首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The innate immune response to inhaled bacteria, such as the opportunist Pseudomonas aeruginosa, is initiated by TLR2 displayed on the apical surface of airway epithelial cells. Activation of TLR2 is accompanied by an immediate Ca(2+) flux that is both necessary and sufficient to stimulate NF-kappaB and MAPK proinflammatory signaling to recruit and activate polymorphonuclear leukocytes in the airway. In human airway cells, gap junction channels were found to provide a regulated conduit for the movement of Ca(2+) from cell to cell. In response to TLR2 stimulation, by either lipid agonists or P. aeruginosa, gap junctions functioned to transiently amplify proinflammatory signaling by communicating Ca(2+) fluxes from stimulated to adjacent, nonstimulated cells thus increasing epithelial CXCL8 production. P. aeruginosa stimulation also induced tyrosine phosphorylation of connexin 43 and association with c-Src, events linked to the closure of these channels. By 4 h postbacterial stimulation, gap junction communication was decreased indicating an autoregulatory control of the connexins. Thus, gap junction channels comprised of connexin 43 and other connexins in airway cells provide a mechanism to coordinate and regulate the epithelial immune response even in the absence of signals from the immune system.  相似文献   

2.
Focal mechanical stimulation of single neonatal mouse cardiac myocytes in culture induced intercellular Ca(2+) waves that propagated with mean velocities of approximately 14 micrometer/s, reaching approximately 80% of the cells in the field. Deletion of connexin43 (Cx43), the main cardiac gap junction channel protein, did not prevent communication of mechanically induced Ca(2+) waves, although the velocity and number of cells communicated by the Ca(2+) signal were significantly reduced. Similar effects were observed in wild-type cardiac myocytes treated with heptanol, a gap junction channel blocker. Fewer cells were involved in intercellular Ca(2+) signaling in both wild-type and Cx43-null cultures in the presence of suramin, a P(2)-receptor blocker; blockage was more effective in Cx43-null than in wild-type cells. Thus gap junction channels provide the main pathway for communication of slow intercellular Ca(2+) signals in wild-type neonatal mouse cardiac myocytes. Activation of P(2)-receptors induced by ATP release contributes a secondary, extracellular pathway for transmission of Ca(2+) signals. The importance of such ATP-mediated Ca(2+) signaling would be expected to be enhanced under ischemic conditions, when release of ATP is increased and gap junction channels conductance is significantly reduced.  相似文献   

3.
The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx43 (UMR/Cx43) we confirmed that nifedipine sensitivity of ICW required Cx43 expression. In human osteoblastic cells, gap junction-dependent ICW also required activation of L-type calcium channels and influx of extracellular calcium.  相似文献   

4.
Gap junctional intercellular communication (GJIC) of cultured mouse epidermal cells is mediated by a gap junction protein, connexin 43, and is dependent on the calcium concentration in the medium, with higher GJIC in a high-calcium (1.2 mM) medium. In several mouse epidermal cell lines, we found a good correlation between the level of GJIC and that of immunohistochemical staining of E-cadherin, a calcium-dependent cell adhesion molecule, at cell-cell contact areas. The variant cell line P3/22 showed both low GJIC and E-cadherin protein expression in low- and high-Ca2+ media. P3/22 cells showed very low E-cadherin mRNA expression. To test directly whether E-cadherin is involved in the Ca(2+)-dependent regulation of GJIC, we transfected the E-cadherin expression vector into P3/22 cells and obtained several stable clones which expressed high levels of E-cadherin mRNA. All transfectants expressed E-cadherin molecules at cell-cell contact areas in a calcium-dependent manner. GJIC was also observed in these transfectants and was calcium dependent. These results suggest that Ca(2+)-dependent regulation of GJIC in mouse epidermal cells is directly controlled by a calcium-dependent cell adhesion molecule, E-cadherin. Furthermore, several lines of evidence suggest that GJIC control by E-cadherin involves posttranslational regulation (assembly and/or function) of the gap junction protein connexin 43.  相似文献   

