首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
RCASBP-M2C is a retroviral vector derived from an avian sarcoma/leukosis virus which has been modified so that it uses the envelope gene from an amphotropic murine leukemia virus (E. V. Barsov and S. H. Hughes, J. Virol. 70:3922-3929, 1996). The vector replicates efficiently in avian cells and infects, but does not replicate in, mammalian cells. This makes the vector useful for gene delivery, mutagenesis, and other applications in mammalian systems. Here we describe the development of a derivative of RCASBP-M2C, pGT-GFP, that can be used in gene trap experiments in mammalian cells. The gene trap vector pGT-GFP contains a green fluorescent protein (GFP) reporter gene. Appropriate insertion of the vector into genes causes GFP expression; this facilitates the rapid enrichment and cloning of the trapped cells and provides an opportunity to select subpopulations of trapped cells based on the subcellular localization of GFP. With this vector, we have generated about 90 gene-trapped lines using D17 and NIH 3T3 cells. Five trapped NIH 3T3 lines were selected based on the distribution of GFP in cells. The cellular genes disrupted by viral integration have been identified in four of these lines by using a 5' rapid amplification of cDNA ends protocol.  相似文献   

4.
High-throughput gene trapping is a random approach for inducing insertional mutations across the mouse genome. This approach uses gene trap vectors that simultaneously inactivate and report the expression of the trapped gene at the insertion site, and provide a DNA tag for the rapid identification of the disrupted gene. Gene trapping has been used by both public and private institutions to produce libraries of embryonic stem (ES) cells harboring mutations in single genes. Presently, approximately 66% of the protein coding genes in the mouse genome have been disrupted by gene trap insertions. Among these, however, genes encoding signal peptides or transmembrane domains (secretory genes) are underrepresented because they are not susceptible to conventional trapping methods. Here, we describe a high-throughput gene trapping strategy that effectively targets secretory genes. We used this strategy to assemble a library of ES cells harboring mutations in 716 unique secretory genes, of which 61% were not trapped by conventional trapping, indicating that the two strategies are complementary. The trapped ES cell lines, which can be ordered from the International Gene Trap Consortium (http://www.genetrap.org), are freely available to the scientific community.  相似文献   

5.
Gene trapping in embryonic stem (ES) cells is a proven method for large‐scale random insertional mutagenesis in the mouse genome. We have established an exchangeable gene trap system, in which a reporter gene can be exchanged for any other DNA of interest through Cre/mutant lox‐mediated recombination. We isolated trap clones, analyzed trapped genes, and constructed the database for Exchangeable Gene Trap Clones (EGTC) [ http://egtc.jp ]. The number of registered ES cell lines was 1162 on 31 August 2013. We also established 454 mouse lines from trap ES clones and deposited them in the mouse embryo bank at the Center for Animal Resources and Development, Kumamoto University, Japan. The EGTC database is the most extensive academic resource for gene‐trap mouse lines. Because we used a promoter‐trap strategy, all trapped genes were expressed in ES cells. To understand the general characteristics of the trapped genes in the EGTC library, we used Kyoto Encyclopedia of Genes and Genomes (KEGG) for pathway analysis and found that the EGTC ES clones covered a broad range of pathways. We also used Gene Ontology (GO) classification data provided by Mouse Genome Informatics (MGI) to compare the functional distribution of genes in each GO term between trapped genes in the EGTC mouse lines and total genes annotated in MGI. We found the functional distributions for the trapped genes in the EGTC mouse lines and for the RefSeq genes for the whole mouse genome were similar, indicating that the EGTC mouse lines had trapped a wide range of mouse genes.  相似文献   

6.
Potential problems of conventional transgenes include insertional disruption of the host genome and unpredictable, irreproducible expression of the transgene by random integration. Alternatively, human artificial chromosomes (HACs) can circumvent some of the problems. Although several HACs were generated and their mitotic stability was assessed, a practical way for introducing exogenous genes by the HACs has yet to be explored. In this study, we developed a novel HAC from sequence-ready human chromosome 21 by telomere-directed chromosome truncation and added a loxP sequence for site-specific insertion of circular DNA by the Cre/loxP system. This 21HAC vector, delivered to a human cell line HT1080 by microcell fusion, bound centromere proteins A, B, and C and was mitotically stable during long-term culture without selection. The EGFP gene inserted in the HAC vector expressed persistently. These results suggest that the HAC vector provides useful system for functional studies of genes in isogenic cell lines.  相似文献   

