首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potato cyst nematodes (PCN) are serious pests in commercial potato production, causing yield losses valued at approximately $300 million in the European Community. The nematophagous fungus Plectosphaerella cucumerina has demonstrated its potential as a biological control agent against PCN populations by reducing field populations by up to 60% in trials. The use of biological control agents in the field requires the development of specific techniques to monitor the release, population size, spread or decline, and pathogenicity against its host. A range of methods have therefore been developed to monitor P. cucumerina. A species-specific PCR primer set (PcCF1-PcCR1) was designed that was able to detect the presence of P. cucumerina in soil, root, and nematode samples. PCR was combined with a bait method to identify P. cucumerina from infected nematode eggs, confirming the parasitic ability of the fungus. A selective medium was adapted to isolate the fungus from root and soil samples and was used to quantify the fungus from field sites. A second P. cucumerina-specific primer set (PcRTF1-PcRTR1) and a Taqman probe (PcRTP1) were designed for real-time PCR quantification of the fungus and provided a very sensitive means of detecting the fungus from soil. PCR, bait, and culture methods were combined to investigate the presence and abundance of P. cucumerina from two field sites in the United Kingdom where PCN populations were naturally declining. All methods enabled differences in the activity of P. cucumerina to be detected, and the results demonstrated the importance of using a combination of methods to investigate population size and activity of fungi.  相似文献   

2.
The Paecilomyces lilacinus is the most widely tested fungus for the control of root-knot and cyst nematodes. The fungus has also been implicated in a number of human and animal infections, difficulties in diagnosis often result in misdiagnosis or delays in identification leading to a delay in treatment. Here, we report the development of species-specific primers for the identification of P. lilacinus based on sequence information from the ITS gene, and their use in identifying P. lilacinus isolates, including clinical isolates of the fungus. The primer set generated a single PCR fragment of 130 bp in length that was specific to P. lilacinus and was also used to detect the presence of P. lilacinus from soil, roots and nematode eggs. Real-time PCR primers and a TaqMan probe were also developed and provided quantitative data on the population size of the fungus in two field sites. PCR, bait and culture methods were combined to investigate the presence and abundance of the fungus from two field sites in the United Kingdom where potato cyst nematode populations were naturally declining, and results demonstrated the importance of using a combination of methods to investigate population size and activity of fungi.  相似文献   

3.
A competitive PCR (cPCR) assay was developed to quantify the nematophagous fungus Verticillium chlamydosporium in soil. A gamma-irradiated soil was seeded with different numbers of chlamydospores from V. chlamydosporium isolate 10, and samples were obtained at time intervals of up to 8 weeks. Samples were analyzed by cPCR and by plating onto a semiselective medium. The results suggested that saprophytic V. chlamydosporium growth did occur in soil and that the two methods detected different phases of growth. The first stage of growth, DNA replication, was demonstrated by the rapid increase in cPCR estimates, and the presumed carrying capacity (PCC) of the soil was reached after only 1 week of incubation. The second stage, an increase in fungal propagules presumably due to cell division, sporulation, and hyphal fragmentation, was indicated by a less rapid increase in CFU, and 3 weeks was required to reach the PCC. Experiments with field soil revealed that saprophytic fungal growth was limited, presumably due to competition from the indigenous soil microflora, and that the PCR results were less variable than the equivalent plate count results. In addition, the limit of detection of V. chlamydosporium in field soil was lower than that in gamma-irradiated soil, suggesting that there was a background population of the fungus in the field, although the level was below the limit of detection. Tomatoes were infected with the root knot nematode (RKN) or the potato cyst nematode (PCN) along with a PCN-derived isolate of the fungus (V. chlamydosporium isolate Jersey). Increases in fungal growth were observed in the rhizosphere of PCN-infested plants but not in the rhizosphere of RKN-infested plants after 14 weeks using cPCR. In this paper we describe for the first time PCR-based quantification of a fungal biological control agent for nematodes in soil and the rhizosphere, and we provide evidence for nematode host specificity that is highly relevant to the biological control efficacy of this fungus.  相似文献   

