首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Foliar 13C-abundance (13C) was analyzed in the dominant trees of a temperate deciduous forest in east Tennessee (Walker Branch Watershed) to investigate the variation in foliar 13C as a function of time (within-year and between years), space (canopy height, watershed topography and habitat) and species (deciduous and coniferous taxa). Various hypotheses were tested by analyzing (i) samples collected from the field during the growing season and (ii) foliar tissues maintained in an archived collection. The 13C-value for leaves from the tops of trees was 2 to 3%. more positive than for leaves sampled at lower heights in the canopy. Quercus prinus leaves sampled just prior to autumn leaf fall had significantly more negative 13C-values than those sampled during midsummer. On the more xeric ridges, needles of Pinus spp. had more positive 13C-values than leaves from deciduous species. Foliar 13C-values differed significantly as a function of topography. Deciduous leaves from xeric sites (ridges and slopes) had more positive 13C-values than those from mesic (riparian and cove) environments. On the more xeric sites, foliar 13C was significantly more positive in 1988 (a dry year) relative to that in 1989 (a year with above-normal precipitation). In contrast, leaf 13C in trees from mesic valley bottoms did not differ significantly among years with disparate precipitation. Patterns in foliar 13C indicated a higher ratio of net CO2 assimilation to transpiration (A/E) for trees in more xeric versus mesic habitats, and for trees in xeric habitats during years of drought versus years of normal precipitation. However, A/E (units of mmol CO2 fixed/mol H2O transpired) calculated on the basis of 13C-values for leaves from the more xeric sites was higher in a wet year (6.6±1.2) versus a dry year (3.4±0.4). This difference was attributed to higher transpiration (and therefore lower A/E) in the year with lower relative humidity and higher average daily temperature. The calculated A/E values for the forest in 1988–89, based on 13C, were within ±55% of estimates made over a 17 day period at this site in 1984 using micrometeorological methods.  相似文献   

2.
Given a uniform N source, the 15N of barley shoots provided a genotypic range within treatments and a separation between control and salt-stress treatments as great as did 13C*. Plant 15N has been represented in the literature as a bioassay of external source 15N and used to infer soil N sources, thus precluding consideration of the plant as a major cause in determining its own 815N. We believe this to be the first report of plant 15N as a genetic trait. No mechanistic model is needed for use of 15N as a trait in controlled studies; however, a qualitative model is suggested for further testing.Symbol 15N (or 13C) the difference between: (1) the ratio of heavy to light isotopes of the element in a sample and (2) that of its reference standard  相似文献   

3.
Summary Short oligocytidylates can act as templates for the self-condensation of guanosine 5-phosphorimidazolide. In the absence of a catalytic metal ion or in the presence of Pb2+ a noticeable template effect is already observed with the dimer and the yield of long oligomers reaches a plateau with a hexamer template. Short templates give oligomers longers than the template length. The products are predominantly 2-5 linked for the Pb2+-catalyzed reaction while mixed linkages are observed in the uncatalyzed reaction.In the presence of Zn2+, a template effect is first observed with the pentamer and is maximal by the heptamer. The products are predominantly 3-5 linked. Oligomers shorter than or as long as the template are obtained in substantial yield, and longer products in much lower yields.Abbreviations G Guanosine - Gp guanosine 2(3)-phosphate - pG guanosine 5-phosphate - Gp! guanosine cyclic 2,3-phosphate - ImpG guanosine 5-phosphorimidazolide - ImpG* [8-14C]-guanosine 5-phosphorimidazolide - pGp 5-phosphoguanosine 2(3)-phosphate - G2pG guanylyl-[2-5]-guanosine - G3pG guanylyl-[3-5]-guanosine - ImpGpG 5-phosphorimidazolide of GpG - (pG)n (n = 2,3) oligomers of pG - GppG P1, P2-diguanosine 5-diphosphate - GppGpG 5-[guanosine 5-pyrophosphate] of GpG - NH2pG guanosine 5-phosphoramidate - (pG)4+ tetramer and higher oligoguanylates with 5 terminal phosphate - oligo(G) oligoguanylate - Cp cytidine 2(3)-phosphate - Cp! cytidine cyclic 2,3-phosphate - (Cp)n–1 Cp! (n= 2,3,4) oligocytidylates terminated by 5-OH groups and 2,3-cyclic phosphates - oligo(C) oligocytidylate - poly(C) polycytidylic acid - poly(U) polyuridylic acid - poly(C,G) random copolymer of C and G - BAP bacterial alkaline phosphatase (E. coli) - EDTA ethylenediaminetetraacetic acid - Rf chromatographic mobility  相似文献   

