首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Syntrophins are scaffold proteins that regulate the subcellular localization of diacylglycerol kinase zeta (DGK-zeta), an enzyme that phosphorylates the lipid second-messenger diacylglycerol to yield phosphatidic acid. DGK-zeta and syntrophins are abundantly expressed in neurons of the developing and adult brain, but their function is unclear. Here, we show that they are present in cell bodies, neurites, and growth cones of cultured cortical neurons and differentiated N1E-115 neuroblastoma cells. Overexpression of DGK-zeta in N1E-115 cells induced neurite formation in the presence of serum, which normally prevents neurite outgrowth. This effect was independent of DGK-zeta kinase activity but dependent on a functional C-terminal PDZ-binding motif, which specifically interacts with syntrophin PDZ domains. DGK-zeta mutants with a blocked C terminus acted as dominant-negative inhibitors of outgrowth from serum-deprived N1E-115 cells and cortical neurons. Several lines of evidence suggest DGK-zeta promotes neurite outgrowth through association with the GTPase Rac1. DGK-zeta colocalized with Rac1 in neuronal processes and DGK-zeta-induced outgrowth was inhibited by dominant-negative Rac1. Moreover, DGK-zeta directly interacts with Rac1 through a binding site located within its C1 domains. Together with syntrophin, these proteins form a tertiary complex in N1E-115 cells. A DGK-zeta mutant that mimics phosphorylation of the MARCKS domain was unable to bind an activated Rac1 mutant (Rac1(V12)) and phorbol myristate acetate-induced protein kinase C activation inhibited the interaction of DGK-zeta with Rac1(V12), suggesting protein kinase C-mediated phosphorylation of the MARCKS domain negatively regulates DGK-zeta binding to active Rac1. Collectively, these findings suggest DGK-zeta, syntrophin, and Rac1 form a regulated signaling complex that controls polarized outgrowth in neuronal cells.  相似文献   

2.
Syntrophins are scaffold proteins of the dystrophin glycoprotein complex (DGC), which target ion channels, receptors, and signaling proteins to specialized subcellular domains. A yeast two-hybrid screen of a human brain cDNA library with the PSD-95, Discs-large, ZO-1 (PDZ) domain of gamma1-syntrophin yielded overlapping clones encoding the C terminus of TAPP1, a pleckstrin homology (PH) domain-containing adapter protein that interacts specifically with phosphatidylinositol 3,4-bisphosphate (PI(3,4)P(2)). In biochemical assays, the C terminus of TAPP1 bound specifically to the PDZ domains of gamma1-, alpha1-, and beta2-syntrophin and was required for syntrophin binding and for the correct subcellular localization of TAPP1. TAPP1 is recruited to the plasma membrane of cells stimulated with platelet-derived growth factor (PDGF), a motogen that produces PI(3,4)P(2). Cell migration in response to PDGF stimulation is characterized by a rapid reorganization of the actin cytoskeleton, which gives rise to plasma membrane specializations including peripheral and dorsal circular ruffles. Both TAPP1 and syntrophins were localized to PDGF-induced circular membrane ruffles in NIH-3T3 cells. Ectopic expression of TAPP1 potently blocked PDGF-induced formation of dorsal circular ruffles, but did not affect peripheral ruffling. Interestingly, coexpression of alpha1- or gamma1-syntrophin with TAPP1 prevented the blockade of circular ruffling. In addition to syntrophins, several other proteins of the DGC were enriched in circular ruffles. Collectively, our results suggest syntrophins regulate the localization of TAPP1, which may be important for remodeling the actin cytoskeleton in response to growth factor stimulation.  相似文献   