5.
Calmodulin (CaM) binding sites were recently identified on the cytoplasmic loop (CL) of at least three α-subfamily connexins (Cx43, Cx44, Cx50), while Cx40 does not have this putative CaM binding domain. The purpose of this study was to examine the functional relevance of the putative Cx43 CaM binding site on the Ca(2+)-dependent regulation of gap junction proteins formed by Cx43 and Cx40. Dual whole cell patch-clamp experiments were performed on stable murine Neuro-2a cells expressing Cx43 or Cx40. Addition of ionomycin to increase external Ca(2+) influx reduced Cx43 gap junction conductance (G(j)) by 95%, while increasing cytosolic Ca(2+) concentration threefold. By contrast, Cx40 G(j) declined by <20%. The Ca(2+)-induced decline in Cx43 G(j) was prevented by pretreatment with calmidazolium or reversed by the addition of 10 mM EGTA to Ca(2+)-free extracellular solution, if Ca(2+) chelation was commenced before complete uncoupling, after which g(j) was only 60% recoverable. The Cx43 CL(136-158) mimetic peptide, but not the scrambled control peptide, or Ca(2+)/CaM-dependent kinase II 290-309 inhibitory peptide also prevented the Ca(2+)/CaM-dependent decline of Cx43 G(j). Cx43 gap junction channel open probability decreased to zero without reductions in the current amplitudes during external Ca(2+)/ionomycin perfusion. We conclude that Cx43 gap junctions are gated closed by a Ca(2+)/CaM-dependent mechanism involving the carboxyl-terminal quarter of the connexin CL domain. This study provides the first evidence of intrinsic differences in the Ca(2+) regulatory properties of Cx43 and Cx40.  相似文献   

6.
Molecular basis for pacemaker cells in epithelia   总被引:2,自引:0,他引:2  
Intercellular signaling is highly coordinated in excitable tissues such as heart, but the organization of intercellular signaling in epithelia is less clear. We examined Ca(2+) signaling in hepatoma cells expressing the hepatocyte gap junction protein connexin32 (cx32) or the cardiac gap junction protein cx43, plus a fluorescently tagged V(1a) vasopressin receptor (V(1a)R). Release of inositol 1,4,5-trisphosphate (InsP(3)) in wild type cells increased Ca(2+) in the injected cell but not in neighboring cells, while the Ca(2+) signal spread to neighbors when gap junctions were expressed. Photorelease of caged Ca(2+) rather than InsP(3) resulted in a small increase in Ca(2+) that did not spread to neighbors with or without gap junctions. However, photorelease of Ca(2+) in cells stimulated with low concentrations of vasopressin resulted in a much larger increase in Ca(2+), which spread to neighbors via gap junctions. Cells expressing tagged V(1a)R similarly had increased sensitivity to vasopressin, and could signal to neighbors via gap junctions. Higher concentrations of vasopressin elicited Ca(2+) signals in all cells. In cx32 or cx43 but not in wild type cells, this signaling was synchronized and began in cells expressing the tagged V(1a)R. Thus, intercellular Ca(2+) signals in epithelia are organized by three factors: 1) InsP(3) must be generated in each cell to support a Ca(2+) signal in that cell; 2) gap junctions are necessary to synchronize Ca(2+) signals among cells; and 3) cells with relatively increased expression of hormone receptor will initiate Ca(2+) signals and thus serve as pacemakers for their neighbors. Together, these factors may allow epithelia to act in an integrated, organ-level fashion rather than as a collection of isolated cells.  相似文献   