4.
Summary The perdeuteration of aliphatic sites in large proteins has been shown to greatly facilitate the process of sequential backbone and side-chain 13C assignments and has also been utilized in obtaining long-range NOE distance restraints for structure calculations. To obtain the maximum information from a 4D 15N/15N-separated NOESY, as many main-chain and side-chain 1HN/15N resonances as possible must be assigned. Traditionally, only backbone amide 1HN/15N resonances are assigned by correlation experiments, whereas slowly exchanging side-chain amide, amino, and guanidino protons are assigned by NOEs to side-chain aliphatic protons. In a perdeuterated protein, however, there is a minimal number of such protons. We have therefore developed several gradient-enhanced and sensitivity-enhanced pulse sequences, containing water-flipback pulses, to provide through-bond correlations of the aliphatic side-chain 1HN/15N resonances to side-chain 13C resonances with high sensitivity: NH2-filtered 2D 1H-15N HSQC (H2N-HSQC), 3D H2N(CO)C/ and 3D H2N(COC/)C/ for glutamine and asparagine side-chain amide groups; 2D refocused H(N/)C/ and H(N/C/)C/ for arginine side-chain amino groups and non-refocused versions for lysine side-chain amino groups; and 2D refocused H(N)C and nonrefocused H(N.)C for arginine side-chain guanidino groups. These pulse sequences have been applied to perdeuterated 13C-/15N-labeled human carbonic anhydrase II (2H-HCA II). Because more than 95% of all side-chain 13C resonances in 2H-HCA II have already been assigned with the C(CC)(CO)NH experiment, the assignment of the side-chain 1HN/15N resonances has been straightforward using the pulse sequences mentioned above. The importance of assigning these side-chain HN protons has been demonstrated by recent studies in which the calculation of protein global folds was simulated using only 1HN-1HN NOE restraints. In these studies, the inclusion of NOE restraints to side-chain HN protons significantly improved the quality of the global fold that could be determined for a perdeuterated protein [R.A. Venters et al. (1995) J. Am. Chem. Soc., 117, 9592–9593].To whom correspondence should be addressed.  相似文献   

5.
The carbon isotope composition of an animals breath reveals the composition of the nutrients that it catabolizes for energy. Here we describe the use of Keeling plots, a method widely applied in ecosystem ecology, to measure the 13C of respired CO2 of small vertebrates. We measured the 13C of Rufous Hummingbirds (Selasphorus rufus) in the laboratory and of Mourning (Zenaida macroura) and White-winged (Z. asiatica) Doves in the field. In the laboratory, when hummingbirds were fed a sucrose based C3 diet, the 13C of respired CO2 was not significantly different from that of their diet (13CC3 diet). The 13C of respired CO2 for C3 fasted birds was slightly, albeit significantly, depleted in 13C relative to 13CC3 diet. Six hours after birds were shifted to a sucrose based C4 diet, the isotopic composition of their breath revealed that birds were catabolizing a mixture of nutrients derived from both the C3 and the C4 diet. In the field, the 13C of respired CO2 from Mourning and White-winged Doves reflected that of their diets: the CAM saguaro cactus (Carnegeia gigantea) and C3 seeds, respectively. Keeling plots are an easy, effective and inexpensive method to measure 13C of respired CO2 in the lab and the field.  相似文献   

