首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The lactose permease is an integral membrane protein that cotransports H(+) and lactose into the bacterial cytoplasm. Previous work has shown that bulky substitutions at glycine 64, which is found on the cytoplasmic edge of transmembrane segment 2 (TMS-2), cause a substantial decrease in the maximal velocity of lactose uptake without significantly affecting the K(m) values (Jessen-Marshall, A. E., Parker, N. J., and Brooker, R. J. (1997) J. Bacteriol. 179, 2616-2622). In the current study, mutagenesis was conducted along the face of TMS-2 that contains glycine-64. Single amino acid substitutions that substantially changed side-chain volume at codons 52, 57, 59, 63, and 66 had little or no effect on transport activity, whereas substitutions at codons 49, 53, 56, and 60 were markedly defective and/or had lower levels of expression. According to helical wheel plots, Phe-49, Ser-53, Ser-56, Gln-60, and Gly-64 form a continuous stripe along one face of TMS-2. Several of the TMS-2 mutants (S56Y, S56L, S56Q, Q60A, and Q60V) were used as parental strains to isolate mutants that restore transport activity. These mutations were either first-site mutations or second-site suppressors in TMS-1, TMS-2, TMS-7 or TMS-11. A kinetic analysis showed that the suppressors had a higher rate of lactose transport compared with the corresponding parental strains. Overall, the results of this study are consistent with the notion that a face on TMS-2, containing Phe-49, Ser-53, Ser-56, Gln-60, and Gly-64, plays a critical role in conformational changes associated with lactose transport. We hypothesize that TMS-2 slides across TMS-7 and TMS-11 when the lactose permease interconverts between the C1 and C2 conformations. This idea is discussed within the context of a revised model for the structure of the lactose permease.  相似文献   

2.
By using a lactose permease mutant containing a single Cys residue in place of Val 331 (helix X), conformational changes induced by ligand binding were studied. With right-side-out membrane vesicles containing Val 331-->Cys permease, lactose transport is inactivated by either N-ethylmaleimide (NEM) or 7-diethylamino-3-(4'-maleimidylphenyl)-4-methylcoumarin (CPM). Remarkably, beta,D-galactopyranosyl 1-thio-beta,D-galactopyranoside (TDG) enhances the rate of inactivation by CPM, a hydrophobic sulfhydryl reagent, whereas NEM inactivation is attenuated by the ligand. Val 331-->Cys permease was then purified and studied in dodecyl-beta,D-maltoside by site-directed fluorescence spectroscopy. The reactivity of Val 331-->Cys permease with 2-(4'-maleimidylanilino)-naphthalene-6-sulfonic acid (MIANS) is not changed over a low range of TDG concentrations (< 0.8 mM), but the fluorescence of the MIANS-labeled protein is quenched in a saturable manner (apparent Kd approximately equal to 0.12 mM) without a change in emission maximum. In contrast, over a higher range of TDG concentrations (1-10 mM), the reactivity of Val 331-->Cys permease with MIANS is enhanced and the emission maximum of MIANS-labeled permease is blue shifted by 3-7 nm. Furthermore, the fluorescence of MIANS-labeled Val 331 -->Cys permease is quenched by both acrylamide and iodide, but the former is considerably more effective. A low concentration of TDG (0.2 mM) does not alter quenching by either compound, whereas a higher concentration of ligand (10 mM) decreases the quenching constant for iodide by about 50% and for acrylamide by about 20%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
A peptide motif, GXXX(D/E)(R/K)XG(R/K)(R/K), has been conserved in a large group of evolutionarily related membrane proteins that transport small molecules across the membrane. Within the superfamily, this motif is located in two cytoplasmic loops that connect transmembrane segments 2 and 3 and transmembrane segments 8 and 9. In a previous study concerning the loop 2-3 motif of the lactose permease (A. E. Jessen-Marshall, N. J. Paul, and R. J. Brooker, J. Biol. Chem. 270:16251-16257, 1995), it was shown that the first-position glycine and the fifth-position aspartate are critical for transport activity since a variety of site-directed mutations greatly diminished the rate of transport. In the current study, a similar approach was used to investigate the functional significance of the conserved residues in the loop 8-9 motif. In the wild-type lactose permease, however, this motif has been evolutionarily modified so that the first-position glycine (an alpha-helix breaker) has been changed to proline (also a helix breaker); the fifth position has been changed to an asparagine; and one of the basic residues has been altered. In this investigation, we made a total of 28 single and 7 double mutants within the loop 8-9 motif to explore the functional importance of this loop. With regard to transport activity, amino acid substitutions within the loop 8-9 motif tend to be fairly well tolerated. Most substitutions produced permeases with normal or mildly defective transport activities. However, three substitutions at the first position (i.e., position 280) resulted in defective lactose transport. Kinetic analysis of position 280 mutants indicated that the defect decreased the Vmax for lactose uptake. Besides substitutions at position 280, a Gly-288-to-Thr mutant had the interesting property that the kinetic parameters for lactose uptake were normal yet the rates of lactose efflux and exchange were approximately 10-fold faster than wild-type rates. The results of this study suggest that loop 8-9 may facilitate conformational changes that translocate lactose.  相似文献   