7.
Intercellular calcium waves (ICW) are calcium transients that spread from cell to cell in response to different stimuli. We previously demonstrated that human osteoblast-like cells in culture propagate ICW in response to mechanical stimulation by two mechanisms. One mechanism involves autocrine activation of P2Y receptors, and the other requires gap junctional communication. In the current work we ask whether long-term culture of osteoblast-like cells affects the propagation of ICW by these two mechanisms. Human osteoblast-like cells were isolated from bone marrow. Mechanically induced ICW were assessed by video imaging of Fura-2 loaded cells after 1, 2 and 4 months culture. The P2Y2 receptor and the gap junction protein Cx43 were assessed by Western blot and real-time PCR. In resting conditions, P2Y mediated ICW prevailed and spread rapidly to about 13 cells. P2Y receptor desensitization by ATP disclosed gap junction-mediated ICW which diffused more slowly and involved not more than five to six cells. After 2 months in culture, ICW appeared slower and wave propagation was much less inhibited by P2Y desensitization, suggesting an increase in gap junction-mediated ICW. After 4 months in culture cells still responded to addition of ATP, but P2Y desensitization did not inhibit ICW propagation. Our data indicate that the relative role of P2Y-mediated and gap junction-mediated ICW changes during osteoblast differentiation in vitro. In less differentiated cells, P2Y-mediated ICW predominate, but as cells differentiate in culture, gap-junction-mediated ICW become more prominent. These results suggest that P2Y receptor-mediated and gap junction-mediated mechanisms of intercellular calcium signaling may play different roles during differentiation of bone-forming cells.  相似文献   

8.
《The Journal of cell biology》1990,111(5):2077-2088
Connexin43 is a member of the highly homologous connexin family of gap junction proteins. We have studied how connexin monomers are assembled into functional gap junction plaques by examining the biosynthesis of connexin43 in cell types that differ greatly in their ability to form functional gap junctions. Using a combination of metabolic radiolabeling and immunoprecipitation, we have shown that connexin43 is synthesized in gap junctional communication-competent cells as a 42-kD protein that is efficiently converted to a approximately 46-kD species (connexin43-P2) by the posttranslational addition of phosphate. Surprisingly, certain cell lines severely deficient in gap junctional communication and known cell-cell adhesion molecules (S180 and L929 cells) also expressed 42-kD connexin43. Connexin43 in these communication-deficient cell lines was not, however, phosphorylated to the P2 form. Conversion of S180 cells to a communication-competent phenotype by transfection with a cDNA encoding the cell-cell adhesion molecule L-CAM induced phosphorylation of connexin43 to the P2 form; conversely, blocking junctional communication in ordinarily communication-competent cells inhibited connexin43-P2 formation. Immunohistochemical localization studies indicated that only communication-competent cells accumulated connexin43 in visible gap junction plaques. Together, these results establish a strong correlation between the ability of cells to process connexin43 to the P2 form and to produce functional gap junctions. Connexin43 phosphorylation may therefore play a functional role in gap junction assembly and/or activity.  相似文献   

9.
Inositol 1,4,5-trisphosphate (IP(3)) is an important second messenger that can trigger a Ca(2+) wave prolongated between cells. This intercellular signaling was found defective in some gap junction connexin deafness mutants. In this study, the mechanism underlying IP(3) intercellular signaling in the cochlea was investigated. A gap junction channel is composed of two hemichannels. By using a fluorescence polarization technique to measure IP(3) concentration, the authors found that IP(3) could be released by gap junction hemichannels in the cochlea. The IP(3) release was increased about three- to fivefold by the reduction of extracellular Ca(2+) concentration or by mechanical stress. This incremental release could be blocked by gap junction blockers but not eliminated by a purinergic P2x receptor antagonist and verapamil, which is a selective P-glycoprotein inhibitor inhibiting the ATP-binding cassette transporters. The authors also found that IP(3) receptors were extensively expressed in the cochlear sensory epithelium, including on the cell surface. Extracellular application of IP(3) could trigger cellular Ca(2+) elevation. This Ca(2+) elevation was eliminated by the gap junction hemichannel blocker. These data reveal that IP(3) can pass through hemichannels acting as an extracellular mediator to participate in intercellular signaling. This hemichannel-mediated extracellular pathway may play an important role in long-distance intercellular communication in the cochlea, given that IP(3) only has a short lifetime in the cytoplasm.  相似文献   