6.
Summary Natural carbon and nitrogen isotope ratios were measured in different compartments (needles and twigs of different ages and crown positions, litter, understorey vegetation, roots and soils of different horizons) on 5 plots of a healthy and on 8 plots of a declining Norway spruce (Picea abies (L.) Karst.) forest in the Fichtelgebirge (NE Bavaria, Germany), which has recently been described in detail (Oren et al. 1988a; Schulze et al. 1989). The 13C values of needles did not differ between sites or change consistently with needle age, but did decrease from the sun-to the shade-crown. This result confirms earlier conclusions from gas exchange measurements that gaseous air pollutants did no long-lasting damage in an area where such damage was expected. Twigs (13C between-25.3 and-27.8) were significantly less depleted in 13C than needles (13C between-27.3 and-29.1), and 13C in twigs increased consistently with age. The 15N values of needles ranged between-2.5 and-4.1 and varied according to stand and age. In young needles 15N decreased with needle age, but remained constant or increased in needles that were 2 or 3 years old. Needles from the healthy site were more depleted in 15N than those from the declining site. The difference between sites was greater in old needles than in young ones. This differentiation presumably reflects an earlier onset of nitrogen reallocation in needles of the declining stand. 15N values in twigs were more negative than in needles (-3.5 to-5.2) and showed age- and stand-dependent trends that were similar to the needles. 15N values of roots and soil samples increased at both stands with soil depth from-3.5 in the organic layer to +4 in the mineral soil. The 15N values of roots from the mineral soil were different from those of twigs and needles. Roots from the shallower organic layer had values similar to twigs and needles. Thus, the bulk of the assimilated nitrogen was presumably taken up by the roots from the organic layer. The problem of separation of ammonium or nitrate use by roots from different soil horizons is discussed.  相似文献   

7.
Understanding the links between breeding and wintering areas of migratory species has important ecological and conservation implications. Recently, stable isotope technology has been used to further our understanding. Stable isotope ratios vary geographically with a range of biogeochemical factors and isotope profiles in organisms reflect those in their food and environment. For inert tissues like feathers, isotope profiles reflect the environment in which they were formed. Following large-scale habitat destruction, the globally threatened aquatic warbler Acrocephalus paludicola has a fragmented breeding population across central Europe, largely in Belarus, Poland and Ukraine. The species sub-Saharan African wintering grounds have not yet been discovered, and this significantly hampers conservation efforts. Aquatic warblers grow their flight feathers on their wintering grounds, and we analysed stable isotope ratios (15N, 13C, D) in rectrices of adults from six main breeding sites (subpopulations) across Europe to determine whether different breeding subpopulations formed a single mixed population on the wintering grounds. 15N varies considerably with dietary trophic level and environmental factors, and D with the D in rainfall; neither varied between aquatic warbler subpopulations. Uniform feather 15N signatures suggest no major variation in dietary trophic level during feather formation. High variance and inter-annual differences in mean D values hinder interpretation of these data. Significant differences in mean 13C ratios existed between subpopulations. We discuss possible interpretations of this result, and consider differences in moulting latitude of different subpopulations to be the most parsimonious. 13C in plants and animals decreases with latitude, along a steep gradient in sub-Saharan Africa. Birds from the most north-westerly breeding subpopulation (Karsibor, Poland) had significantly lower variance in 13C and 15N than birds from all other sites, suggesting either that birds from Karsibor are less geographically dispersed during moult, or moult in an area with less isotopic heterogeneity. Mean 13C signatures from winter-grown feathers of different subpopulations were positively correlated with the latitude and longitude of breeding sites, suggesting a strong relationship between European breeding and African winter moulting latitudes. The use of stable isotopes provides novel insights into migratory connectivity and migration patterns in this little-known threatened species.  相似文献   