4.
Green AL  Brooker RJ 《Biochemistry》2001,40(40):12220-12229
Previous work on the lactose permease of Escherichia coli has shown that mutations along a face of predicted transmembrane segment 2 (TMS-2) play a critical role in conformational changes associated with lactose transport [Green, A. L., Anderson, E. J., and Brooker, R. J. (2000) J. Biol. Chem. 275, 23240-23246]. In the current study, mutagenesis was conducted along the side of predicted TMS-8 that contains the first amino acid in the conserved loop 8/9 motif. Several substitutions at positions 261, 265, 272, and 276 were markedly defective for downhill lactose transport although these mutants were well expressed. Substitutions along the entire side of TMS-8 containing the first amino acid in the loop 8/9 motif displayed defects in uphill lactose transport. Again, substitutions at positions 261, 265, 268, 272, and 276 were the most defective, with several of these mutants showing no lactose accumulation against a gradient. According to helical wheel plots, Phe-261, Thr-265, Gly-268, Asn-272, and Met-276 form a continuous stripe along one face of TMS-8. These results are discussed according to our hypothetical model, in which the two halves of the protein form a rotationally symmetrical dimer. In support of this model, alignment of predicted TMS-2 and TMS-8 shows an agreement between the amino acid residues in these transmembrane segments that are critical for lactose transport activities.  相似文献   

5.
Six single-Trp mutants were engineered by individually reintroducing each of the native Trp residues into a functional lactose permease mutant devoid of Trp (Trp-less permease; Menezes ME, Roepe PD, Kaback HR, 1990, Proc Natl Acad Sci USA 87:1638-1642), and fluorescent properties were studied with respect to solvent accessibility, as well as alterations produced by ligand binding. The emission of Trp 33, Trp 78, Trp 171, and Trp 233 is strongly quenched by both acrylamide and iodide, whereas Trp 151 and Trp 10 display a decrease in fluorescence in the presence of acrylamide only and no quenching by iodide. Of the six single-Trp mutants, only Trp 33 exhibits a significant change in fluorescence (ca. 30% enhancement) in the presence of the substrate analog beta,D-galactopyranosyl 1-thio-beta,D-galactopyranoside (TDG). This effect was further characterized by site-directed fluorescent studies with purified single-Cys W33-->C permease labeled with 2-(4'-maleimidylanilino)-naphthalene-6-sulfonic acid (MIANS). Titration of the change in the fluorescence spectrum reveals a 30% enhancement accompanied with a 5-nm blue shift in the emission maximum, and single exponential behavior with an apparent KD of 71 microM. The effect of substrate binding on the rate of MIANS labeling of single-Cys 33 permease was measured in addition to iodide and acrylamide quenching of the MIANS-labeled protein. Complete blockade of labeling is observed in the presence of TDG, as well as a 30% decrease in accessibility to iodide with no change in acrylamide quenching. Overall, the findings are consistent with the proposal (Wu J, Frillingos S, Kaback HR, 1995a, Biochemistry 34:8257-8263) that ligand binding induces a conformational change at the C-terminus of helix I such that Pro 28 and Pro 31, which are on one face, become more accessible to solvent, whereas Trp 33, which is on the opposite face, becomes less accessible to the aqueous phase. The findings regarding accessibility to collisional quenchers are also consistent with the predicted topology of the six native Trp residues in the permease.  相似文献   