10.
Dakin K  Zhao Y  Li WH 《Nature methods》2005,2(1):55-62
Using a new class of photo-activatible fluorophores, we have developed a new imaging technique for measuring molecular transfer rates across gap junction connexin channels in intact living cells. This technique, named LAMP, involves local activation of a molecular fluorescent probe, NPE-HCCC2/AM, to optically label a cell. Subsequent dye transfer through gap junctions from labeled to unlabeled cells was quantified by fluorescence microscopy. Additional uncagings after prior dye transfers reached equilibrium enabled multiple measurements of dye transfer rates in the same coupled cell pair. Measurements in the same cell pair minimized variation due to differences in cell volume and number of gap junctions, allowing us to track acute changes in gap junction permeability. We applied the technique to study the regulation of gap junction coupling by intracellular Ca(2+) ([Ca(2+)](i)). Although agonist or ionomycin exposure can raise bulk [Ca(2+)](i) to levels higher than those caused by capacitative Ca(2+) influx, the LAMP assay revealed that only Ca(2+) influx through the plasma membrane store-operated Ca(2+) channels strongly reduced gap junction coupling. The noninvasive and quantitative nature of this imaging technique should facilitate future investigations of the dynamic regulation of gap junction communication.  相似文献   

11.
We previously demonstrated that the gap junction protein connexin43 is translated as a 42-kD protein (connexin43-NP) that is efficiently phosphorylated to a 46,000-Mr species (connexin43-P2) in gap junctional communication-competent, but not in communication-deficient, cells. In this study, we used a combination of metabolic radiolabeling and immunoprecipitation to investigate the assembly of connexin43 into gap junctions and the relationship of this event to phosphorylation of connexin43. Examination of the detergent solubility of connexin43 in communication-competent NRK cells revealed that processing of connexin43 to the P2 form was accompanied by acquisition of resistance to solubilization in 1% Triton X-100. Immunohistochemical localization of connexin43 in Triton-extracted NRK cells demonstrated that connexin43-P2 (Triton-insoluble) was concentrated in gap junctional plaques, whereas connexin43-NP (Triton-soluble) was predominantly intracellular. Using either a 20 degrees C intracellular transport block or cell-surface protein biotinylation, we determined that connexin43 was transported to the plasma membrane in the Triton-soluble connexin43-NP form. Cell-surface biotinylated connexin43-NP was processed to Triton-insoluble connexin43-P2 at 37 degrees C. Connexin43-NP was also transported to the plasma membrane in communication defective, gap junction-deficient S180 and L929 cells but was not processed to Triton-insoluble connexin43-P2. Taken together, these results demonstrate that gap junction assembly is regulated after arrival of connexin43 at the plasma membrane and is temporally associated with acquisition of insolubility in Triton X-100 and phosphorylation to the connexin43-P2 form.  相似文献   

12.
Intracellular calcium regulation of connexin43   总被引:4,自引:0,他引:4  
The mechanism by which intracellular Ca(2+) concentration ([Ca(2+)](i)) regulates the permeability of gap junctions composed of connexin43 (Cx43) was investigated in HeLa cells stably transfected with this connexin. Extracellular addition of Ca(2+) in the presence of the Ca(2+) ionophore ionomycin produced a sustained elevation in [Ca(2+)](i) that resulted in an inhibition of the cell-to-cell transfer of the fluorescent dye Alexa fluor 594 (IC(50) of 360 nM Ca(2+)). The Ca(2+) dependency of this inhibition of Cx43 gap junctional permeability is very similar to that described in sheep lens epithelial cell cultures that express the three sheep lens connexins (Cx43, Cx44, and Cx49). The intracellular Ca(2+)-mediated decrease in cell-to-cell dye transfer was prevented by an inhibitor of calmodulin action but not by inhibitors of Ca(2+)/calmodulin-dependent protein kinase II or protein kinase C. In experiments that used HeLa cells transfected with a Cx43 COOH-terminus truncation mutant (Cx43(Delta257)), cell-to-cell coupling was similarly decreased by an elevation of [Ca(2+)](i) (IC(50) of 310 nM Ca(2+)) and similarly prevented by the addition of an inhibitor of calmodulin. These data indicate that physiological concentrations of [Ca(2+)](i) regulate the permeability of Cx43 in a calmodulin-dependent manner that does not require the major portion of the COOH terminus of Cx43.  相似文献   