3.
Syntrophins are scaffolding proteins that link signaling molecules to dystrophin and the cytoskeleton. We previously reported that syntrophins interact with diacylglycerol kinase-zeta (DGK-zeta), which phosphorylates diacylglycerol to yield phosphatidic acid. Here, we show syntrophins and DGK-zeta form a complex in skeletal muscle whose translocation from the cytosol to the plasma membrane is regulated by protein kinase C-dependent phosphorylation of the DGK-zeta MARCKS domain. DGK-zeta mutants that do not bind syntrophins were mislocalized, and an activated mutant of this sort induced atypical changes in the actin cytoskeleton, indicating syntrophins are important for localizing DGK-zeta and regulating its activity. Consistent with a role in actin organization, DGK-zeta and syntrophins were colocalized with filamentous (F)-actin and Rac in lamellipodia and ruffles. Moreover, extracellular signal-related kinase-dependent phosphorylation of DGK-zeta regulated its association with the cytoskeleton. In adult muscle, DGK-zeta was colocalized with syntrophins on the sarcolemma and was concentrated at neuromuscular junctions (NMJs), whereas in type IIB fibers it was found exclusively at NMJs. DGK-zeta was reduced at the sarcolemma of dystrophin-deficient mdx mouse myofibers but was specifically retained at NMJs, indicating that dystrophin is important for the sarcolemmal but not synaptic localization of DGK-zeta. Together, our findings suggest syntrophins localize DGK-zeta signaling complexes at specialized domains of muscle cells, which may be critical for the proper control of lipid-signaling pathways regulating actin organization. In dystrophic muscle, mislocalized DGK-zeta may cause abnormal cytoskeletal changes that contribute to disease pathogenesis.  相似文献   

4.
Diacylglycerol kinases (DGKs) catalyze phosphorylation of diacylglycerol (DG) to yield phosphatidic acid (PA). Previous evidence has shown that the nucleus contains several DGK isoforms. In this study, we have analyzed the expression and subnuclear localization of DGK-zeta employing C2C12 mouse myoblasts. Immunocytochemistry coupled to confocal laser scanning microscopy showed that both endogenous and green fluorescent protein-tagged overexpressed DGK-zeta localized mostly to the nucleus. In contrast, overexpressed DGK-alpha, -beta, -delta, and -iota did not migrate to the nucleus. DGK-zeta was present in the nuclear speckle domains, as also revealed by immuno-electron microscopy analysis. Moreover, DGK-zeta co-localized and interacted with phosphoinositide-specific phospholipase Cbeta1 (PLCbeta1), that is involved in inositide-dependent signaling pathways important for the regulation of cell proliferation and differentiation. Furthermore, we report that DGK-zeta associated with nuclear matrix, the fundamental organizing principle of the nucleus where many cell functions take place, including DNA replication, gene expression, and protein phosphorylation. Nuclear DGK-zeta increased during myogenic differentiation of C2C12 cells, while DGK-zeta down-regulation by siRNA markedly impaired differentiation. Overall, our findings further support the importance of speckles and nuclear matrix in lipid-dependent signaling and suggest that nuclear DGK-zeta might play some fundamental role during myogenic differentiation of C2C12 cells.  相似文献   

5.
6.
The fusion of mononuclear myoblasts into multinucleated myofibers is essential for the formation and growth of skeletal muscle. Myoblast fusion follows a well-defined sequence of cellular events, from initial recognition and adhesion, to alignment, and finally plasma membrane fusion. These processes depend upon coordinated remodeling of the actin cytoskeleton. Our recent studies suggest diacylglycerol kinase-zeta (DGK-zeta), an enzyme that metabolizes diacylglycerol to yield phosphatidic acid, plays an important role in actin reorganization. Here, we investigated whether DGK-zeta has a role in the fusion of cultured C2C12 myoblasts. We show that DGK-zeta and syntrophins, scaffold proteins of the dystrophin glycoprotein complex that bind directly to DGK-zeta, are spatially regulated during fusion. Both proteins accumulated with the GTPase Rac1 at sites where fine filopodia mediate the initial contact between myoblasts. In addition, DGK-zeta codistributed with the Ca(2+)-dependent cell adhesion molecule N-cadherin at nascent, but not previously established cell contacts. We provide evidence that C2 cells are pulled together at cell-cell junctions by N-cadherin-containing filopodia reminiscent of epithelial adhesion zippers, which guide the advance of lamellipodia from apposing cells. At later times, vesicles with properties of macropinosomes formed close to cell-cell junctions. Reconstruction of confocal optical sections showed these form dome-like protrusions from the dorsal surface of contacting cells. Collectively, these results suggest DGK-zeta and syntrophins play a role at multiple stages of the fusion process. Moreover, our findings provide a potential link between changes in the lipid content of the membrane bilayer and reorganization of the actin cytoskeleton during myoblast fusion.  相似文献   