6.
Although truncation of the hydrophilic C-terminal tail of the lactose (lac) permease of Escherichia coli (residues 401-417) has no significant effect on membrane insertion, stability, or transport activity, sequential substitution of stop codons for amino acid codons 398-401 leads to a progressive increase in transport activity and in the lifetime of the permease in the membrane (McKenna, E., Hardy, D., Pastore, J. C., and Kaback, H. R. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 2969-2973). Thus, either the last turn of putative helix XII or the region immediately distal to helix XII is important for proper folding, and hence, activity and resistance to proteolysis. In an effort to determine whether this 3-4-amino acid sequence comprises the final turn of the last transmembrane helix of the permease or the beginning of the hydrophilic C-terminal tail, we deleted residues 401-417 and replaced amino acid residues 397-400 with either 4 Leu residues ("helix making") or Gly-Pro-Gly-Pro ("helix breaking"). Permease with 4 Leu residues at positions 397-400 is fully functional with respect to transport and completely stable, as judged by [35S]methionine labeling experiments. In marked contrast, permease with Gly-Pro-Gly-Pro at the same positions exhibits minimal activity and is unstable. The results imply that the amino acid sequence ... Val397Phe398Thr399 Leu400 ... in lac permease may comprise the last turn of transmembrane helix XII, rather than the beginning of the C-terminal tail.  相似文献   

7.
Lactose transport in membrane vesicles containing lactose permease with a single Cys residue in place of Val 315 is inactivated by N-ethylmaleimide in a manner that is stimulated by substrate or by a H+ electrochemical gradient (delta microH+; Sahin-Tóth M, Kaback HR, 1993, Protein Sci 2:1024-1033). The findings are confirmed and extended in this communication. Purified, reconstituted Val 315-->Cys permease reacts with N-ethylmaleimide or hydrophobic fluorescent maleimides but not with a membrane impermeant thiol reagent, and beta-galactosides specifically stimulate the rate of labeling. Furthermore, the reactivity of purified Val 315-->Cys permease is enhanced by imposition of a membrane potential (delta psi, interior negative). The results indicate that either ligand binding or delta psi induces a conformational change in the permease that brings the N-terminus of helix X into an environment that is more accessible from the lipid phase.  相似文献   

8.
The lactose-specific phosphocarrier protein enzyme II of the bacterial phosphoenol-pyruvate-dependent phosphotransferase system of Staphylococcus aureus was modified by site-specific mutagenesis on the corresponding lacE gene in order to replace the histidine residues 245, 274 and 510 and the cysteine residue 476 of the amino acid sequence with a serine residue. The wild-type and mutant genes were expressed in Escherichia coli and the gene products were characterized in different in vitro test systems. In vitro phosphorylation studies on mutant derivatives of the lactose-specific enzyme II led to the conclusion that cysteine residue 476 is the active-site for phosphorylation of this enzyme II by a phospho-enzyme III of the same sugar specificity. A cysteine residue phosphorylated intermediate was first postulated for the mannitol-specific enzyme II of E. coli and studies performed independently concerning the lactose-specific enzyme II of Lactobacillus casei are in agreement with the above results.  相似文献   

9.
M Bogdanov  W Dowhan 《The EMBO journal》1998,17(18):5255-5264
Previously we presented evidence that phosphatidylethanolamine (PE) acts as a molecular chaperone in the folding of the polytopic membrane protein lactose permease (LacY) of Escherichia coli. Here we provide more definitive evidence supporting the chaperone properties of PE. Membrane insertion of LacY prevents its irreversible aggregation, and PE participates in a late step of conformational maturation. The temporal requirement for PE was demonstrated in vitro using a coupled translation-membrane insertion assay that allowed the separation of membrane insertion from phospholipid-assisted folding. LacY was folded properly, as assessed by recognition with conformation-specific monoclonal antibodies, when synthesized in the presence of PE-containing inside-out membrane vesicles (IOVs) or in the presence of IOVs initially lacking PE but supplemented with PE synthesized in vitro either co- or post-translationally. The presence of IOVs lacking PE and containing anionic phospholipids or no addition of IOVs resulted in misfolded or aggregated LacY, respectively. Therefore, critical folding steps occur after membrane insertion dependent on the interaction of LacY with PE to prevent illicit interactions which lead to misfolding of LacY.  相似文献   