13.
Astrocytes are capable of widespread intercellular communication via propagated increases in intracellular Ca(2+) concentration. We have used patch clamp, dye flux, ATP assay, and Ca(2+) imaging techniques to show that one mechanism for this intercellular Ca(2+) signaling in astrocytes is the release of ATP through connexin channels ("hemichannels") in individual cells. Astrocytes showed low Ca(2+)-activated whole-cell currents consistent with connexin hemichannel currents that were inhibited by the connexin channel inhibitor flufenamic acid (FFA). Astrocytes also showed molecular weight-specific influx and release of dyes, consistent with flux through connexin hemichannels. Transmembrane dye flux evoked by mechanical stimulation was potentiated by low Ca(2+) and was inhibited by FFA and Gd(3+). Mechanical stimulation also evoked release of ATP that was potentiated by low Ca(2+) and inhibited by FFA and Gd(3+). Similar whole-cell currents, transmembrane dye flux, and ATP release were observed in C6 glioma cells expressing connexin43 but were not observed in parent C6 cells. The connexin hemichannel activator quinine evoked ATP release and Ca(2+) signaling in astrocytes and in C6 cells expressing connexin43. The propagation of intercellular Ca(2+) waves in astrocytes was also potentiated by quinine and inhibited by FFA and Gd(3+). Release of ATP through connexin hemichannels represents a novel signaling pathway for intercellular communication in astrocytes and other non-excitable cells.  相似文献   

14.
The molecular mechanisms underlying the regulation of gap junction (GJ) channels based on the 43-kDa connexin isoform (Cx43) have been studied extensively. GJ channels are formed by the docking of opposed hemichannels in adjacent cells. Mounting data indicate that unopposed Cx43 hemichannels are also functional in the plasma membrane. However, our understanding of how Cx43-hemichannel opening and closing is regulated at the molecular level is only poorly understood. Recent work elucidated that actomyosin contractility inhibits potently Cx43 hemichannels. It is known that intracellular Ca(2+) exerts a bell-shaped-dependent effect on Cx43-hemichannel opening. While low-intracellular [Ca(2+) ] (<500 nM) provokes opening of the channel, high-intracellular [Ca(2+) ] (> 500 nM) favours closing of the channel. The mechanism underlying this negative regulation of Cx43-hemichannel activity by high-intracellular [Ca(2+) ] seems to be dependent on the activation of the actomyosin contractile system. The activity of Cx43 hemichannels is critically controlled by molecular interactions between the intracellular loop and the C-terminal tail. These interactions are essential for Cx43-hemichannel opening in response to triggers such as cytosolic [Ca(2+) ] rise or external [Ca(2+) ] lowering. In this review, we present the hypothesis that the actomyosin contractile system can function as an important brake mechanism on Cx43-hemichannel opening. By controlling loop-tail interactions, the contractile system would prevent aberrant or excessive opening of Cx43 hemichannels.  相似文献   

15.
Gap junctions are intercellular communicating channels responsible for the synchronized activity of cardiomyocytes. Recent studies have shown that the membrane-associated guanylate kinase protein, zonula occludens-1 (ZO-1) can bind to catenins in epithelial cells and act as an adapter for the transport of the connexin isotype, Cx43 during gap junction formation. The significance of catenins in the development of gap junctions and whether complexes between catenins and ZO-1 are formed in cardiomyocytes are not clear. In this study, immunofluorescence and confocal microscopy showed sequential redistribution of alpha-catenin, beta-catenin, ZO-1, and Cx43 to the plasma membrane when rat cardiomyocytes were cultured in low Ca(2+) (<5 microM) medium, then shifted to 1.8 mM Ca(2+) medium (Ca(2+) switch). Diffuse cytoplasmic staining of alpha-catenin, beta-catenin, ZO-1, and Cx43 was seen in the cytoplasm when cardiomyocytes were cultured in low Ca(2+) medium. Staining of alpha-catenin, beta-catenin, and ZO-1 was detected at the plasma membrane of cell-cell contact sites 10 min after Ca(2+) switch, whereas Cx43 staining was first detected, colocalized with ZO-1 at the plasma membrane, 30 min after Ca(2+) switch. Distinct junctional and extensive cytoplasmic staining of alpha-catenin, beta-catenin, ZO-1, and Cx43 was seen 2 h after Ca(2+) switch. Immunoprecipitation of Triton X-100 cardiomyocyte extracts using anti-beta-catenin antibodies showed that beta-catenin was associated with alpha-catenin, ZO-1, and Cx43 at 2 h after Ca(2+) switch. Intracellular application of antisera against alpha-catenin, beta-catenin, or ZO-1 by electroporation of cardiomyocytes cultured in low Ca(2+) medium inhibited the redistribution of Cx43 to the plasma membrane following Ca(2+) switch. These results suggest the formation of a catenin-ZO-1-Cx43 complex in rat cardiomyocytes and that binding of catenins to ZO-1 is required for Cx43 transport to the plasma membrane during the assembly of gap junctions.  相似文献   

