首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aim

To identify which factors distinguish ecologically successful mammalian clades (i.e., clades with a large combined range size) from less successful ones.

Location

Global.

Methods

We estimated the total range sizes for each individual mammalian subfamily and used phylogenetic regressions to identify the relative importance of factors related to colonization ability (body size and niche width) and adaptability (rate of evolution of body size and rate of evolution of climatic preference) in determining these ranges. We then estimated the importance of the same factors on the variation in diversification rate within mammals.

Results

We found strong support for a link between total range size and traits related to colonization ability. In particular, we found larger total range sizes among clades containing larger bodied species and clades with wider climatic niche width, while we did not find support for any predictors related to adaptability being linked to total range size. We also found that traits related to increased range size were associated with reduced diversification rate.

Main Conclusions

Range size for mammalian clades is mainly predicted by colonization ability, suggesting that most clades are limited by dispersal rather than their ability to adapt to new environments. The most ecologically successful (i.e., most widespread) mammalian clades tend to possess traits that reduce geographical isolation among populations, but the same traits tend to decrease diversification rates. Our results unveil a decoupling between evolutionary and ecological success in mammals.
  相似文献   

2.

Background

This study was motivated by the observation of unusual mitochondrial haplotype distributions and associated physiological differences between populations of the killifish Fundulus heteroclitus distributed along the Atlantic coast of North America. A distinct "northern" haplotype is fixed in all populations north of New Jersey, and does not appear south of New Jersey except in extreme upper-estuary fresh water habitats, and northern individuals are known to be more tolerant of hyposmotic conditions than southern individuals. Complete mitochondrial genomes were sequenced from individuals from northern coastal, southern coastal, and fresh water populations (and from out-groups). Comparative genomics approaches were used to test multiple evolutionary hypotheses proposed to explain among-population genome variation including directional selection and hybridization.

Results

Structure and organization of the Fundulus mitochondrial genome is typical of animals, yet subtle differences in substitution patterns exist among populations. No signals of directional selection or hybridization were detected. Mitochondrial genes evolve at variable rates, but all genes exhibit very low dN/dS ratios across all lineages, and the southern population harbors more synonymous polymorphism than other populations.

Conclusion

Evolution of mitochondrial genomes within Fundulus is primarily governed by interaction between strong purifying selection and demographic influences, including larger historical population size in the south. Though directional selection and hybridization hypotheses were not supported, adaptive processes may indirectly contribute to partitioning of variation between populations.  相似文献   

3.

Background

Domains containing the β-grasp fold are utilized in a great diversity of physiological functions but their role, if any, in soluble or small molecule ligand recognition is poorly studied.

Results

Using sensitive sequence and structure similarity searches we identify a novel superfamily containing the β-grasp fold. They are found in a diverse set of proteins that include the animal vitamin B12 uptake proteins transcobalamin and intrinsic factor, the bacterial polysaccharide export proteins, the competence DNA receptor ComEA, the cob(I)alamin generating enzyme PduS and the Nqo1 subunit of the respiratory electron transport chain. We present evidence that members of this superfamily are likely to bind a range of soluble ligands, including B12. There are two major clades within this superfamily, namely the transcobalamin-like clade and the Nqo1-like clade. The former clade is typified by an insert of a β-hairpin after the helix of the β-grasp fold, whereas the latter clade is characterized by an insert between strands 4 and 5 of the core fold.

Conclusion

Members of both clades within this superfamily are predicted to interact with ligands in a similar spatial location, with their specific inserts playing a role in the process. Both clades are widely represented in bacteria suggesting that this superfamily was derived early in bacterial evolution. The animal lineage appears to have acquired the transcobalamin-like proteins from low GC Gram-positive bacteria, and this might be correlated with the emergence of the ability to utilize B12 produced by gut bacteria.

Reviewers

This article was reviewed by Andrei Osterman, Igor Zhulin, and Arcady Mushegian.  相似文献   

4.
The tempo and mode of species diversification and phenotypic evolution vary widely across the tree of life, yet the relationship between these processes is poorly known. Previous tests of the relationship between rates of phenotypic evolution and rates of species diversification have assumed that species richness increases continuously through time. If this assumption is violated, simple phylogenetic estimates of net diversification rate may bear no relationship to processes that influence the distribution of species richness among clades. Here, we demonstrate that the variation in species richness among plethodontid salamander clades is unlikely to have resulted from simple time-dependent processes, leading to fundamentally different conclusions about the relationship between rates of phenotypic evolution and species diversification. Morphological evolutionary rates of both size and shape evolution are correlated with clade species richness, but are uncorrelated with simple estimators of net diversification that assume constancy of rates through time. This coupling between species diversification and phenotypic evolution is consistent with the hypothesis that clades with high rates of morphological trait evolution may diversify more than clades with low rates. Our results indicate that assumptions about underlying processes of diversity regulation have important consequences for interpreting macroevolutionary patterns.  相似文献   

5.