10.
11.
Cytoplasmic loop 4-5 of the melibiose permease from Escherichia coli is essential for the process of Na+-sugar translocation (Abdel-Dayem, M., Basquin, C., Pourcher, T., Cordat, E., and Leblanc, G. (2003) J. Biol. Chem. 278, 1518-1524). In the present report, we analyze functional consequences of mutating each of the three acidic amino acids in this loop into cysteines. Among the mutants, only the E142C substitution impairs selectively Na+-sugar translocation. Because R141C has a similar defect, we investigated these two mutants in more detail. Liposomes containing purified mutated melibiose permease were adsorbed onto a solid supported lipid membrane, and transient electrical currents resulting from different substrate concentration jumps were recorded. The currents evoked by a melibiose concentration jump in the presence of Na+, previously assigned to an electrogenic conformational transition (Meyer-Lipp, K., Ganea, C., Pourcher, T., Leblanc, G., and Fendler, K. (2004) Biochemistry 43, 12606-12613), were much smaller for the two mutants than the corresponding signals in cysteineless MelB. Furthermore, in R141C the stimulating effect of melibiose on Na+ affinity was lost. Finally, whereas tryptophan fluorescence spectroscopy revealed impaired conformational changes upon melibiose binding in the mutants, fluorescence resonance energy transfer measurements indicated that the mutants still show cooperative modification of their sugar binding sites by Na+. These data suggest that: 1) loop 4-5 contributes to the coordinated interactions between the ion and sugar binding sites; 2) it participates in an electrogenic conformational transition after melibiose binding that is essential for the subsequent obligatory coupled translocation of substrates. A two-step mechanism for substrate translocation in the melibiose permease is suggested.  相似文献   

12.
Viperin, an antiviral protein, has been shown to contain a CX(3)CX(2)C motif, which is conserved in the radical S-adenosyl-methionine (SAM) enzyme family. A triple mutant which replaces these three cysteines with alanines has been shown to have severe deficiency in antiviral activity. Since the crystal structure of Viperin is not available, we have used a combination of computational methods including multi-template homology modeling and molecular dynamics simulation to develop a low-resolution predicted structure. The results show that Viperin is an α-β protein containing iron-sulfur cluster at the center pocket. The calculations suggest that the removal of iron-sulfur cluster would lead to collapse of the protein tertiary structure. To verify these predictions, we have prepared, expressed and purified four mutant proteins. In three mutants individual cysteine residues were replaced by alanine residues while in the fourth all the cysteines were replaced by alanines. Conformational analyses using circular dichroism and steady state fluorescence spectroscopy indicate that the mutant proteins are partially unfolded, conformationally unstable and aggregation prone. The lack of conformational stability of the mutant proteins may have direct relevance to the absence of their antiviral activity.  相似文献   

13.
14.
The mannitol permease, or D-mannitol-specific enzyme II of the phosphoenolpyruvate-dependent carbohydrate phosphotransferase system (PTS) of Escherichia coli, both transports and phosphorylates its substrate. Previous analyses of the amino acid sequences of PTS permeases specific for various carbohydrates in different species of bacteria revealed several regions of similarity. The most highly conserved region includes a GIXE motif, in which the glutamate residue is completely conserved among the permeases that contain this motif. The corresponding residue in the E. coli mannitol permease is Glu-257, which is located in a large putative cytoplasmic loop of the transmembrane domain of the protein. We used site-directed mutagenesis to investigate the role of Glu-257. The properties of proteins with mutations at position 257 suggest that a carboxylate side chain at this position is essential for mannitol binding. E257A and E257Q mutant proteins did not bind mannitol detectably, while the E257D mutant could still bind this substrate. Kinetic studies with the E257D mutant protein also showed that a glutamate residue at position 257 of this permease is specifically required for efficient mannitol transport. While the E257D permease phosphorylated mannitol with kinetic parameters similar to those of the wild-type protein, the Vmax for mannitol uptake by this mutant protein is less than 5% that of the wild type. These results suggest that Glu-257 of the mannitol permease and the corresponding glutamate residues of other PTS permeases play important roles both in binding the substrate and in transporting it through the membrane.  相似文献   