8.
Measurement of nitrogen isotopic composition (15N) of plants and soil nitrogen might allow the characteristics of N transformation in an ecosystem to be detected. We tested the measurement of 15N for its ability to provide a picture of N dynamics at the ecosystem level by doing a simple comparison of 15N between soil N pools and plants, and by using an existing model. 15N of plants and soil N was measured together with foliar nitrate reductase activity (NRA) and the foliar NO3 pool at two sites with different nitrification rates in a temperature forest in Japan. 15N of plants was similar to that of soil NO3 in the high-nitrification site. Because of high foliar NRA and the large foliar NO3 pool at this site, we concluded that plant 15N indicated a great reliance of plants on soil NO3 there. However, many 15N of soil N overlapped each other at the other site, and 15N could not provide definitive evidence of the N source. The existing model was verified by measured 15N of soil inorganic N and it explained the variations of plant 15N between the two sites in the context of relative importance of nitrification, but more information about isotopic fractionations during plant N uptake is required for quantitative discussions about the plant N source. The model applied here can provide a basis to compare 15N signatures from different ecosystems and to understand N dynamics.  相似文献   

9.
Stable isotopes (13C, D) and radiocarbon weremeasured in methane bubbles emitted from rice paddies and swamps in southernThailand. Methane emitted from the Thai rice paddies was enriched in13C (mean 13C; –51.5 ±7.1 and–56.5 ± 4.6 for mineral soil and peat soil paddies,respectively)relative to the reported mean value of methane from temperate rice paddies(– 63 ± 5). Large seasonal variation was observed in13C(32) in the rice paddies, whereas variationinD was much more smaller (20), indicating that variation in13C is due mainly to changes in methane production pathways.Values of 13C were lower in swamps (–66.1 ±5.1)than in rice paddies. The calculated contribution of acetate fermentation from13C value was greater in rice paddies (mineral soils:62–81%, peat soils: 57–73%) than in swamps (27–42%). Din methane from Thai rice paddies (–324± 7 (n=46)) isrelativelyhigher than those from 14 stations in Japanese rice paddies ranging from–362 ± 5 (Mito: n=2) to –322 ± 8(Okinawa: n=3), due tohigher D in floodwaters. 14C content in methane produced fromThai rice paddies (127±1 pMC) show higher 14Cactivity compared with previous work in paddy fields and those from Thai swamps(110±2 pMC).  相似文献   

10.
The feasibility of using nitrogen and oxygenisotope ratios of nitrate (NO3 ) forelucidating sources and transformations ofriverine nitrate was evaluated in a comparativestudy of 16 watersheds in the northeastern U.S.A. Stream water was sampled repeatedly at theoutlets of the watersheds between January andDecember 1999 for determining concentrations,15N values, and 18Ovalues of riverine nitrate.In conjunction with information about land useand nitrogen fluxes,15Nnitrate and18Onitrate values providedmainly information about sources of riverinenitrate. In predominantly forested watersheds,riverine nitrate had mean concentrations ofless than 0.4 mg NO3 -N L–1,15Nnitrate values of lessthan +5, and 18Onitratevalues between +12 and +19. This indicatesthat riverine nitrate was almost exclusivelyderived from soil nitrification processes withpotentially minor nitrate contributions fromatmospheric deposition in some catchments. Inwatersheds with significant agricultural andurban land use, concentrations of riverinenitrate were as high as 2.6 mg NO3 -NL–1 with 15Nnitratevalues between +5 and +8 and18Onitrate values generallybelow +15. Correlations between nitrateconcentrations, 15Nnitratevalues, and N fluxes suggest that nitrate inwaste water constituted a major, and nitrate inmanure a minor additional source of riverinenitrate. Atmospheric nitrate deposition ornitrate-containing fertilizers were not asignificant source of riverine nitrate inwatersheds with significant agricultural andurban land use. Although complementary studiesindicate that in-stream denitrification wassignificant in all rivers, the isotopiccomposition of riverine nitrate sampled at theoutlet of the 16 watersheds did not provideevidence for denitrification in the form ofelevated 15Nnitrate and18Onitrate values. Relativelylow isotopic enrichment factors for nitrogenand oxygen during in-stream denitrification andcontinuous admixture of nitrate from theabove-described sources are thought to beresponsible for this finding.  相似文献   