7.
8.
9.
10.
11.
12.
目的构建具有嘌呤霉素抗性基因捕获载体,扩大基因捕获载体的应用范围。方法用经改造的捕获载体(gene trapping vector)稳定转染HepG2.2.15肝癌细胞系,经嘌呤霉素筛选,制作单克隆细胞株。用PCR方法验证该载体的在细胞染色体中的整合,ELISA方法证明捕获载体捕获基因后的细胞的功能改变。结果嘌呤霉素抗性基因捕获载体整合在HepG2.2.15肝癌细胞的染色体上,并能影响细胞HBsAg和HBeAg的分泌。结论新构建的嘌呤霉素抗性基因捕获载体能在具有G418抗性的细胞中捕获有意义的目的基因。  相似文献   

13.
14.
Mechanisms through which tissues are formed and maintained remain unknown but are fundamental aspects in biology. Tissue-specific gene expression is a valuable tool to study such mechanisms. But in many biomedical studies, cell lines, rather than human body tissues, are used to investigate biological mechanisms Whether or not cell lines maintain their tissue-specific characteristics after they are isolated and cultured outside the human body remains to be explored. In this study, we applied a novel computational method to identify core genes that contribute to the differentiation of cell lines from various tissues. Several advanced computational techniques, such as Monte Carlo feature selection method, incremental feature selection method, and support vector machine (SVM) algorithm, were incorporated in the proposed method, which extensively analyzed the gene expression profiles of cell lines from different tissues. As a result, we extracted a group of functional genes that can indicate the differences of cell lines in different tissues and built an optimal SVM classifier for identifying cell lines in different tissues. In addition, a set of rules for classifying cell lines were also reported, which can give a clearer picture of cell lines in different issues although its performance was not better than the optimal SVM classifier. Finally, we compared such genes with the tissue-specific genes identified by the Genotype-tissue Expression project. Results showed that most expression patterns between tissues remained in the derived cell lines despite some uniqueness that some genes show tissue specificity.  相似文献   

15.
Gene trapping in embryonic stem (ES) cells was used to identify a novel gene involved in mouse development. In order to screen trapped ES cell lines for the presence of developmentally regulated genes, an in vitro differentiation test was used. One of the G418 resistant cell lines, in conjunction with the lacZ reporter gene, showed differential expression patterns under differentiated and undifferentiated conditions. The gene trap insertion in this cell line was germ-line transmitted and X-gal staining was used to assess the expression pattern of lacZ in embryos heterozygous for the trapped allele. The reporter gene's expression was detected in commissural neurons in the developing spinal cord, suggesting functions for the trapped gene in mouse neural development. Structural analysis of the cDNA revealed that this trapped gene, named PRDC (protein related to DAN and cerberus), is a novel gene that encodes a putative secretory protein consisting of 168 amino acid residues. PRDC gene product shows limited similarities to the products of DAN (differential screening-selected gene aberrative in neuroblastoma) and cerberus . (DAN is a possible tumor-suppressor for neuroblastoma in human. Cerberus can induce an ectopic head in Xenopus embryos when ectopically expressed.) These three gene products may form a novel family of signaling molecules.  相似文献   

16.
A gene-trap system is established for Drosophila. Unlike the conventional enhancer-trap system, the gene-trap system allows the recovery only of fly lines whose genes are inactivated by a P-element insertion, i.e., mutants. In the gene-trap system, the reporter gene expression reflects precisely the spatial and temporal expression pattern of the trapped gene. Flies in which gene trap occurred are identified by a two-step screening process using two independent markers, mini-w and Gal4, each indicating the integration of the vector downstream of the promoter of a gene (dual tagging). mini-w has its own promoter but lacks a polyadenylation signal. Therefore, mini-w mRNA is transcribed from its own promoter regardless of the vector integration site in the genome. However, the eyes of flies are not orange or red unless the vector is incorporated into a gene enabling mini-w to be spliced to a downstream exon of the host gene and polyadenylated at the 3' end. The promoter-less Gal4 reporter is expressed as a fusion mRNA only when it is integrated downstream of the promoter of a host gene. The exons of trapped genes can be readily cloned by vectorette RT-PCR, followed by RACE and PCR using cDNA libraries. Thus, the dual-tagging gene-trap system provides a means for (i) efficient mutagenesis, (ii) unequivocal identification of genes responsible for mutant phenotypes, (iii) precise detection of expression patterns of trapped genes, and (iv) rapid cloning of trapped genes.  相似文献   

