首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
This paper presents a theoretical analysis of the conformation of a torsionally deformed segment of DNA containing two sites susceptible to stress-induced transitions in secondary structure. A mechanical analysis of the ensuing competitive behavior is developed and applied to several phenomena of possible biological relevance. First, a molecular lesion which disrupts base pairing without strand breakage (such as a pyrimidine dimer) is shown to provide an effective nucleation site for further stress-induced denaturation. A competition is established between strand separation at this lesion site and at the A + T-richest portion of the molecule. The relative importance of these two forms of melting is shown to depend upon the A + T-content of the sites involved, segment length, local environmental conditions and the magnitude of the imposed torsional deformation. A possible alternative mode of behavior of a stressed segment of DNA involves transitions from B-form to Z-form. The second application of this theory analyzes the interplay between B → Z transitions and local denaturation in torsionally stressed DNA. Finally, local melting is shown to be energetically preferred over transitions to A-form under physiologically reasonable conditions in vitro, due primarily to the greater degree of unwinding involved in melting.The mechanical theory presented here makes several simplifying assumptions regarding the nature of the transitions and the sequences involved. First, the theory is developed explicitly for the competition between two sites of possible transition, with no further consideration given to conformational degeneracy or sequence effects. These sites are regarded as being uniform in composition. A multistate, heteropolymeric statistical mechanical transition theory is required to account rigorously for degeneracy and the influence of base sequence. A preliminary formulation of such a theory is used to analyze the denaturation of a segment containing a site of disrupted base pairing.  相似文献   

6.
C J Benham 《Cell biophysics》1987,10(3):193-204
The linking difference, alpha, imposed upon a superhelically constrained DNA molecule must be partitioned between twisting and bending deformations. Transitions to alternative secondary structures can occur at susceptible sites, altering the local molecular twist by an amount delta Twtrans. That part of the linking difference not accommodated in this way, the residual linking difference alpha res, must be manifested as smooth torsional and flexural deformations of secondary structure. The competition among the alternative ways of accommodating the imposed linking difference alpha determines a stressed equilibrium state. The superhelical free energy, G(alpha), is the excess free energy of the equilibrium state at linking difference alpha above that of the relaxed state under identical conditions. In this paper a method is described by which the free energies associated both to linking, G(alpha), and to residual linking differences can be determined from data on superhelical conformational transitions. The application of this approach to previously published experimental data on the B-Z transition suggests that the free energy associated with alpha res is about 30% larger at substantial superhelicities than it is near the relaxed state. At the onset of transition the functional form of G(alpha) is shown to change in a manner dependent upon the length of the Z-susceptible site.  相似文献   

7.
8.
Abstract

Supercoiling causes global twist of DNA structure and the supercoiled state has wide influence on conformational transition. A statistical mechanical approach was made for prediction of the transition probability to non-B DNA structures under torsional stress. A conditional partition function was defined as the sum over all possible states of the DNA sequence with basepair 1 and basepair n being in B-form helix and a recurrence formula was developed which expressed the partition function for basepair n with those for less number of pairs. This new definition permits a quick enumeration of every configuration of secondary structures. Energetic parameters of all conformations concerned, involving B-form, interior loop, cruciform and Z-form, were included in the equation. The probability of transition to each non-B conformation could be derived from these conditional partition functions. For treatment of effects of superhelicity, supercoiling energy was considered, and a twist of each conformation was determined to minimize the supercoiling energy. As the twist itself affects the transition probability, the whole scheme of equations was solved by renormalization technique. The present method permits a simultaneous treatment of serveral types of conformations under a common torsional stress.

A set of energetic parameters of DNA secondary structures has been chosen for calculation. Some DNA sequences were submitted to the calculation, and all the sequences that we submitted gave stable convergence. Some of them have been investigated the critical supercoil density for the transition to non-B DNA structures. Even though the reliability of the set of parameters was not enough, the prediction of secondary structure transition showed good agreement with reported observation. Hence, the present algorithm can estimate the probability of local conformational change of DNA under a given supercoil density, and also be employed to predict some specific sequences in which conformational change is sensitive to superhelicity.  相似文献   

9.
DNA supercoiling and transcription in Escherichia coli: The FIS connection   总被引:5,自引:0,他引:5  
The nucleoid-associated protein FIS modulates the topology of DNA in a growth-phase dependent manner functioning homeostatically to counteract excessive levels of negative superhelicity. We propose that this is achieved by at least two mechanisms: the physical constraint of low levels of negative superhelicity by FIS binding to DNA and by a reduction in the expression and effectiveness of DNA gyrase. In addition, high levels of expression of the fis gene do themselves require a high negative superhelical density. On DNA substrates containing phased high affinity binding sites, as exemplified by the upstream activating sequence of the tyrT promoter, FIS forms tightly bent DNA structures, or microloops, that are necessary for the optimal expression of the promoter. We suggest that these microloops compensate in part for the FIS-induced lowering of the superhelical density.  相似文献   