11.
In order to assess the ability of Porites corals to accurately record environmental variations, high-resolution (weekly/biweekly) coral 18O records were obtained from four coral colonies from the northern Gulf of Aqaba, which grew at depths of 7, 19, 29, and 42 m along one transect. Adjacent to each colony, hourly temperatures, biweekly salinities, and monthly 18O of seawater were continuously recorded over a period of 14 months (April 1999 to June 2000). Contrary to water temperature, which shows a regular and strong seasonal variation and change with depth, seawater 18O exhibits a weak seasonality and little change with depth. Positive correlations between seawater 18O and salinity were observed. The two parameters were related to each other by the equation 18O Seawater (, VSMOW) = 0.281 × Salinity – 9.14. The high-resolution coral 18O records from this study show a regular pattern of seasonality and are able to capture fine details of the weekly average temperature records. They resolve more than 95% of the weekly average temperature range. On the other hand, attenuation and amplification of coral seasonal amplitudes were recorded in deep, slow-growing corals, which were not related to environmental effects (temperature and/or seawater 18O) or sampling resolution. We propose that these result from a combined effect of subannual variations in extension rate and variable rates of spine thickening of skeletal structures within the tissue layer. However, no smoothing or distortion of the isotopic signals was observed due to calcification within the tissue layer in shallow-water, fast-growing corals. The calculations from coral 18O calibrations against the in situ measurements show that temperature (T) is related to coral 18O ( c ) and seawater 18O ( w ) by the equation T (°C) = –5.38 ( c w ) –1.08. Our results demonstrate that coral 18O from the northern Gulf of Aqaba is a reliable recorder of temperature variations, and that there is a minor contribution of seawater 18O to this proxy, which could be ignored.  相似文献   

12.
The major pentasaccharides Fuc(1-2)[GalNAc(1-3)]Gal(1-4)[Fuc(1-3)]Glc and Fuc(1-2) [Gal(1-3)]Gal(1-4)[Fuc(1-3)]Glc, which are normally present in the urine of bloodgroup A Leb and B Leb healthy subjects, were each found to be contaminated by a minor component when analysed by1H-NMR. The determination of these structures, Fuc(1-2) [GalNAc(1-3)]Gal(1-3)[Fuc(1-4)]Glc and Fuc(1-2) [Gal(1-3)]Gal(1-3)[Fuc(1-4)]Glc, was based on the results of methylation analysis and1H/13C-NMR spectroscopy.Abbreviations HPLC high performance liquid chromatography - GLC gas liquid chromatography - NMR nuclear magnetic resonance - COSY correlation spectroscopy - Gal d-galactopyranose - GalNAc 2-acetamido-2-deoxy-d-galactopyranose - Glc d-glucopyranose - Fuc l-fucopyranose - LNDFH I lacto-N-difucohexaose I (Leb determinant  相似文献   