Background

Select retrotransposons in the long terminal repeat (LTR) class exhibit interindividual variation in DNA methylation that is altered by developmental environmental exposures. Yet, neither the full extent of variability at these “metastable epialleles,” nor the phylogenetic relationship underlying variable elements is well understood. The murine metastable epialleles, Avy and CabpIAP, result from independent insertions of an intracisternal A particle (IAP) mobile element, and exhibit remarkably similar sequence identity (98.5%).

Results

Utilizing the C57BL/6 genome we identified 10802 IAP LTRs overall and a subset of 1388 in a family that includes Avy and CabpIAP. Phylogenetic analysis revealed two duplication and divergence events subdividing this family into three clades. To characterize interindividual variation across clades, liver DNA from 17 isogenic mice was subjected to combined bisulfite and restriction analysis (CoBRA) for 21 separate LTR transposons (7 per clade). The lowest and highest mean methylation values were 59% and 88% respectively, while methylation levels at individual LTRs varied widely, ranging from 9% to 34%. The clade with the most conserved elements had significantly higher mean methylation across LTRs than either of the two diverged clades (p?=?0.040 and p?=?0.017). Within each mouse, average methylation across all LTRs was not significantly different (71%-74%, p?>?0.99).

Conclusions

Combined phylogenetic and DNA methylation analysis allows for the identification of novel regions of variable methylation. This approach increases the number of known metastable epialleles in the mouse, which can serve as biomarkers for environmental modifications to the epigenome.  相似文献   

6.

Background  

A positive relationship between diversification (i.e., speciation) and nucleotide substitution rates is commonly reported for angiosperm clades. However, the underlying cause of this relationship is often unknown because multiple intrinsic and extrinsic factors can affect the relationship, and these have confounded previous attempts infer causation. Determining which factor drives this oft-reported correlation can lend insight into the macroevolutionary process.  相似文献   

7.

Background  

During the last ten years, major advances have been made in characterizing and understanding the evolution of mitochondrial DNA, the most popular marker of molecular biodiversity. Several important results were recently reported using mammals as model organisms, including (i) the absence of relationship between mitochondrial DNA diversity and life-history or ecological variables, (ii) the absence of prominent adaptive selection, contrary to what was found in invertebrates, and (iii) the unexpectedly large variation in neutral substitution rate among lineages, revealing a possible link with species maximal longevity. We propose to challenge these results thanks to the bird/mammal comparison. Direct estimates of population size are available in birds, and this group presents striking life-history trait differences with mammals (higher mass-specific metabolic rate and longevity). These properties make birds the ideal model to directly test for population size effects, and to discriminate between competing hypotheses about the causes of substitution rate variation.  相似文献   

8.

Background

The tree of life is significantly asymmetrical - a result of differential speciation and extinction - but general causes of such asymmetry are unclear. Differences in niche partitioning are thought to be one possible general explanation. Ecological specialization might lead to increases in diversification rate or, alternatively, specialization might limit the evolutionary potential of specialist lineages and increase their extinction risk. Here we compare the diversification rates of gall-inducing and non-galling insect lineages. Compared with other insect herbivores feeding on the same host plant, gall-inducing insects feed on plant tissue that is more nutritious and less defended, and they do so in a favorable microhabitat that may also provide some protection from natural enemies. We use sister-taxon comparisons to test whether gall-inducing lineages are more host-specific than non-galling lineages, and more or less diverse than non-gallers. We evaluate the significance of diversity bipartitions under Equal Rates Markov models, and use maximum likelihood model-fitting to test for shifts in diversification rates.

Results

We find that, although gall-inducing insect groups are more host-specific than their non-galling relatives, there is no general significant increase in diversification rate in gallers. However, gallers are found at both extremes - two gall-inducing lineages are exceptionally diverse (Euurina sawflies on Salicaceae and Apiomorpha scale insects on Eucalytpus), and one gall-inducing lineage is exceptionally species-poor (Maskellia armored scales on Eucalyptus).

