains cathepsin D, but little cathepsin K or TRAP. Osteoclasts from Gnptab(-/-) (gene encoding GlcNAc-1-phosphotransferase α, β-subunits) mice, which lack a functional mannose 6-phosphate (Man-6-P) targeting pathway, show increased secretion of cathepsin K and TRAP and impaired secretory lysosome formation. However, cathepsin D targeting was intact, showing that osteoclasts have a Man-6-P-independent pathway for selected acid hydrolases.  相似文献   

14.
Cathepsin K is highly expressed in human osteoclasts, and is implicated in bone resorption. This makes it an attractive target for the treatment of osteoporosis. Peptides containing 2-amino-1'-hydroxymethyl ketones and 2-amino-1'-alkoxymethyl ketones were discovered as potent inhibitors of cathepsin K. A novel synthetic route was devised to facilitate rapid elucidation of the SAR of these inhibitors. The synthesis and SAR of hydroxymethyl ketones are presented.  相似文献   

15.
The root of Morinda officinalis has been claimed to have a protective effect against bone loss in sciatic neurectomized and ovariectomized osteoporotic rats, and this protective effect is supposed to be attributed to anthraquinone compounds in the plant. In the present study, we investigated the effects of three anthraquinones isolated from M. officinalis, including 1, 3, 8-trihydroxy-2-methoxy-anthraquinone (1), 2-hydroxy-1-methoxy-anthraquinone (2) and rubiadin (3) on bone resorption activity in vitro and the mechanism on osteoclasts derived from rat bone marrow cells. Compound 1, 2 and 3 decreased the formation of bone resorption pits, the number of multinucleated osteoclasts, and the activity of tartrate resistant acid phosphates (TRAP) and cathepsin K in the coculture system of osteoblasts and bone marrow cells in the presence of 1, 25-dihydroxyvitamine D(3) and dexamethasone. They also enhanced the apoptosis of osteoclasts induced from bone marrow cells with M-CSF and RANKL. In addition, Compound 1, 2 and 3 improved the ratio of mRNA and protein expression of OPG and RANKL in osteoblasts, interfered with the JNK and NF-κB signal pathway, and reduced the expression of calcitonin receptor (CTR) and carbonic anhydrase/II (CA II) in osteoclasts induced from bone marrow cells with M-CSF and RANKL. These findings indicate that the anthraquinone compounds from M. officinalis are potential inhibitors of bone resorption, and may also serve as evidence to explain the mechanism of the inhibitory effects of some other reported anthraquinones on bone loss.  相似文献   

16.
Cathepsin K (Cat K), highly expressed in osteoclasts, is a cysteine protease member of the cathepsin lysosomal protease family and has been of increasing interest as a target of medicinal chemistry efforts for its role in bone matrix degradation. Inhibition of the Cat K enzyme reduces bone resorption and thus, has rendered the enzyme as an attractive target for anti-resorptive osteoporosis therapy. Over the past decades, considerable efforts have been made to design and develop highly potent, excellently selective and orally applicable Cat K inhibitors. These inhibitors are derived from synthetic compounds or natural products, some of which have passed preclinical studies and are presently in clinical trials at different stages of advancement. In this review, we briefly summarised the historic development of Cat K inhibitors and discussed the relationship between structures of inhibitors and active sites in Cat K for the purpose of guiding future development of inhibitors.  相似文献   

17.
18.
Osteoclasts are large multinucleated cells responsible for bone resorption. Bone resorption is dependent on the liberation of calcium by acid and protease destruction of the bone matrix by proteinases. The key proteinase produced by the osteoclast is cathepsin K. Targeted knock-down of cathepsin K was performed using small inhibitory RNA (siRNA). siRNA is a method that introduces short double-stranded RNA molecules that instruct the RNA-induced silencing complex (RISC) to degrade mRNA species complementary to the siRNA. Transfection of siRNA by lipid cations allows for short-term inhibition of expression of the targeted gene. We show that transfection of primary human osteoclasts with siRNA to cathepsin K reduces expression by > or = 60% and significantly inhibits bone resorption with a reduction of both resorption pit numbers (P = 0.018) and resorbed area (P = 0.013). We also show that FuGENE 6 is an effective lipid transfection reagent with which to transfect primary human osteoclasts, that does not produce off-target effects.  相似文献   