7.
Syntrophins are adaptor proteins that link intracellular signaling molecules to the dystrophin based scaffold. In this study, we investigated the function of syntrophins in cell migration, one of the early steps in myogenic differentiation and in regeneration of adult muscle. Hepatocyte growth factor (HGF) stimulates migration and lamellipodia formation in cultured C2 myoblasts. In the migrating cells, syntrophin concentrated in the rear-lateral region of the cell, opposite of the lamellipodia, instead of being diffusely present throughout the cytoplasm of non-migrating cells. When the expression of α-syntrophin, the major syntrophin isoform of skeletal muscle, was reduced by transfection with the α-syntrophin-specific siRNA, HGF stimulation of lamellipodia formation was prevented. Likewise, migration of myoblasts from α-syntrophin knockout mice could not be stimulated by HGF. However, HGF-induced migration was restored in myoblasts isolated from a transgenic mouse expressing α-syntrophin only in muscle cells. Treatment of C2 myoblasts with inhibitors of PI3-kinase not only reduced the rate of cell migration, but also impaired the accumulation of syntrophins in the rear-lateral region of the migrating cells. Phosphorylation of Akt was reduced in the α-syntrophin siRNA-treated C2 cells. These results suggest that α-syntrophin is required for HGF-induced migration of myoblasts and for proper PI3-kinase/Akt signaling.  相似文献   

8.
Syntrophin binds to an alternatively spliced exon of dystrophin   总被引:15,自引:2,他引:13       下载免费PDF全文
  相似文献   

9.
SET-related cell division autoantigen-1 (CDA1) arrests cell growth   总被引:1,自引:0,他引:1  
We used an autoimmune serum from a patient with discoid lupus erythematosus to clone a cDNA of 2808 base pairs. Its open reading frame of 2079 base pairs encodes a predicted polypeptide of 693 amino acids named CDA1 (cell division autoantigen-1). CDA1 has a predicted molecular mass of 79,430 Daltons and a pI of 4.26. The size of the cDNA is consistent with its estimated mRNA size. CDA1 comprises an N-terminal proline-rich domain, a central basic domain, and a C-terminal bipartite acidic domain. It has four putative nuclear localization signals and potential sites for phosphorylation by cAMP and cGMP-dependent kinases, protein kinase C, thymidine kinase, casein kinase II, and cyclin-dependent kinases (CDKs). CDA1 is phosphorylated in HeLa cells and by cyclin D1/CDK4, cyclin A/CDK2, and cyclin B/CDK1 in vitro. Its basic and acidic domains contain regions homologous to almost the entire human leukemia-associated SET protein. The same basic region is also homologous to nucleosome assembly proteins, testis TSPY protein, and an uncharacterized brain protein. CDA1 is present in the nuclear fraction of HeLa cells and localizes to the nucleus and nucleolus in HeLa cells transfected with CDA1 or its N terminus containing all four nuclear localization signals. Its acidic C terminus localizes mainly to the cytoplasm. CDA1 levels are low in serum-starved cells, increasing dramatically with serum stimulation. Expression of the CDA1 transgene, but not its N terminus, arrests HeLa cell growth, colony numbers, cell density, and bromodeoxyuridine uptake in a dose-dependent manner. The ability of CDA1 to arrest cell growth is abolished by mutation of the two CDK consensus phosphorylation sites. We propose that CDA1 is a negative regulator of cell growth and that its activity is regulated by its expression level and phosphorylation.  相似文献   

10.
11.
RGS proteins negatively regulate heterotrimeric G proteins at the plasma membrane. RGS2-GFP localizes to the nucleus, plasma membrane, and cytoplasm of HEK293 cells. Expression of activated G(q) increased RGS2 association with the plasma membrane and decreased accumulation in the nucleus, suggesting that signal-induced redistribution may regulate RGS2 function. Thus, we identified and characterized a conserved N-terminal domain in RGS2 that is necessary and sufficient for plasma membrane localization. Mutational and biophysical analyses indicated that this domain is an amphipathic alpha-helix that binds vesicles containing acidic phospholipids. However, the plasma membrane targeting function of the amphipathic helical domain did not appear to be essential for RGS2 to attenuate signaling by activated G(q). Nevertheless, truncation mutants indicated that the N terminus is essential, potentially serving as a scaffold that binds receptors, signaling proteins, or nuclear components. Indeed, the RGS2 N terminus directs nuclear accumulation of GFP. Although RGS2 possesses a nuclear targeting motif, it lacks a nuclear import signal and enters the nucleus by passive diffusion. Nuclear accumulation of RGS2 does not limit its ability to attenuate G(q) signaling, because excluding RGS2 from the nucleus was without effect. RGS2 may nonetheless regulate signaling or other processes in the nucleus.  相似文献   