15.
Starting with two temperature-sensitive mutants (rpa190-1 and rpa190-5) of Saccharomyces cerevisiae, both of which are amino acid substitutions in the putative zinc-binding domain of the largest subunit (A190) of RNA polymerase I, we have isolated many independent pseudorevertants carrying extragenic suppressors (SRP) of rpa190 mutations. All the SRP mutations were dominant over the corresponding wild-type genes. They were classified into at least seven different loci by crossing each suppressed mutant with all of the other suppressed mutants and analyzing segregants. SRP mutations representing each of the seven loci were studied for their effects on other known rpa190 mutations. All of the SRP mutations were able to suppress both rpa190-1 and rpa190-5. In addition, one particular suppressor, SRP5, was found to suppress two other rpa190 mutations as well as an rpa190 deletion. Southern blot analysis combined with genetic crosses demonstrated that SRP5 maps to a region on chromosome XV loosely linked to rpa190 and represents a transposed mutant gene in two copies. Analysis of the A190 subunit by using anti-A190 antiserum indicated that the cellular concentration of A190 and hence of RNA polymerase I decreases in rpa190-1 mutants after a shift to 37 degrees C and that in the mutant strain carrying SRP5 this decrease is partially alleviated, presumably because of increased synthesis caused by increased gene dosage. These results suggest that the zinc-binding domain plays an important role in protein-protein interaction essential for the assembly and/or stability of the enzyme, regardless of whether it also participates directly in the interaction of the assembled enzyme with DNA.  相似文献   

16.
Protein design is currently used for the creation of new proteins with desirable traits. In our lab we focus on the synthesis of proteins with high essential amino acid content having potential applications in animal nutrition. One of the limitations we face in this endeavour is achieving stable proteins despite a highly biased amino acid content. We report here the synthesis and the characterization of three variants of MB-1Trp in which two solvent-exposed Leu have been replaced by Glu allowing for the formation of new salt bridges at the surface of the protein. Although both mutations were expected to be similar (i.e. same mutation in a comparable local environment), they appear to have different effects on MB-1Trp as shown by far-UV circular dichroism, thermal denaturation, fluorescence and proteolytic resistance measurements. For the mutation Leu68Glu, an increase in the protein melting temperature of 6 degrees C was observed. Surprisingly, the mutation in position Leu19Glu led to a decrease in melting temperature and a modification of tertiary structure.  相似文献   

17.
The double mutant of the lactose permease containing Val177/Asn319 exhibits proton leakiness by two pathways (see Brooker, R. J. (1991) J. Biol Chem. 266, 4131-4138). One type of H+ leakiness involves the uncoupled influx of H+ (leak A pathway) while a second type involves the coupled influx of H+ and galactosides in conjunction with uncoupled galactoside efflux (leak B pathway). In the current study, 14 independent lactose permease mutants were isolated from the Val177/Asn319 parent which were resistant to thiodigalactoside growth inhibition but retained the ability to transport maltose. All of these mutants contained a third mutation (besides Val177/Asn319) at one of two sites. Eight of the mutants had Ile303 changed to Phe, while six of the mutants had Tyr236 changed to Asn or His. Each type of triple mutant was characterized with regard to sugar transport, H+ leakiness, and sugar specificity. Like the parental strain, all three types of triple mutant showed moderate rates of downhill lactose transport and were defective in the uphill accumulation of sugars. However, with regard to proton leakiness, the triple mutants fell into two distinct categories. The mutant containing Phe303 was generally less H+ leaky than the parent either via the leak A or leak B pathway. In contrast, the triple mutants containing position 236 substitutions (Asn or His) were actually more H+ leaky via the leak A pathway and exhibited similar H+ leakiness via the leak B pathway at high thiodigalactoside concentrations. The ability of the position 236 mutants to grow better than the parent in the presence of low concentrations of thiodigalactoside appears to be due to a decrease in affinity for this particular sugar rather than a generalized defect in H+ leakiness. Finally, the triple mutants showed a sugar specificity profile which was different from either the Val177/Asn319 parent, the single Val177 mutant, or the wild-type strain. These results are discussed with regard to the effects of mutations on both the sugar and H+ transport pathways.  相似文献   