4.
A competitive PCR (cPCR) assay was developed to quantify the nematophagous fungus Verticillium chlamydosporium in soil. A γ-irradiated soil was seeded with different numbers of chlamydospores from V. chlamydosporium isolate 10, and samples were obtained at time intervals of up to 8 weeks. Samples were analyzed by cPCR and by plating onto a semiselective medium. The results suggested that saprophytic V. chlamydosporium growth did occur in soil and that the two methods detected different phases of growth. The first stage of growth, DNA replication, was demonstrated by the rapid increase in cPCR estimates, and the presumed carrying capacity (PCC) of the soil was reached after only 1 week of incubation. The second stage, an increase in fungal propagules presumably due to cell division, sporulation, and hyphal fragmentation, was indicated by a less rapid increase in CFU, and 3 weeks was required to reach the PCC. Experiments with field soil revealed that saprophytic fungal growth was limited, presumably due to competition from the indigenous soil microflora, and that the PCR results were less variable than the equivalent plate count results. In addition, the limit of detection of V. chlamydosporium in field soil was lower than that in γ-irradiated soil, suggesting that there was a background population of the fungus in the field, although the level was below the limit of detection. Tomatoes were infected with the root knot nematode (RKN) or the potato cyst nematode (PCN) along with a PCN-derived isolate of the fungus (V. chlamydosporium isolate Jersey). Increases in fungal growth were observed in the rhizosphere of PCN-infested plants but not in the rhizosphere of RKN-infested plants after 14 weeks using cPCR. In this paper we describe for the first time PCR-based quantification of a fungal biological control agent for nematodes in soil and the rhizosphere, and we provide evidence for nematode host specificity that is highly relevant to the biological control efficacy of this fungus.  相似文献   

5.
AIMS: The aims are to establish a polymerase chain reaction (PCR)-based method for detecting Pythium myriotylum in the rhizome of ginger and diagnosing ginger soft rot and screening health seed ginger. METHODS AND RESULTS: A booster PCR method was established for detection of P. myriotylum using a specific primer selected from rDNA ITS1 region coupled with universal primer ITS2. It successfully applied to the detection of P. myriotylum in naturally infected ginger rhizomes but not from DNA of ginger rhizomes collected from field without target fungus. CONCLUSIONS: A specific method for detecting P. myriotylum was achieved. SIGNIFICANCE AND IMPACT OF THE STUDY: The new PCR method has allowed us to monitor ginger for the presence of P. myriotylum as a way of disease diagnosis or healthy seed ginger examination.  相似文献   

6.
Aims:  To assess the applicability of the 16S–23S rDNA internal spacer regions (ISR) as targets for PCR detection of Azospirillum ssp. and the phytostimulatory plant growth-promoting rhizobacteria seed inoculant Azospirillum lipoferum CRT1 in soil.
Methods and Results:  Primer sets were designed after sequence analysis of the ISR of A. lipoferum CRT1 and Azospirillum brasilense Sp245. The primers fAZO/rAZO targeting the Azospirillum genus successfully yielded PCR amplicons (400–550 bp) from Azospirillum strains but also from certain non- Azospirillum strains in vitro , therefore they were not appropriate to monitor indigenous Azospirillum soil populations. The primers fCRT1/rCRT1 targeting A. lipoferum CRT1 generated a single 249-bp PCR product but could also amplify other strains from the same species. However, with DNA extracts from the rhizosphere of field-grown maize, both fAZO/rAZO and fCRT1/rCRT1 primer sets could be used to evidence strain CRT1 in inoculated plants by nested PCR, after a first ISR amplification with universal ribosomal primers. In soil, a 7-log dynamic range of detection (102–108 CFU g−1 soil) was obtained.
Conclusions:  The PCR primers targeting 16S–23S rDNA ISR sequences enabled detection of the inoculant A. lipoferum CRT1 in field soil.
Significance and Impact of the Study:  Convenient methods to monitor Azospirillum phytostimulators in the soil are lacking. The PCR protocols designed based on ISR sequences will be useful for detection of the crop inoculant A. lipoferum CRT1 under field conditions.  相似文献   

7.
Arabidopsis resistance to the necrotrophic fungus Plectosphaerella cucumerina is complex and depends on the ethylene, jasmonic acid and salicylic acid signaling pathways. A quantitative trait loci (QTL) analysis of resistance to this fungus was performed using two populations of recombinant inbred lines. Three loci QRP1-QRP3 (for Quantitative Resistance to Plectosphaerella) were identified and mapped on chromosome 2 (QRP1 and QRP2) and 5 (QRP3). QRP1, the locus showing the strongest effect, was found to correspond to the ERECTA (ER) gene that encodes a receptor-like-kinase (RLK), which has been previously implicated in plant development, and resistance to the bacterium Ralstonia solanacearum. The leucine-rich repeat and the kinase domains of ERECTA were specifically required for resistance to P. cucumerina, as er mutant alleles impaired in any of these domains showed enhanced susceptibility to this fungus, but not to other virulent pathogens. The involvement of the ER-signaling pathway in resistance to P. cucumerina was supported by the fact that three mutants defective in this pathway, elk2, elk5 and elk4 (agb1-1), which encodes the beta-subunit of Arabidopsis heterotrimeric G protein, were also impaired in their resistance to this fungus. The putative function of the Arabidopsis heterotrimeric G protein in resistance to P. cucumerina suggested by the enhanced susceptibility of agb1-1 was corroborated by the demonstration that a null allele (gpa1-4) of the G protein alpha-subunit showed enhanced resistance to this pathogen. Deposition of beta-1,3-glucan callose at infection sites was specifically impaired in er-1 and agb1-1 mutants upon P. cucumerina inoculation. Taken together, these data suggest a putative function of ERECTA and heterotrimeric G protein in P. cucumerina perception.  相似文献   