Conclusions

The effect of ecological specialization on diversification rates is complex in the case of gall-inducing insects, but host range may be an important factor. When a gall-inducing lineage has a host range approximate to that of its non-galling sister, the gallers are more diverse. When the non-galler clade has a much wider host range than the galler, the non-galler is also much more diverse. There are also lineage-specific effects, with gallers on the same host group exhibiting very different diversities. No single general model explains the observed pattern.  相似文献   

9.

Background

The mitochondrial genomes of snakes are characterized by an overall evolutionary rate that appears to be one of the most accelerated among vertebrates. They also possess other unusual features, including short tRNAs and other genes, and a duplicated control region that has been stably maintained since it originated more than 70 million years ago. Here, we provide a detailed analysis of evolutionary dynamics in snake mitochondrial genomes to better understand the basis of these extreme characteristics, and to explore the relationship between mitochondrial genome molecular evolution, genome architecture, and molecular function. We sequenced complete mitochondrial genomes from Slowinski's corn snake (Pantherophis slowinskii) and two cottonmouths (Agkistrodon piscivorus) to complement previously existing mitochondrial genomes, and to provide an improved comparative view of how genome architecture affects molecular evolution at contrasting levels of divergence.

Results

We present a Bayesian genetic approach that suggests that the duplicated control region can function as an additional origin of heavy strand replication. The two control regions also appear to have different intra-specific versus inter-specific evolutionary dynamics that may be associated with complex modes of concerted evolution. We find that different genomic regions have experienced substantial accelerated evolution along early branches in snakes, with different genes having experienced dramatic accelerations along specific branches. Some of these accelerations appear to coincide with, or subsequent to, the shortening of various mitochondrial genes and the duplication of the control region and flanking tRNAs.

Conclusion

Fluctuations in the strength and pattern of selection during snake evolution have had widely varying gene-specific effects on substitution rates, and these rate accelerations may have been functionally related to unusual changes in genomic architecture. The among-lineage and among-gene variation in rate dynamics observed in snakes is the most extreme thus far observed in animal genomes, and provides an important study system for further evaluating the biochemical and physiological basis of evolutionary pressures in vertebrate mitochondria.  相似文献   

10.
Clade diversification is a central topic in macroevolutionary studies. Recently, it has been shown that diversification rates appear to decelerate over time in many clades. What causes this deceleration remains unclear, but it has been proposed that competition for limited resources between sympatric, ecologically similar species slows diversification. Employing carnivoran mammals as a model system, we test this hypothesis using a comprehensive time‐calibrated phylogeny. We also explore several conceptually related explanations including limited geographic area and limited rates of niche evolution. We find that diversification slowdowns are strong in carnivorans. Surprisingly, these slowdowns are independent of geographic range overlap between related species and are also decoupled from rates of niche evolution, suggesting that slowdowns are unrelated to competition and niche filling. When controlling for the effects of clade diversity, diversification slowdowns appear independent of geographic area. There is a significant effect of clade diversity on diversification slowdowns, but simulations show that this relationship may arise as a statistical artifact (i.e., greater clade diversity increases the ability of the gamma statistic to refute constant diversification). Overall, our results emphasize the need to test hypotheses about the causes of diversification slowdowns with ecological data, rather than assuming ecological processes from phylogenies alone.  相似文献   

11.

Background

Despite the demonstration that geminiviruses, like many other single stranded DNA viruses, are evolving at rates similar to those of RNA viruses, a recent study has suggested that grass-infecting species in the genus Mastrevirus may have co-diverged with their hosts over millions of years. This "co-divergence hypothesis" requires that long-term mastrevirus substitution rates be at least 100,000-fold lower than their basal mutation rates and 10,000-fold lower than their observable short-term substitution rates. The credibility of this hypothesis, therefore, hinges on the testable claim that negative selection during mastrevirus evolution is so potent that it effectively purges 99.999% of all mutations that occur.

Results

We have conducted long-term evolution experiments lasting between 6 and 32 years, where we have determined substitution rates of between 2 and 3 × 10-4 substitutions/site/year for the mastreviruses Maize streak virus (MSV) and Sugarcane streak Réunion virus (SSRV). We further show that mutation biases are similar for different geminivirus genera, suggesting that mutational processes that drive high basal mutation rates are conserved across the family. Rather than displaying signs of extremely severe negative selection as implied by the co-divergence hypothesis, our evolution experiments indicate that MSV and SSRV are predominantly evolving under neutral genetic drift.