18.
By using functional lactose permease devoid of native Cys residues with a discontinuity in the periplasmic loop between helices VII and VIII (N(7)/C(5) split permease), cross-linking between engineered paired Cys residues in helices VII and X was studied with the homobifunctional, thiol-specific cross-linkers 1,1-methanediyl bismethanethiosulfonate (3 A), N,N'-o- phenylenedimaleimide (6 A) and N,N'-p-phenylenedimaleimide (10 A). Mutant Asp240-->Cys (helix VII)/Lys319-->Cys (helix X) cross-links most efficiently with the 3 A reagent, providing direct support for studies indicating that Asp240 and Lys319 are in close proximity and charge paired. Furthermore, cross-linking the two positions inactivates the protein. Other Cys residues more disposed towards the middle of helix VII cross-link to Cys residues in the approximate middle of helix X, while no cross-linking is evident with paired Cys residues at the periplasmic or cytoplasmic ends of these helices. Thus, helices VII and X are in close proximity in the middle of the membrane. In the presence of ligand, the distance between Cys residues at positions 240 (helice VII) and 319 (helix X) increases. In contrast, the distance between paired Cys residues more disposed towards the cytoplasmic face of the membrane decreases in a manner suggesting that ligand binding induces a scissors-like movement between the two helices. The results are consistent with a recently proposed mechanism for lactose/H(+) symport in which substrate binding induces a conformational change between helices VII and X, during transfer of H(+) from His322 (helix X)/Glu269 (helix VIII) to Glu325 (helix X).  相似文献   

19.
Hampel KJ  Burke JM 《Biochemistry》2001,40(12):3723-3729
The catalysis of site-specific RNA cleavage and ligation by the hairpin ribozyme requires the formation of a tertiary interaction between two independently folded internal loop domains, A and B. Within the B domain, a tertiary structure has been identified, known as the loop E motif, that has been observed in many naturally occurring RNAs. One characteristic of this motif is a partial cross-strand stack of a G residue on a U residue. In a few cases, including loop B of the hairpin ribozyme, this unusual arrangement gives rise to photoreactivity. In the hairpin, G21 and U42 can be UV cross-linked. Here we show that docking of the two domains correlates very strongly with a loss of UV reactivity of these bases. The rate of the loss of photoreactivity during folding is in close agreement with the kinetics of interdomain docking as determined by hydroxyl-radical footprinting and fluorescence resonance energy transfer (FRET). Fixing the structure of the complex in the cross-linked form results in an inability of the two domains to dock and catalyze the cleavage reaction, suggesting that the conformational change is essential for catalysis.  相似文献   

20.
Christova P  Cox JA  Craescu CT 《Proteins》2000,40(2):177-184
Nereis sarcoplasmic Ca(2+)-binding protein (NSCP) is a calcium buffer protein that binds Ca(2+) ions with high affinity but is also able to bind Mg(2+) ions with high positive cooperativity. We investigated the conformational and stability changes induced by the two metal ions. The thermal reversible unfolding, monitored by circular dichroism spectroscopy, shows that the thermal stability is maximum at neutral pH and increases in the order apo < Mg(2+) < Ca(2+). The stability against chemical denaturation (urea, guanidinium chloride) studied by circular dichroism or intrinsic fluorescence was found to have a similar ion dependence. To explore in more detail the structural basis of stability, we used the fluorescent probes to evaluate the hydrophobic surface exposure in the different ligation states. The apo-NSCP exhibits accessible hydrophobic surfaces, able to bind fluorescent probes, in clear contrast with denatured or Ca(2+)/Mg(2+)-bound states. Gel filtration experiments showed that, although the metal-bound NSCP has a hydrodynamic volume in agreement with the molecular mass, the volume of the apo form is considerably larger. The present results demonstrate that the apo state has many properties in common with the molten globule. The possible factors of the metal-dependent structural changes and stability are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号