16.
This study was undertaken to obtain direct evidence for the involvement of gap junctions in the propagation of intercellular Ca(2+) waves. Gap junction-deficient HeLa cells were transfected with plasmids encoding for green fluorescent protein (GFP) fused to the cytoplasmic carboxyl termini of connexin 43 (Cx43), 32 (Cx32), or 26 (Cx26). The subsequently expressed GFP-labeled gap junctions rendered the cells dye- and electrically coupled and were detected at the plasma membranes at points of contact between adjacent cells. To correlate the distribution of gap junctions with the changes in [Ca(2+)](i) associated with Ca(2+) waves and the distribution of the endoplasmic reticulum (ER), cells were loaded with fluorescent Ca(2+)-sensitive (fluo-3 and fura-2) and ER membrane (ER-Tracker) dyes. Digital high-speed microscopy was used to collect a series of image slices from which the three-dimensional distribution of the gap junctions and ER were reconstructed. Subsequently, intercellular Ca(2+) waves were induced in these cells by mechanical stimulation with or without extracellular apyrase, an ATP-degrading enzyme. In untransfected HeLa cells and in the absence of apyrase, cell-to-cell propagating [Ca(2+)](i) changes were characterized by initiating Ca(2+) puffs associated with the perinuclear ER. By contrast, in Cx-GFP-transfected cells and in the presence of apyrase, [Ca(2+)](i) changes were propagated without initiating perinuclear Ca(2+) puffs and were communicated between cells at the sites of the Cx-GFP gap junctions. The efficiency of Cx expression determined the extent of Ca(2+) wave propagation. These results demonstrate that intercellular Ca(2+) waves may be propagated simultaneously via an extracellular pathway and an intracellular pathway through gap junctions and that one form of communication may mask the other.  相似文献   

17.
Previous studies showed that the pesticide lindane (gamma-hexachlorocyclohexane) inhibits gap junction intercellular communication in rat myometrial cells. The present study tested the hypothesis that lindane and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibit gap junction communication in rat myometrial and liver WBr-F344 cells by the common mechanism of increasing phosphorylation of the gap junction protein connexin43. We evaluated changes of connexin43 phosphorylation using Western blot of standard SDS-PAGE gels and cell immunostaining, and we monitored gap junction communication using microinjection and transfer of Lucifer yellow dye. Exposure of rat myometrial cells to lindane or TPA nearly abolished dye transfer but did not alter the electrophoretic mobility of connexin43, and neither lindane nor TPA increased phosphorylation of connexin43 as assessed by immunoblot with anti-phospho-connexin43 (S368) antibody. However, TPA increased punctate immunofluorescence staining of phospho-connexin43 (S368) in myometrial cells whereas lindane had no such effect. In WBr-F344 cells, lindane and TPA inhibited dye transfer. Lindane increased immunostaining for phospho-connexin43 (S368) in WBr-F344 cells without altering the abundance, electrophoretic mobility or phosphorylation of connexin43 as detected in immunoblots. TPA intensified a slower migrating connexin43 band and increased phospho-connexin43 (S368) in immunoblots, and intensified phospho-connexin43 immunostaining at WBr-F344 cell interfaces and nuclear regions. These results show that phosphorylation of connexin43 at serine 368 occurred in cell and toxicant specific manners and was independent of changes in electrophoretic mobility in standard SDS-PAGE gels. Moreover, lindane inhibited gap junction communication in myometrial cells by a mechanism that was not be explained by changes in phosphorylation of connexin43.  相似文献   