Conclusion

The absence of strong negative selection signals within our evolution experiments and the uniformly high geminivirus substitution rates that we and others have reported suggest that mastreviruses cannot have co-diverged with their hosts.  相似文献   

12.
Biologists have long searched for mechanisms responsible for the increase in species richness with decreasing latitude. The strong correlation between species richness and climate is frequently interpreted as reflecting a causal link via processes linked to energy or evolutionary rates. Here, we investigate how the aggregation of clades, as dictated by phylogeny, can give rise to significant climate–richness gradients without gradients in diversification or environmental carrying capacity. The relationship between climate and species richness varies considerably between clades, regions and time periods in a global-scale phylogenetically informed analysis of all terrestrial mammal species. Many young clades show negative richness–temperature slopes (more species at cooler temperatures), with the ages of these clades coinciding with the expansion of temperate climate zones in the late Eocene. In carnivores, we find steeply positive richness–temperature slopes in clades with restricted distributions and tropical origins (e.g. cat clade), whereas widespread, temperate clades exhibit shallow, negative slopes (e.g. dog–bear clade). We show that the slope of the global climate–richness gradient in mammals is driven by aggregating Chiroptera (bats) with their Eutherian sister group. Our findings indicate that the evolutionary history should be accounted for as part of any search for causal links between environment and species richness.  相似文献   

13.

Background & aims

Herbivore-driven changes to soil properties can influence the decomposition rate of organic material and therefore soil carbon cycling within grassland ecosystems. We investigated how aboveground foraging mammalian and invertebrate herbivores affect mineral soil decomposition rates and associated soil properties in two subalpine vegetation types (short-grass and tall-grass) with different grazing histories.

Methods

Using exclosures with differing mesh sizes, we progressively excluded large, medium and small mammals and invertebrates from the two vegetation types in the Swiss National Park (SNP). Mineral soil decomposition rates were assessed using the cotton cloth (standard substrate) method between May and September 2010.

Results

Decomposition displayed strong spatio-temporal variability, best explained by soil temperature. Exclusion of large mammals increased decomposition rates, but further exclusion reduced decomposition rates again in the lightly grazed (tall-grass) vegetation. No difference among treatments was found in the heavily grazed (short-grass) vegetation. Heavily grazed areas had higher decomposition rates than the lightly grazed areas because of higher soil temperatures. Microbial biomass carbon and soil C:N ratio were also linked to spatio-temporal decomposition patterns, but not to grazing history.

Conclusions

Despite altering some of the environmental controls of decomposition, cellulose decomposition rates in the SNP’s subalpine grasslands appear to be mostly resistant to short-term herbivore exclusion.  相似文献   

14.

Background

Mitochondrial introgression may result in the mitochondrial genome of one species being replaced by that of another species without leaving any trace of past hybridization in its nuclear genome. Such introgression can confuse the species genealogy estimates and lead to absurd inferences of species history. We used a phylogenetic approach to explore the potential mitochondrial genome introgression event(s) between two closely related green pond frog species, Pelophylax nigromaculatus and P. plancyi.

Results

DNA sequence data of one mitochondrial and two nuclear genes from an extensive sampling of the two species were collected, and the genealogies of the three genes were constructed and compared. While the two nuclear genes congruently showed mutual reciprocal monophyly of both species, the mitochondrial phylogeny separated a Korean P. nigromaculatus clade, a paraphyletic central China P. plancyi assemblage, and a large well-supported introgression clade. Within the introgression clade, the mitochondrial haplotypes of the two species were mixed together. This reticulated pattern can be most parsimoniously explained by an ancient mitochondrial introgression event from P. plancyi to P. nigromaculatus that occurred at least 1.36 MYA, followed by multiple recent introgression events from P. nigromaculatus back to P. plancyi within the last 0.63 MY. The re-constitution of previously co-adapted genomes in P. plancyi may be responsible for the recent rampant introgression events. The Korean P. nigromaculatus clade likely represents the only surviving "true" mitochondrial lineage of P. nigromaculatus, and the central China P. plancyi assemblage likely represents the "original" P. plancyi mitochondrial lineage. Refugia in the Korean Peninsula and central China may have played a significant role in preserving these ancient lineages.