13.
The grass flora of Namibia (374 species in 110 genera) shows surprisingly little variation in 13C values along a rainfall gradient (50–600 mm) and in different habitat conditions. However, there are significant differences in the 13C values between the metabolic types of the C4 photosynthetic pathway. NADP-ME-type C4 species exhibit the highest 13C values (–11.7 ) and occur mainly in regions with high rainfall. NAD-ME-type C4 species have significantly lower 13C values (–13.4 ) and dominate in the most arid part of the precipitation regime. PCK-type C4 species play an intermediate role (–12.5 ) and reach a maximum abundance in areas of intermediate precipitation. This pattern is also evident in genera containing species of different metabolic types. Within the same genus NAD species reach more negative 13C values than PCK species and 13C values decreased with rainfall. Also in Aristida, with NADP-ME-type photosynthesis, 13C values decreased from –11 in the inland region (600 mm precipitation) to –15 near the coast (150 mm precipitation), which is a change in discrimination which is otherwise associated by a change in metabolism. The exceptional C3 species Eragrostis walteri and Panicum heterostachyum are coastal species experiencing 50 mm precipitation only. Many of the rare species and monotypic genera grow in moist habitats rather than in the desert, and they are not different in their carbon isotope ratios from the more common flora. The role of species diversity with respect to habitat occupation and carbon metabolism is discussed.  相似文献   

14.
A model of membrane potential-dependent distribution of oxonol VI to estimate the electrical potential difference across Schizosaccharomyces pombe plasma membrane vesicles (PMV) has been developed. was generated by the H+-ATPase reconstituted in the PMV. The model treatment was necessary since the usual calibration of the dye fluorescence changes by diffusion potentials (K+ + valinomycin) failed. The model allows for fitting of fluorescence changes at different vesicle and dye concentrations, yielding in ATP-energized PMV of 80 mV. The described model treatment to estimate may be applicable for other reconstituted membrane systems.  相似文献   

15.
TheN-linked carbohydrate chains of the-subunit of highly purified urinary human chorionic gonadotropin have been re-investigated. The oligosaccharides were released enzymatically by peptide-N 4-(N-acetyl--glucosaminyl)asparagine amidase-F, and fractionated by a combination of FPLC and HPLC. As a result of the application of improved fractionation methods, apart from the earlier reported carbohydrate chains, also small amounts of trisialo tri- and tri-antennary oligosaccharides were found. The primary structures of the latter carbohydrate chains have been determined by 500-MHz1H-NMR spectroscopy to beAbbreviations hCG human chorionic gonadotropin - hCG- -subunit - hCG- -subunit - PNGase-F peptide-N 4-(N-acetyl--glucosaminyl)asparagine amidase-F (E.C. 3.5.1.52) - endo-F endo--N-acetylglucosaminidase-F (E.C. 3.2.1.96) - SDS sodium dodecyl sulphate - PAGE polyacrylamide gel electrophoresis - CBB coomassie brilliant blue R 250 - GlcNAc N-acetylglucosamine - NeuAc N-acetylneuraminic acid - Man mannose - Gal galactose - Fuc fucose  相似文献   

16.
Summary Order parameters for the backbone N–H and C–H bond vectors have been calculated from a 150 ps molecular dynamics (MD) simulation of human type- transforming growth factor in H2O solvent. Two kinds of crankshaft motions of the polypeptide backbone are observed in this MD trajectory. The first involves small-amplitude rocking of the rigid peptide bond due to correlated changes in the backbone dihedral angles i–1 and i. These high-frequency librational crankshaft motions are correlated with systematically smaller values of motional order parameters for backbone N–H bond vectors compared to C–H bond vectors. In addition, infrequent crankshaft flips of the peptide bond from one local minimum to another are observed for several amino acid residues. These MD simulations demonstrate that comparisons of N–H and C–H order parameters provide a useful approach for identifying crank-shaft librational motions in proteins.  相似文献   