10.
The linking difference, α, imposed upon a superhelically constrained DNA molecule must be partitioned between twisting and bending deformations. Transitions to alternative secondary structures can occur at susceptible sites, altering the local molecular twist by an amount ΔTw trans. That part of the linking difference not accommodated in this way, the residual linking difference αres, must be manifested as smooth torsional and flexural deformations of secondary structure. The competition among the alternative ways of accommodating the imposed linking difference α determines a stressed equilibrium state. The superhelical free energy,G(α), is the excess free energy of the equilibrium state at linking difference α above that of the relaxed state under identical conditions. In this paper a method is described by which the free energies associated both to linking,G(α), and to residual linking differences can be determined from data on superhelical conformational transitions. The application of this approach to previously published experimental data on the B-Z transition suggests that the free energy associated with αres is about 30% larger at substantial superhelicities than it is near the relaxed state. At the onset of transition the functional form ofG(α) is shown to change in a manner dependent upon the length of the Z-susceptible site.  相似文献   

11.
12.
The techniques of small-angle X-ray scattering and analysis that have been developed by the authors are used to investigate the influence of ionic strength on the superhelical conformation of native COP608 plasmid DNA in solution. For salt concentrations below 0.1 M, the superhelicity is partitioned between twisting (Tw) and writhing (Wr) in the ratio delta Tw/Wr = 2. Near the physiological salt concentration, [Na+] = 0.2 M, a co-operative transition is observed in which the pitch angle of the toroidal superhelix is drastically decreased. This results in an almost complete relaxation of writhe. At salt concentrations in excess of the threshold for this transition, the superhelical partitioning occurs in the ratio delta Tw/Wr greater than 25. Energetic considerations support the suggestion that this transition results from co-operative, superhelical B to Z transconformation reactions at susceptible sites. A method is discussed that will enable the direct measurement of this secondary structural transition by means of X-ray scattering.  相似文献   

13.
The effect of supercoil and temperature on the topology of phi X174 replicative form (RF) DNA was studied using single-strand specific endonucleases S1 and Bal31 as probes for cruciform extrusion and other structural perturbations of the B-helix. Both enzymes were found to recognize specifically and reproducibly over 30 sites, most of which were cleaved by both enzymes independent of the superhelicity of the genome. A negative superhelical density exceeding 0.06 stabilized a transition in the DNA conformation that generated several new cleavage sites for Bal31. The underlying structures appeared to be only transiently stable and were lost from in vitro supercoiled DNA during brief incubation at 65 degrees C. They were generally absent from in vivo supercoiled RF DNA of equal superhelicity as a consequence of the extraction and storage procedure. Mapping of the cleavage sites suggested that they were preferentially located near the beginnings and ends of genes and that the structural basis for at least some of them was the extrusion of relatively small palindromes into the cruciform state. Insertion of a short synthetic palindromic sequence into the phi X174 genome generated a supercoil-dependent, temperature-sensitive secondary structure that was cleaved in the Bal31 but not the S1 reaction, further supporting the hypothesis that even small cruciforms with stem size of 7 or less base pairs may be transiently stable. Subjecting supercoiled RF DNA to the typical S1 reaction conditions induced a topological shift that diminished all but one of the supercoil-induced Bal31 recognition sites and promoted the formation of one major new site.  相似文献   

14.
15.
16.
We have characterised the interaction of the Aeropyrum pernix origin recognition complex proteins (ORC1 and ORC2) with DNA using DNase I footprinting. Each protein binds upstream of its respective gene. However, ORC1 protein alone interacts more tightly with an additional region containing multiple origin recognition box (ORB) sites that we show to be a replication origin. At this origin, there are four ORB elements disposed either side of an A+T-rich region. An ORC1 protein dimer binds at each of these ORB sites. Once all four ORB sites have bound ORC1 protein, there is a transition to a higher-order assembly with a defined alteration in topology and superhelicity. Furthermore, after this transition, the A+T-rich region becomes sensitive to digestion by DNase I and P1 nuclease, revealing that the transition promotes distortion of the DNA in this region, presumably as a prelude to loading of MCM helicase.  相似文献   

17.
18.
Hud NV  Plavec J 《Biopolymers》2003,69(1):144-158
The fine structure of the DNA double helix and a number of its physical properties depend upon nucleotide sequence. This includes minor groove width, the propensity to undergo the B-form to A-form transition, sequence-directed curvature, and cation localization. Despite the multitude of studies conducted on DNA, it is still difficult to appreciate how these fundamental properties are linked to each other at the level of nucleotide sequence. We demonstrate that several sequence-dependent properties of DNA can be attributed, at least in part, to the sequence-specific localization of cations in the major and minor grooves. We also show that effects of cation localization on DNA structure are easier to understand if we divide all DNA sequences into three principal groups: A-tracts, G-tracts, and generic DNA. The A-tract group of sequences has a peculiar helical structure (i.e., B*-form) with an unusually narrow minor groove and high base-pair propeller twist. Both experimental and theoretical studies have provided evidence that the B*-form helical structure of A-tracts requires cations to be localized in the minor groove. G-tracts, on the other hand, have a propensity to undergo the B-form to A-form transition with increasing ionic strength. This property of G-tracts is directly connected to the observation that cations are preferentially localized in the major groove of G-tract sequences. Generic DNA, which represents the vast majority of DNA sequences, has a more balanced occupation of the major and minor grooves by cations than A-tracts or G-tracts and is thereby stabilized in the canonical B-form helix. Thus, DNA secondary structure can be viewed as a tug of war between the major and minor grooves for cations, with A-tracts and G-tracts each having one groove that dominates the other for cation localization. Finally, the sequence-directed curvature caused by A-tracts and G-tracts can, in both cases, be explained by the cation-dependent mismatch of A-tract and G-tract helical structures with the canonical B-form helix of generic DNA (i.e., a cation-dependent junction model).  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号