17.
利用化疗药物5-氟尿嘧啶(5-Fu)对胃癌细胞株进行筛选和诱导,建立具有耐药性的胃癌细胞株.与亲代细胞株对比生长特性及基因表达谱,初步探讨胃癌细胞的耐药机制.采用四唑盐比色法(MTT)测定5-Fu 对胃癌细胞株BGC-823的半数抑制浓度(IC50);根据IC50设计5-Fu剂量,用大剂量的5-Fu逐渐递增间歇给药的方法,反复筛选,获得5株胃癌耐药细胞株.比较耐药细胞株和亲本细胞株的形态和生长特性,继而再用人类肿瘤基因芯片(human cancer arrays)比较测试亲本与耐药细胞株的基因表达谱差异;对其中189个上调基因和133个下调基因采用Gene Ontology中的BP(Biological Process)分析这些基因相关的功能,并用MAS2.0分析这些基因可能涉及的信号通路.结果提示,胃癌细胞株耐药(5-Fu)相关基因可能与转录因子信号转导、TNF受体介导的细胞凋亡和抗凋亡、细胞周期调节、细胞粘附及MAP激酶类的功能相关.对细胞周期、信号转导相关的6个基因采用定量PCR验证,结果与基因表达芯片结果一致.上述结果有利于进一步发现胃癌细胞的耐药基因和相关信号通路,探索抗胃癌治疗的耐药机制.  相似文献   

18.
C Peterson  R Legerski 《Gene》1991,107(2):279-284
We constructed a human cDNA expression vector by combining an episomal Epstein-Barr virus (EBV) vector with the expression cassette from the transient-expression vector, pCDM8. This new vector, designated pEBS7, exhibited high-level expression of reporter genes in normal and repair-deficient xeroderma pigmentosum cell lines. Reconstruction experiments indicated that marker genes diluted to a frequency of 10(-5) can be rescued on a single transfection dish. Moreover, derivative cell lines that constitutively express the gene encoding EBV nuclear antigen 1 exhibited a tenfold enhancement in the frequency of rescue of marker genes. The feasibility of preparing large-scale directional or nondirectional cDNA libraries in pEBS7 was demonstrated and reconstruction experiments indicated that marker genes could be rescued from either library with equal efficiency. These results establish a high-efficiency system for the isolation of genes by direct phenotypic selection in human mutant cell lines.  相似文献   

19.
20.
Expression of cloned genes at desired levels in cultured mammalian cells is essential for studying protein function. Controlled levels of expression have been difficult to achieve, especially for cell lines with low transfection efficiency or when expression of multiple genes is required. An internal ribosomal entry site (IRES) has been incorporated into many types of expression vectors to allow simultaneous expression of two genes. However, there has been no systematic quantitative analysis of expression levels in individual cells of genes linked by an IRES, and thus the broad use of these vectors in functional analysis has been limited. We constructed a set of retroviral expression vectors containing an IRES followed by a quantitative selectable marker such as green fluorescent protein (GFP) or truncated cell surface proteins CD2 or CD4. The gene of interest is placed in a multiple cloning site 5' of the IRES sequence under the control of the retroviral long terminal repeat (LTR) promoter. These vectors exploit the approximately 100-fold differences in levels of expression of a retrovirus vector depending on its site of insertion in the host chromosome. We show that the level of expression of the gene downstream of the IRES and the expression level and functional activity of the gene cloned upstream of the IRES are highly correlated in stably infected target cells. This feature makes our vectors extremely useful for the rapid generation of stably transfected cell populations or clonal cell lines expressing specific amounts of a desired protein simply by fluorescent activated cell sorting (FACS) based on the level of expression of the gene downstream of the IRES. We show how these vectors can be used to generate cells expressing high levels of the erythropoietin receptor (EpoR) or a dominant negative Smad3 protein and to generate cells expressing two different cloned proteins, Ski and Smad4. Correlation of a biologic effect with the level of expression of the protein downstream of the IRES provides strong evidence for the function of the protein placed upstream of the IRES.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号