17.
Summary We present a comprehensive strategy for detailed characterization of the solution conformations of oligosaccharides by NMR spectroscopy and force-field calculations. Our experimental strategy generates a number of interglycosidic spatial constraints that is sufficiently large to allow us to determine glycosidic linkage conformations with a precision heretofore unachievable. In addition to the commonly used {1H,1H} NOE contacts between aliphatic protons, our constraints are: (a) homonuclear NOEs of hydroxyl protons in H2O to other protons in the oligosaccharide, (b) heteronuclear {1H,13C} NOEs, (c) isotope effects of O1H/O2H hydroxyl groups on13C chemical shifts, and (d) long-range heteronuclear scalar coupling across glycosidic bonds.We have used this approach to study the trisaccharide sialyl-(26)-lactose in aqueous solution. The experimentally determined geometrical constraints were compared to results obtained from force-field calculations based on Metropolis Monte Carlo simulations. The molecule was found to exist in 2 families of conformers. The preferred conformations of the (26)-linkage of the trisaccharide are best described by an equilibrium of 2 conformers with angles at –60° or 180° and of the 3 staggered rotamers of the angle with a predominantgt conformer. Three intramolecular hydrogen bonds, involving the hydroxyl protons on C8 and C7 of the sialic acid residue and on C3 of the reducing-end glucose residue, contribute significantly to the conformational stability of the trisaccharide in aqueous solution. Supplementary material available from the corresponding author: Table containing values for the dihedral angles , , , , and for bond angles , for the six lowest-energy conformations of sialyl-(26)-lactose (1 page).  相似文献   

18.
Holophosphorylase kinase was digested with Glu-C specific protease; from the peptide mixture calmodulin binding peptides were isolated by affinity chromatography and identified by N-terminal sequence analysis. Two peptides originating from the subunit, having a high tendency to form a positively charged amphiphilic helix and containing tryptophane, were synthesized. Additionally, a homologous region of the subunit and a peptide from the subunit present in a region deleted in the isoform were also selected for synthesis. Binding stoichiometry and affinity were determined by following the enhancement in tryptophane fluorescence occurring upon 1:1 complex formation between these peptides and calmodulin. Finally, Ca2+ binding to calmodulin in presence of peptides was measured. By this way, the peptides 542–566, 547–571, 660–677 and 597–614 have been found to bind specifically to calmodulin.Together with previously predicted and synthesized calmodulin binding peptides four calmodulin binding regions have been characterized on each the and subunits. It can be concluded that endogenous calmodulin can bind to two calmodulin binding regions in as well as to two regions in and . Exogenous calmodulin can bind to two regions in and in . A binding stoichiometry of 0.8mol of calmodulin/ protomer of phosphorylase kinase has been determined by inhibiting the ubiquitination of calmodulin with phosphorylase kinase. Phosphorylase kinase is half maximally activated by 23nM calmodulin which is in the affinity range of calmodulin binding peptides from to calmodulin. Therefore, binding of exogenous calmodulin to activates the enzyme. A model for switching endogenous calmodulin between , and and modulation of ATP binding to as well as Mg2+/ADP binding to by calmodulin is presented.  相似文献   

19.
We present the results of a 5-year examination of variation in the stable carbon isotope composition () of three C3 graminoid species from a Sandhills prairie: Agropyron smithii, Carex heliophila and Stipa comata. Although consistent species-specific patterns for mean were seen, there was also significant and substantial among-year and within-season variation in . A smaller contribution to variation in came from topographic variation among sampling sites. Effects of species, year, season and topography contribute to variation in in an additive manner. An association between climate and exists that is consistent with previous work suggesting that reflects the interplay between photosynthetic gas exchange and plant water relations. Within the growing season, the time over which integrates plant response to the environment ranges from days to months.  相似文献   

20.
The structure of a new nonasaccharide isolated from human milk has been investigated. By using methylation analysis, FAB-MS and1H-and13C-NMR spectroscopy as basic methods of structural investigation, this oligosaccharide was identified as VI2--Fuc,V4-Fuc,III3--Fuc-p-lacto-n-hexaose: Fuc1-2Gal1-3[Fuc1-4]GlcNAc1-3Gal1-4[Fuc1-3]GlcNAc1-3Gal1-4Glc.Abbreviations COSY correlation spectroscope - DP degree of polymerisation - FAB-MS fast atom bombardment-mass spectrometry - HPLC high performance liquid chromatography - NMR nuclear magnetic resonance - GLC gas-liquid chromatography  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号