Conclusions

The majority of individuals in the two species have either introgressed (P. nigromaculatus) or reclaimed (P. plancyi) mitochondrial genomes while no trace of past hybridization in their nuclear genomes was detected. Asymmetrical reproductive ability of hybrids and continuous backcrossing are likely responsible for the observed mitochondrial introgression. This case is unique in that it includes an ancient "forward" introgression and many recent "backward" introgressions, which re-constitutes the original nuclear and mitochondrial genomes of P. plancyi. This hybrid system provides an excellent opportunity to study cyto-nuclear interaction and co-adaptation.  相似文献   

15.
Theory predicts that clades diversifying via sympatric speciation will exhibit high diversification rates. However, the expected rate of diversification in clades characterized by allopatric speciation is less clear. Previous studies have documented significantly higher speciation rates in freshwater fish clades diversifying via sympatric versus allopatric modes, leading to suggestions that the geographic pattern of speciation can be inferred solely from knowledge of the diversification rate. We tested this prediction using an example from darters, a clade of approximately 200 species of freshwater fishes endemic to eastern North America. A resolved phylogeny was generated using mitochondrial DNA gene sequences for logperches, a monophyletic group of darters composed of 10 recognized species. Divergence times among logperch species were estimated using a fossil calibrated molecular clock in centrarchid fishes, and diversification rates in logperches were estimated using several methods. Speciation events in logperches are recent, extending from 4.20 +/- 1.06 million years ago (mya) to 0.42 +/- 0.22 mya, with most speciation events occurring in the Pleistocene. Diversification rates are high in logperches, at some nodes exceeding rates reported for well-studied adaptive radiations such as Hawaiian silverswords. The geographic pattern of speciation in logperches was investigated by examining the relationship between degree of sympatry and the absolute age of the contrast, with the result that diversification in logperches appears allopatric. The very high diversification rate observed in the logperch phylogeny is more similar to freshwater fish clades thought to represent examples of sympatric speciation than to clades representing allopatric speciation. These results demonstrate that the geographic mode of speciation for a clade cannot be inferred from the diversification rate. The empirical observation of high diversification rates in logperches demonstrates that allopatric speciation can occur rapidly.  相似文献   

16.
The southeastern United States (U.S.) has experienced dynamic climatic changes over the past several million years that have impacted species distributions. In many cases, contiguous ranges were fragmented and a lack of gene flow between allopatric populations led to genetic divergence and speciation. The Southern Red-backed Salamander, Plethodon serratus, inhabits four widely disjunct regions of the southeastern U.S.: the southern Appalachian Mountains, the Ozark Plateau, the Ouachita Mountains, and the Southern Tertiary Uplands of central Louisiana. We integrated phylogenetic analysis of mitochondrial DNA sequences (1399 base pairs) with ecological niche modeling to test the hypothesis that climate fluctuations during the Pleistocene drove the isolation and divergence of disjunct populations of P. serratus. Appalachian, Ozark, and Louisiana populations each formed well-supported clades in our phylogeny. Ouachita Mountain populations sorted into two geographically distinct clades; one Ouachita clade was sister to the Louisiana clade whereas the other Ouachita clade grouped with the Appalachian and Ozark clades but relationships were unresolved. Plethodon serratus diverged from its sister taxon, P. sherando, ~5.4 million years ago (Ma), and lineage diversification within P. serratus occurred ~1.9–0.6 Ma (Pleistocene). Ecological niche models showed that the four geographic isolates of P. serratus are currently separated by unsuitable habitat, but the species was likely more continuously distributed during the colder climates of the Pleistocene. Our results support the hypothesis that climate-induced environmental changes during the Pleistocene played a dominant role in driving isolation and divergence of disjunct populations of P. serratus.  相似文献   

17.

Background

The orders Ascaridida, Oxyurida, and Spirurida represent major components of zooparasitic nematode diversity, including many species of veterinary and medical importance. Phylum-wide nematode phylogenetic hypotheses have mainly been based on nuclear rDNA sequences, but more recently complete mitochondrial (mtDNA) gene sequences have provided another source of molecular information to evaluate relationships. Although there is much agreement between nuclear rDNA and mtDNA phylogenies, relationships among certain major clades are different. In this study we report that mtDNA sequences do not support the monophyly of Ascaridida, Oxyurida and Spirurida (clade III) in contrast to results for nuclear rDNA. Results from mtDNA genomes show promise as an additional independently evolving genome for developing phylogenetic hypotheses for nematodes, although substantially increased taxon sampling is needed for enhanced comparative value with nuclear rDNA. Ultimately, topological incongruence (and congruence) between nuclear rDNA and mtDNA phylogenetic hypotheses will need to be tested relative to additional independent loci that provide appropriate levels of resolution.