19.
The cysteine protease cathepsin K is believed to play a key role in bone resorption as it has collagenolytic activity and is expressed predominantly and in high levels in bone resorbing osteoclast cells. The addition of nitric oxide (NO) and NO donors to osteoclasts in vitro results in a reduction of bone resorption, although the mechanism of this effect is not fully understood. The S-nitroso derivatives of glutathione (GSNO) and N-acetylpenicillamine (SNAP) and the non-thiol NO donors NOR-1 and NOR-3 all inhibited the activity of purified cathepsin K in a time- and concentration-dependent manner (IC(50) values after 15 min of preincubation at pH 7.5 of 28, 105, 0.4, and 10 microM, respectively). Cathepsin K activity in Chinese hamster ovary cells stably transfected with cathepsin K was also inhibited by the above NO donors with similar potencies. GSNO at 100 microM also completely inhibited the autocatalytic maturation at pH 4.0 of procathepsin K to cathepsin K. The inhibition of cathepsin K by GSNO was rapidly reversed by DTT, but inhibition by NOR-1 was not reversed by DTT, and analysis of the inhibited cathepsin K for S-nitrosylation using the Greiss reaction gave negative results in both cases. Analysis of the protein by electrospray liquid chromatography/mass spectrometry showed that the inhibition of cathepsin K by GSNO resulted in a mass increase of 306 +/- 2 Da, consistent with the formation of a glutathione adduct. Prior inhibition of cathepsin K by the active site thiol-modifying inhibitor E-64 blocked the modification by GSNO, indicating that the glutathione adduct is likely formed at the active site cysteine. Treatment of cathepsin K with NOR-1 resulted in a mass increase of between 30 and 50 Da, corresponding to the oxidation of a cysteine to sulfinic and sulfonic acids. Cotreatment of cathepsin K with NOR-1 plus the sulfenic acid reagent dimedone resulted in a mass increase of approximately 141 Da, which is consistent with the formation of a dimedone adduct. This result demonstrates that the NOR-1-dependent formation of cathepsin K sulfinic and sulfonic acids occurs via a sulfenic acid. These results show that inhibition of cathepsin K activity and its autocatalytic maturation represent two potential mechanisms by which NO can exert its inhibitory effect on bone resorption. This work also shows that oxidative thiol modifications besides S-nitrosylation should be considered when the effects of NO and NO donors on critical thiol-containing proteins are investigated.  相似文献   

20.
Osteoclasts are macrophage-derived polykaryons that degrade bone in an acidic extracellular space. This differentiation includes expression of proteinases and acid transport proteins, cell fusion, and bone attachment, but the sequence of events is unclear. We studied two proteins expressed at high levels only in the osteoclast, cathepsin K, a thiol proteinase, and tartrate-resistant acid phosphatase (TRAP), and compared this expression with acid transport and bone degradation. Osteoclastic differentiation was studied using human apheresis macrophages cocultured with MG63 osteosarcoma cells, which produce cytokines including RANKL and CSF-1 that mediate efficient osteoclast formation. Immunoreactive cathepsin K appeared at 3-5 days. Cathepsin K activity was seen on bone substrate but not within cells, and cathepsin K increased severalfold during further differentiation and multinucleation from 7 to 14 days. TRAP also appeared at 3-5 d, independently of cell fusion or bone attachment, and TRAP activity reached much higher levels in osteoclasts attached to bone fragments. Two proteinases that occur in the precursor macrophages, cathepsin B, a thiol proteinase related to cathepsin K, and an unrelated lysosomal aspartate proteinase, cathepsin D, were also studied to determine the specificity of the differentiation events. Cathepsin B occurred at all times, but increased two- to threefold in parallel with cathepsin K. Cathepsin D activity did not change with differentiation, and secreted activity was not significant. In situ acid transport measurements showed increased acid accumulation after 7 days either in cells on osteosarcoma matrix or attached to bone, but bone pit activity and maximal acid uptake required 10-14 days. We conclude that TRAP and thiol proteinase expression begin at essentially the same time, and precede cell fusion and bone attachment. However, major increases in acid secretion and proteinases expression continue during cell fusion and bone attachment from 7 to 14 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号