8.
In order to exploit fully the biocontrol potential of the nematophagous fungus Verticillium chlamydosporium, it is important to understand the ecology of the fungus in soil, and interactions with both plant and nematode hosts. Several approaches for studying the fungus in soil and the root environment are compared. These include a semi-selective medium for V. chlamydosporium, PCR primers specific for the fungal -tubulin gene, and monoclonal antibodies. In addition to providing a target for species-specific primers, the -tubulin gene is implicated in resistance to the fungicides used in the semi-selective medium, and the genetic basis for this is investigated. Culture and PCR-based methods were used to screen for the presence of the fungus in field soils known to have been suppressive to cereal cyst nematode and that contained V. chlamydosporium populations. Monoclonal antibodies specific for either hyphae or conidia of the fungus were obtained, and their application as a tool for visualising the infection process on the root was explored.  相似文献   

9.
Real-time PCR is a new and highly sensitive method for the quantification of microbial organisms in environmental samples. This work was conducted to evaluate real-time PCR with SybrGreen (SG) detection as quantification method for Desulfotomaculum lineage 1 organisms in samples of rice field soil. The method was optimized in several parameters like SG concentration. These allowed quantitative PCR with different primer combinations yielding PCR products with lengths up to 1066 bp and with sensitivities of 10(2) targets for all assays. The detection limit in environmental DNA extracts (rice bulk soil and rice roots) was 10(6) targets per gram dry weight according to the dilution of the DNA extracts necessary to overcome PCR inhibition of humic substances. A verification, that the fluorescence increase was due to specific PCR products, was done by agarose gel electrophoresis since melting curve analysis of the PCR products did not show a distinct peak in the first derivative, when the environmental DNA extracts were used in PCR. Amplification with a primer combination specific for Desulfotomaculum lineage 1 organisms showed an abundance of this group of approximately 2% and 0.5% of the eubacterial 16S rDNA targets in rice bulk soil and rice root samples, respectively. Approximately half of this number was obtained in both habitats with a PCR assay specific for a Desulfotomaculum sequence cluster obtained previously from rice field soil.  相似文献   

10.
Six potato cultivars with different levels of resistance to the white potato cyst nematode (PCN) Globodera pallida Pa2 were grown for three seasons in field plots to which G. pallida Pa2 cysts had been introduced earlier. There were two planting times, corresponding to early and maincrop commercial planting times, and two initial PCN population densities, high and low. The effect of cultivar on PCN population density was far greater than the effect of planting time or initial nematode population. The final PCN populations for the cultivars Ilam Hardy, Wha, 4696A(2), Sovereign, D40/6 and V390 were 151, 74, 27, 1.4, 0.2 and 0.06 eggs per g of soil respectively. It is concluded that resistant potato cultivars can be very effective in controlling G. pallida Pa2 in the field.  相似文献   

11.
Meloidogyne minor is a small root‐knot nematode that causes yellow patch disease in golf courses and severe quality damage in potatoes. It was described in 2004 and has been detected in The Netherlands, England, Wales, Northern Ireland, Ireland and Belgium. The nematode often appears together with M. naasi on grasses. It causes similar symptoms on potato tubers as M. chitwoodi and M. fallax, which are both quarantine organisms in Europe. An accurate identification method therefore is required. This study describes a real‐time PCR assay that enables the identification of M. minor after extraction of nematodes from soil or plant samples. Alignments of sequences of rDNA‐ITS fragments of M. minor and five other Meloidogyne species were used to design a forward primer Mminor_f299, a specific primer Mminor_r362 and the specific MGB TaqMan probe P_Mm_MGB321. PCR with this primers and probe results in an amplicon of 64 bp. The analytical specificity of the real‐time PCR assay was assessed by assaying it on six populations of M. minor and on 10 populations of six other Meloidogyne species. Only DNA from M. minor gave positive results in this assay. The assay was able to identify M. minor using DNA from a single juvenile independent from the DNA extraction method used.  相似文献   