12.
RGS proteins comprise a family of proteins named for their ability to negatively regulate heterotrimeric G protein signaling. Biochemical studies suggest that members of this protein family act as GTPase-activating proteins for certain Galpha subunits, thereby accelerating the turn-off mechanism of Galpha and terminating signaling by both Galpha and Gbetagamma subunits. In the present study, we used confocal microscopy to examine the intracellular distribution of several RGS proteins in COS-7 cells expressing RGS-green fluorescent protein (GFP) fusion proteins and in cells expressing RGS proteins endogenously. RGS2 and RGS10 accumulated in the nucleus of COS-7 cells transfected with GFP constructs of these proteins. In contrast, RGS4 and RGS16 accumulated in the cytoplasm of COS-7 transfectants. As observed in COS-7 cells, RGS4 exhibited cytoplasmic localization in mouse neuroblastoma cells, and RGS10 exhibited nuclear localization in human glioma cells. Deletion or alanine substitution of an N-terminal leucine repeat motif present in both RGS4 and RGS16, a domain identified as a nuclear export sequence in HIV Rev and other proteins, promoted nuclear localization of these proteins in COS-7 cells. In agreement with this observation, treatment of mouse neuroblastoma cells with leptomycin B to inhibit nuclear protein export by exportin1 resulted in accumulation of RGS4 in the nucleus of these cells. GFP fusions of RGS domains of RGS proteins localized in the nucleus, suggesting that nuclear localization of RGS proteins results from nuclear targeting via RGS domain sequences. RGSZ, which shares with RGS-GAIP a cysteine-rich string in its N-terminal region, localized to the Golgi complex in COS-7 cells. Deletion of the N-terminal domain of RGSZ that includes the cysteine motif promoted nuclear localization of RGSZ. None of the RGS proteins examined were localized at the plasma membrane. These results demonstrate that RGS proteins localize in the nucleus, the cytoplasm, or shuttle between the nucleus and cytoplasm as nucleo-cytoplasmic shuttle proteins. RGS proteins localize differentially within cells as a result of structural differences among these proteins that do not appear to be important determinants for their G protein-regulating activities. These findings suggest involvement of RGS proteins in more complex cellular functions than currently envisioned.  相似文献   

13.
The heterogeneous nuclear RNP (hnRNP) A1 protein is one of the major pre-mRNA/mRNA binding proteins in eukaryotic cells and one of the most abundant proteins in the nucleus. It is localized to the nucleoplasm and it also shuttles between the nucleus and the cytoplasm. The amino acid sequence of A1 contains two RNP motif RNA-binding domains (RBDs) at the amino terminus and a glycine-rich domain at the carboxyl terminus. This configuration, designated 2x RBD-Gly, is representative of perhaps the largest family of hnRNP proteins. Unlike most nuclear proteins characterized so far, A1 (and most 2x RBD-Gly proteins) does not contain a recognizable nuclear localization signal (NLS). We have found that a segment of ca. 40 amino acids near the carboxyl end of the protein (designated M9) is necessary and sufficient for nuclear localization; attaching this segment to the bacterial protein beta- galactosidase or to pyruvate kinase completely localized these otherwise cytoplasmic proteins to the nucleus. The RBDs and another RNA binding motif found in the glycine-rich domain, the RGG box, are not required for A1 nuclear localization. M9 is a novel type of nuclear localization domain as it does not contain sequences similar to classical basic-type NLS. Interestingly, sequences similar to M9 are found in other nuclear RNA-binding proteins including hnRNP A2.  相似文献   

14.
PDZ domains play a pivotal role in the synaptic localization of ion channels, receptors, signaling enzymes, and cell adhesion molecules. These domains mediate protein-protein interactions via the recognition of a conserved sequence motif at the extreme C terminus of their target proteins. By means of a yeast two-hybrid screen using the C terminus of the G protein-coupled alpha-latrotoxin receptor CL1 as bait, three PDZ domain proteins of the Shank family were identified. These proteins belong to a single protein family characterized by a common domain organization. The PDZ domain is highly conserved among the family members, significantly different from other known PDZ domains, and specifically binds to the C terminus of CL1. Shank1 and CL1 are expressed primarily in brain, and both proteins co-enrich in the postsynaptic density. Furthermore, Shank1 induces a clustering of CL1 in transfected cells, strongly supporting an interaction of both proteins in vivo.  相似文献   