Results

For this comparative phylogenetic study, we determined the complete mitochondrial genome sequences of three nematode species, Cucullanus robustus (13,972 bp) representing Ascaridida, Wellcomia siamensis (14,128 bp) representing Oxyurida, and Heliconema longissimum (13,610 bp) representing Spirurida. These new sequences were used along with 33 published nematode mitochondrial genomes to investigate phylogenetic relationships among chromadorean orders. Phylogenetic analyses of both nucleotide and amino acid sequence datasets support the hypothesis that Ascaridida is nested within Rhabditida. The position of Oxyurida within Chromadorea varies among analyses; in most analyses this order is sister to the Ascaridida plus Rhabditida clade, with representative Spirurida forming a distinct clade, however, in one case Oxyurida is sister to Spirurida. Ascaridida, Oxyurida, and Spirurida (the sampled clade III taxa) do not form a monophyletic group based on complete mitochondrial DNA sequences. Tree topology tests revealed that constraining clade III taxa to be monophyletic, given the mtDNA datasets analyzed, was a significantly worse result.

Conclusion

The phylogenetic hypotheses from comparative analysis of the complete mitochondrial genome data (analysis of nucleotide and amino acid datasets, and nucleotide data excluding 3rd positions) indicates that nematodes representing Ascaridida, Oxyurida and Spirurida do not share an exclusive most recent common ancestor, in contrast to published results based on nuclear ribosomal DNA. Overall, mtDNA genome data provides reliable support for nematode relationships that often corroborates findings based on nuclear rDNA. It is anticipated that additional taxonomic sampling will provide a wealth of information on mitochondrial genome evolution and sequence data for developing phylogenetic hypotheses for the phylum Nematoda.
  相似文献   

18.
Stenotopic specialization to a fragmented habitat promotes the evolution of genetic structure. It is not yet clear whether small-scale population structure generally translates into large-scale intraspecific divergence. In the present survey of mitochondrial genetic structure in the Lake Tanganyika endemic Altolamprologus (Teleostei, Cichlidae), a rock-dwelling cichlid genus comprising A. compressiceps and A. calvus, habitat-induced population fragmentation contrasts with weak phylogeographic structure and recent divergence among genetic clades. Low rates of dispersal, perhaps along gastropod shell beds that connect patches of rocky habitat, and periodic secondary contact during lake level fluctuations are apparently sufficient to maintain genetic connectivity within each of the two Altolamprologus species. The picture of genetic cohesion was interrupted by a single highly divergent haplotype clade in A. compressiceps restricted to the northern part of the lake. Comparisons between mitochondrial and nuclear phylogenetic reconstructions suggested that the divergent mitochondrial clade originated from ancient interspecific introgression. Finally, ‘isolation-with-migration’ models indicated that divergence between the two Altolamprologus species was recent (67–142 KYA) and proceeded with little if any gene flow. As in other rock-dwelling cichlids, recent population expansions were inferred in both Altolamprologus species, which may be connected with drastic lake level fluctuations.  相似文献   

19.

Background  

It has long been known that rates of synonymous substitutions are unusually low in mitochondrial genes of flowering and other land plants. Although two dramatic exceptions to this pattern have recently been reported, it is unclear how often major increases in substitution rates occur during plant mitochondrial evolution and what the overall magnitude of substitution rate variation is across plants.  相似文献   

20.

Motivation

Genome-wide screens for structured ncRNA genes in mammals, urochordates, and nematodes have predicted thousands of putative ncRNA genes and other structured RNA motifs. A prerequisite for their functional annotation is to determine the reading direction with high precision.

Results

While folding energies of an RNA and its reverse complement are similar, the differences are sufficient at least in conjunction with substitution patterns to discriminate between structured RNAs and their complements. We present here a support vector machine that reliably classifies the reading direction of a structured RNA from a multiple sequence alignment and provides a considerable improvement in classification accuracy over previous approaches.

Software

RNAstrand is freely available as a stand-alone tool from http://www.bioinf.uni-leipzig.de/Software/RNAstrand and is also included in the latest release of RNAz, a part of the Vienna RNA Package.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号