18.
Gap junctions allow rapid exchange of ions and small metabolites between cells. They can occur between connective tissue cells, and in tendons there are two prominent types, composed of connexin 32 or 43. These form distinct networks - tenocyte rows are linked by both longitudinally, but only by connexin 43 laterally. We hypothesised that the junctions had different roles in cell response to mechanical loading, and measured the effects of inhibitors of gap junction function on secretion of collagen by tenocyte cultures exposed to mechanical strain. Chicken tendon fibroblasts were exposed to cyclic tensile loading in the presence or absence of general gap junction inhibitors (halothane or the biomimetic peptide gap27), or antisense oligonucleotides to chicken connexin 32 or 43. Untreated cultures increased collagen secretion by around 25% under load. Halothane eliminated this response but caused cell damage. Gap27 peptide reduced secretion but maintained loading effects - strained cultures secreting more collagen than unstrained. Antisense downregulation showed major differences between connexins: antisense 32 reduced, and antisense 43 increased, collagen secretion. In both cases loading effects were maintained. This shows that (i) gap junctional integration of signals is important in load response of tenocyte populations - mechanotransduction occurs in individual cells but integration of signals markedly enhances it and (ii) communication via connexin 32 and 43 have differential effects on the load response, with connexin 32 being stimulatory and connexin 43 being inhibitory. Cells coordinate and control their response to mechanical signals at least in part by differential actions of these two types of gap junction.  相似文献   

19.
Many cells coordinate their activities by transmitting rises in intracellular calcium from cell to cell. In nonexcitable cells, there are currently two models for intercellular calcium wave propagation, both of which involve release of inositol trisphosphate (IP3)- sensitive intracellular calcium stores. In one model, IP3 traverses gap junctions and initiates the release of intracellular calcium stores in neighboring cells. Alternatively, calcium waves may be mediated not by gap junctional communication, but rather by autocrine activity of secreted ATP on P2 purinergic receptors. We studied mechanically induced calcium waves in two rat osteosarcoma cell lines that differ in the gap junction proteins they express, in their ability to pass microinjected dye from cell to cell, and in their expression of P2Y2 (P2U) purinergic receptors. ROS 17/2.8 cells, which express the gap junction protein connexin43 (Cx43), are well dye coupled, and lack P2U receptors, transmitted slow gap junction-dependent calcium waves that did not require release of intracellular calcium stores. UMR 106-01 cells predominantly express the gap junction protein connexin 45 (Cx45), are poorly dye coupled, and express P2U receptors; they propagated fast calcium waves that required release of intracellular calcium stores and activation of P2U purinergic receptors, but not gap junctional communication. ROS/P2U transfectants and UMR/Cx43 transfectants expressed both types of calcium waves. Gap junction–independent, ATP-dependent intercellular calcium waves were also seen in hamster tracheal epithelia cells. These studies demonstrate that activation of P2U purinergic receptors can propagate intercellular calcium, and describe a novel Cx43-dependent mechanism for calcium wave propagation that does not require release of intracellular calcium stores by IP3. These studies suggest that gap junction communication mediated by either Cx43 or Cx45 does not allow passage of IP3 well enough to elicit release of intracellular calcium stores in neighboring cells.  相似文献   

20.
Integration of vascular endothelial function relies on multiple signaling mechanisms, including direct cell-cell communication through gap junctions. Gap junction proteins expressed in the endothelium include connexin37, connexin40, and connexin43. To investigate whether individual endothelial cells in vivo express all three connexin types and, if so, whether multiple connexins are assembled into the same gap junction plaque, we used affinity-purified connexin-specific antibodies raised in three different species to permit multiple-label immunoconfocal and immunoelectron microscopy in the rat main pulmonary artery. Immunoconfocal microscopy showed a high incidence of co-localization between connexin43 and connexin40, but lower incidences of co-localization between connexin37 and connexin40 or connexin43. Immunoelectron microscopy revealed that 83% of gap junction profiles contained all three connexins, with the proportion of connexin40 labeling being significantly higher than that of connexin37 or connexin43. The presence of three different connexin types of distinct properties in vitro provides potential for complex regulation and functional differentiation of endothelial intercellular communication properties in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号