12.
Strains of Trichoderma spp. are known for their antagonistic properties against plant pathogens, some are already on the market, others are under development. In order to launch a strain on the market its perfect identification at the species and strain levels is needed. The aim of this study is to (i) design a SCAR marker for specific identification of strain T1 of Trichoderma atroviride and (ii) monitor population dynamics of this strain in soil by real time PCR. A primer pair targeting a 141-bp fragment enabled specific detection of this strain without cross detection of autochthonous populations of Trichoderma in several field soils. In two soils, population dynamics assessed by real time PCR and the soil plate technique gave similar results. The molecular tools developed in this study satisfy the requirement for specific identification of the biocontrol strain and for detection and quantification of T. atroviride T1 population in complex environments.  相似文献   

13.
Laboratory, pot and field experiments investigated the effects of the fungus Zygorrhynchus moelleri on the growth of potato and on the reproduction of the potato cyst nematodes (PCN), Globodera pallida and G rostochiensis. Preliminary laboratory tests showed that Z. moelleri growth was favoured by temperatures and pH ranges commonly present in field soils. The fungus colonised potato roots in vitro and in compost or field soil. It also stimulated in vitro root growth of three potato cultivars. In pot experiments Z. moelleri stimulated potato growth, particularly in the presence of PCN attack. In field plots infested with a mixture of G pallida and G. rostochiensis, tuber yields were not increased after application of the fungus but, in G pallida‐infested plots, yields were significantly increased after drills were inoculated with Z. moelleri. The application of Z. moelleri had no apparent effects on nematode reproduction. Factors influencing the interactions between Z. moelleri, potato and potato cyst nematodes are discussed and the potential role of the fungus as a plant growth promoter in organic potato production considered.  相似文献   

14.
The microbial and nematode populations associated with two plants (tomato and cabbage) inoculated with the nematophagous fungus, Pochonia chlamydosporia var. chlamydosporia or root knot nematode (Meloidogyne incognita), or both, were compared with those in unplanted controls. The dominant factor affecting culturable microbial populations was found to be the presence or absence of tomato plants. Generally microbial colony counts were lowest in unplanted soil, small increases were associated with cabbage and significantly greater numbers with tomato plants. Differences in microbial diversity (estimated from community profiles of carbon substrate utlisation, using Biolog) were observed between planted and unplanted soils, however, there were few differences between soils with either of the two plants. The presence of P. chlamydosporia was associated with a reduction in the numbers of plant parasitic nematodes (51%-78%) including the migratory ectoparasites, whereas free-living nematodes, culturable bacteria and bacterial populations assessed by Biolog were unaffected by the application of fungus.  相似文献   

15.
Two PCR primer pairs specific for Helminthosporium solani, which causes silver scurf on potato tubers, were designed from nucleotide sequences of the nuclear ribosomal internal transcribed spacer regions of H. solani. Both primer pairs amplified a single product with DNA from 48 North American and European isolates of H. solani, but not with DNA from 42 other fungi. Primers also amplified a single product with DNA extracted from silver scurf lesions on potato tubers and other plant tissue inoculated with spores of H. solani. Detection of the fungus in infested soil was only possible with nested PCR and after processing soil with a bead beater. Specific amplification of H. solani DNA can be used to study the saprophytic and pathogenic activity of this fungus in soil and plant tissue.  相似文献   

16.
Rough lemon seedlings were grown in mycorrhizal-infested or phosphorus-amended soil (25 and 300 mg P/kg) in greenhouse experiments. Plants Were inoculated with the citrus burrowing nematode, Radopholus citrophilus (0, 50, 100, or 200 nematodes per pot). Six months later, mycorrhizal plants and nonmycorrhizal, high-P plants had larger shoot and root weights than did non-mycorrhizal, low-P plants. Burrowing nematode population densities were lower in roots of mycorrhizal or nonmycorrhizal, high-P plants than in roots of nonmycorrhizal, low-P plants; however, differences in plant growth between mycorrhizal and nonmycorrhizal plants were not significant with respect to initial nematode inoculum densities. Phosphorus content in leaf tissue was significantly greater in mycorrhizal and nonmycorrhizal, high-P plants compared with nonmycorrhizal, low-P plants. Nutrient concentrations of K, Mg, and Zn were unaffected by nematode parasitism, whereas P, Ca, Fe, and Mn were less in nematode-infected plants. Enhanced growth associated with root colonization by the mycorrhizal fungus appeared to result from improved P nutrition and not antagonism between the fungus and the nematode.  相似文献   