15.
16.
During the late stages of adenovirus infection, the 100K protein (100K) inhibits the translation of cellular messages in the cytoplasm and regulates hexon trimerization and assembly in the nucleus. However, it is not known how it switches between these two functions. Here we show that 100K is methylated on arginine residues at its C terminus during infection and that this region is necessary for binding PRMT1 methylase. Methylated 100K is exclusively nuclear. Mutation of the third RGG motif (amino acids 741 to 743) prevents localization to the nucleus during infection, suggesting that methylation of that sequence is important for 100K shuttling. Treatment of infected cells with methylation inhibitors inhibits expression of late structural proteins. These data suggest that arginine methylation of 100K is necessary for its localization to the nucleus and is a critical cellular function necessary for productive adenovirus infection.  相似文献   

17.
18.
Flap endonuclease-1 (FEN-1), a 43-kDa protein, is a structure-specific and multifunctional nuclease. It plays important roles in RNA primer removal of Okazaki fragments during DNA replication, DNA base excision repair, and maintenance of genome stability. Three functional motifs of the enzyme were proposed to be responsible for its nuclease activities, interaction with proliferating cell nuclear antigen, and nuclear localization. In this study, we demonstrate in HeLa cells that a signal located at the C terminus (the nuclear localization signal (NLS) motif) facilitates nuclear localization of the enzyme during S phase of the cell cycle and in response to DNA damage. Truncation of the NLS motif prevents migration of the protein from the cytoplasm to the nucleus, while having no effect on the nuclease activities and its proliferating cell nuclear antigen interaction capability. Site-directed mutagenesis further revealed that a mutation of the KRK cluster to three alanine residues completely blocked the localization of FEN-1 into the nucleus, whereas mutagenesis of the KKK cluster led to a partial defect of nuclear localization in HeLa cells without observable phenotype in yeast. Therefore, the KRKXXXXXXXXKKK motif may be a bipartite NLS driving the protein into nuclei. Yeast RAD27Delta cells transformed with human mutant M(krk) survived poorly upon methyl methanesulfonate treatment or when they were incubated at an elevated temperature.  相似文献   

19.
There exists an active lipid metabolism in the nucleus, which is regulated differentially from the lipid metabolism taking place elsewhere in the cell. Evidence has been accumulated that nuclear lipid metabolism is closely involved in a variety of cell responses, including proliferation, differentiation, and apoptosis. A fundamental lipid second messenger which is generated in the nucleus is diacylglycerol, that is mainly known for its role as an activator of some protein kinase C isoforms. Diacylglycerol kinases attenuate diacylglycerol signaling by converting this lipid to phosphatidic acid, which also has signaling functions. Ten mammalian diacylglycerol kinase isoforms have been cloned so far, and some of them are found also in the nucleus, either as resident proteins or after migration from cytoplasm in response to various agonists. Experiments using cultured cells have demonstrated that nuclear diacylglycerol kinases have prominent roles in cell cycle regulation and differentiation. In this review, the emerging roles played by diacylglycerol kinases in the nucleus, such as the control of G1/S phase transition, are discussed.  相似文献   

20.
Neuronal nitric-oxide synthase (nNOS) has a PSD-95/Dlg/ZO-1 (PDZ) domain that can interact with multiple proteins. nNOS has been known to interact with PSD-95 and a related protein, PSD-93, in brain and with alpha1-syntrophin in skeletal muscle in mammals. In this study, we have purified an nNOS-interacting protein from bovine brain using an affinity column made of Sepharose conjugated with glutathione S-transferase-rat nNOS fusion protein and identified it as alpha1-syntrophin by microsequencing. Immunostaining of primary cultures of rat embryonic brain neuronal cells with antibodies against these proteins showed that nNOS and alpha1-syntrophin were colocalized in neuronal cell bodies and neurites. Immunohistochemical analysis indicated that the nNOS- and alpha1-syntrophin-like immunoreactive substances were highly expressed in the rat hypothalamic suprachiasmatic nucleus (SCN) and paraventricular nucleus. In the SCN, nNOS- and alpha1-syntrophin-like immunoreactive substances were colocalized in the same neurons as detected by confocal microscopy. These results indicate that nNOS in brain interacts with alpha1-syntrophin in specific neurons of the SCN and paraventricular nucleus and that this interaction might play a physiological role in functions of these neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号