17.
The fungus Pochonia chlamydosporia is a potential biological control agent for plant parasitic nematodes, but to date, there has been little investigation of interactions (competitive, antagonistic or synergistic) between different isolates that occur together on roots and nematode galls. Real-time quantitative PCR (qPCR) has greatly improved the study of many fungi in situ on plant and nematode hosts, but distinguishing closely related isolates remains difficult. In this study, primers to discriminate P. chlamydosporia var. chlamydosporia and P. chlamydosporia var. catenulata were used to measure the relative abundance of isolates of the two varieties when inoculated singly or together on tomato plants. Also, sequence-characterised amplified polymorphic regions were identified to distinguish two different isolates of P. chlamydosporia var. chlamydosporia . Individual 1-cm root segments and nematode galls were excised, DNA extracted and subjected to real-time qPCR with the discriminatory primers. The qPCR method proved sensitive and reproducible and demonstrated that roots and nematode galls were not uniformly colonised by the fungi. Results indicated that the P. chalmydosporia var. catenulata isolate was more abundant on roots and eggs than P. chlamydosporia var. chlamydosporia , but all the isolates infected a similar proportion of nematode eggs. There was an indication that the abundance of each fungal isolate was reduced in co-inoculation experiments compared with single inoculations, but the number of root segments and galls colonised was not statistically significantly different.  相似文献   

18.
Populations of Fusarium oxysporum f. sp. spinaciae in root tissues and rhizosphere soil of diseased spinach plants were higher than in the root tissues and rhizosphere soil of healthy plants. Populations in soil rhizosphere were higher than in nonrhizosphere soil. The fungus populations were very low in the root tissues of the nonsusceptible strawberry, broccoli, chinese cabbage, and mustard grown in the infested field. The populations were low at the beginning of the season, increased, and remained high during the summer, then dropped in the fall. The fungus populations ranged from 1600 to 2600 propagules/g in the top 10 cm of soil, declined sharply between 11 and 20 cm, and were nondetectable between 41 and 60 cm.  相似文献   

19.
The use of supplementary foliar N, P and K to ameliorate the reduced nutrient uptake of potato plants infected by potato cyst nematode (PCN) were investigated. The potato cv. Pentland Dell achieved yields in plots not treated with oxamyl similar to those found in plots treated with oxamyl when supplementary foliar N or N plus K was applied to plots infested with 13 eggs g-1 soil of Globodera pallida. Yield improvements from foliar N applications were attributed to increased leaf area index but the reason for yield increases from foliar N plus K applications could not be clarified. In a second experiment, where PCN infestation was 76 eggs g-l soil, the potato cv. Sante gave yields up to 19% higher than a standard fertiliser practice when supplementary foliar N was applied to plots not treated with oxamyl. Nutrient analysis showed that without oxamyl there were significantly lower concentrations of N, P and K in whole plant dry matter at 58 days after planting (DAP) but higher levels of N in the fourth leaf dry matter at 98 DAP. Emergence was significantly advanced by the use of oxamyl in both experiments. Sante dramatically reduced populations of Globodera rostochiensis from an average of 76 eggs g-1 soil to 7 eggs g-1 soil. Foliar application of nutrients is a promising method of ameliorating the effects on potatoes of PCN invasion but the nutrient concentrations and timing of individual sprays need to be more closely matched to crop requirement than was possible in our experiments  相似文献   

20.
Four populations of Pratylenchus penetrans did not differ (P > 0.05) in their virulence or reproductive capability on Lahontan alfalfa. There was a negative relationship (r = -0 .7 9 ) between plant survival and nematode inocula densities at 26 ± 3 C in the greenhouse. All plants survived at an inoculum level (Pi) of 1 nematode/cm³ soil, whereas survival rates were 50 to 55% at 20 nematodes/cm³ soil. Alfalfa shoot and root weights were negatively correlated (r = - 0.87; P < 0.05) with nematode inoculum densities. Plant shoot weight reductions ranged from 13 % at Pi 1 nematode/cm³ soil to 69% for Pi 20 nematodes/cm³ soil, whereas root weight reductions ranged from 17% for Pi 1 nematode/cm³ soil to 75% for Pi 20 nematodes/cm³ soil. Maximum and minimum nematode reproduction (Pf/Pi) for the P. penetrans populations were 26.7 and 6.2 for Pi 1 and 20 nematodes/cm³ soil, respectively. There were negative correlations between nematode inoculum densities and plant survival (r = 0.84), and soil temperature and plant survival (r = -0 .7 8 ). Nematode reproduction was positively correlated to root weight (r = 0.89).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号