首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Puzzled by recent reports of differences in specific ligand binding to muscle Ca2+ channels, we quantitatively compared the flux of Ca2+ release from the sarcoplasmic reticulum (SR) in skeletal muscle fibers of an amphibian (frog) and a mammal (rat), voltage clamped in a double Vaseline gap chamber. The determinations of release flux were carried out by the "removal" method and by measuring the rate of Ca2+ binding to dyes in large excess over other Ca2+ buffers. To have a more meaningful comparison, the effects of stretching the fibers, of rapid changes in temperature, and of changes in the Ca2+ content of the SR were studied in both species. In both frogs and rats, the release flux had an early peak followed by fast relaxation to a lower sustained release. The peak and steady values of release flux, Rp and Rs, were influenced little by stretching. Rp in frogs was 31 mM/s (SEM = 4, n = 24) and in rats 7 +/- 2 mM/s (n = 12). Rs was 9 +/- 1 and 3 +/- 0.7 mM/s in frogs and rats, respectively. Transverse (T) tubule area, estimated from capacitance measurements and normalized to fiber volume, was greater in rats (0.61 +/- 0.04 microns-1) than in frogs (0.48 +/- 0.04 micron-1), as expected from the greater density of T tubuli. Total Ca in the SR was estimated as 3.4 +/- 0.6 and 1.9 +/- 0.3 mmol/liter myoplasmic water in frogs and rats. With the above figures, the steady release flux per unit area of T tubule was found to be fourfold greater in the frog, and the steady permeability of the junctional SR was about threefold greater. The ratio Rp/Rs was approximately 2 in rats at all voltages, whereas it was greater and steeply voltage dependent in frogs, going through a maximum of 6 at -40 mV, then decaying to approximately 3.5 at high voltage. Both Rp and Rs depended strongly on the temperature, but their ratio, and its voltage dependence, did not. Assuming that the peak of Ca2+ release is contributed by release channels not in contact with voltage sensors, or not under their direct control, the greater ratio in frogs may correspond to the relative excess of Ca2+ release channels over voltage sensors apparent in binding measurements. From the marked differences in voltage dependence of the ratio, as well as consideration of Ca(2+)-induced release models, we derive indications of fundamental differences in control mechanisms between mammalian and amphibian muscle.  相似文献   

2.
The mechanisms that terminate Ca(2+) release from the sarcoplasmic reticulum are not fully understood. D4cpv-Casq1 (Sztretye et al. 2011. J. Gen. Physiol. doi:10.1085/jgp.201010591) was used in mouse skeletal muscle cells under voltage clamp to measure free Ca(2+) concentration inside the sarcoplasmic reticulum (SR), [Ca(2+)](SR), simultaneously with that in the cytosol, [Ca(2+)](c), during the response to long-lasting depolarization of the plasma membrane. The ratio of Ca(2+) release flux (derived from [Ca(2+)](c)(t)) over the gradient that drives it (essentially equal to [Ca(2+)](SR)) provided directly, for the first time, a dynamic measure of the permeability to Ca(2+) of the releasing SR membrane. During maximal depolarization, flux rapidly rises to a peak and then decays. Before 0.5 s, [Ca(2+)](SR) stabilized at ~35% of its resting level; depletion was therefore incomplete. By 0.4 s of depolarization, the measured permeability decayed to ~10% of maximum, indicating ryanodine receptor channel closure. Inactivation of the t tubule voltage sensor was immeasurably small by this time and thus not a significant factor in channel closure. In cells of mice null for Casq1, permeability did not decrease in the same way, indicating that calsequestrin (Casq) is essential in the mechanism of channel closure and termination of Ca(2+) release. The absence of this mechanism explains why the total amount of calcium releasable by depolarization is not greatly reduced in Casq-null muscle (Royer et al. 2010. J. Gen. Physiol. doi:10.1085/jgp.201010454). When the fast buffer BAPTA was introduced in the cytosol, release flux became more intense, and the SR emptied earlier. The consequent reduction in permeability accelerated as well, reaching comparable decay at earlier times but comparable levels of depletion. This observation indicates that [Ca(2+)](SR), sensed by Casq and transmitted to the channels presumably via connecting proteins, is determinant to cause the closure that terminates Ca(2+) release.  相似文献   

3.
Large-conductance Ca(2+)-dependent K(+) (BK(Ca)) channels play a critical role in regulating urinary bladder smooth muscle (UBSM) excitability and contractility. Measurements of BK(Ca) currents and intracellular Ca(2+) revealed that BK(Ca) currents are activated by Ca(2+) release events (Ca(2+) sparks) from ryanodine receptors (RyRs) in the sarcoplasmic reticulum. The goals of this project were to characterize Ca(2+) sparks and BK(Ca) currents and to determine the voltage dependence of the coupling of RyRs (Ca(2+) sparks) to BK(Ca) channels in UBSM. Ca(2+) sparks in UBSM had properties similar to those described in arterial smooth muscle. Most Ca(2+) sparks caused BK(Ca) currents at all voltages tested, consistent with the BK(Ca) channels sensing approximately 10 microM Ca(2+). Membrane potential depolarization from -50 to -20 mV increased Ca(2+) spark and BK(Ca) current frequency threefold. However, membrane depolarization over this range had a differential effect on spark and current amplitude, with Ca(2+) spark amplitude increasing by only 30% and BK(Ca) current amplitude increasing 16-fold. A major component of the amplitude modulation of spark-activated BK(Ca) current was quantitatively explained by the known voltage dependence of the Ca(2+) sensitivity of BK(Ca) channels. We, therefore, propose that membrane potential, or any other agent that modulates the Ca(2+) sensitivity of BK(Ca) channels, profoundly alters the coupling strength of Ca(2+) sparks to BK(Ca) channels.  相似文献   

4.
Large-conductance (BK-type) Ca(2+)-activated potassium channels are activated by membrane depolarization and cytoplasmic Ca(2+). BK channels are expressed in a broad variety of cells and have a corresponding diversity in properties. Underlying much of the functional diversity is a family of four tissue-specific accessory subunits (beta1-beta4). Biophysical characterization has shown that the beta4 subunit confers properties of the so-called "type II" BK channel isotypes seen in brain. These properties include slow gating kinetics and resistance to iberiotoxin and charybdotoxin blockade. In addition, the beta4 subunit reduces the apparent voltage sensitivity of channel activation and has complex effects on apparent Ca(2+) sensitivity. Specifically, channel activity at low Ca(2+) is inhibited, while at high Ca(2+), activity is enhanced. The goal of this study is to understand the mechanism underlying beta4 subunit action in the context of a dual allosteric model for BK channel gating. We observed that beta4's most profound effect is a decrease in P(o) (at least 11-fold) in the absence of calcium binding and voltage sensor activation. However, beta4 promotes channel opening by increasing voltage dependence of P(o)-V relations at negative membrane potentials. In the context of the dual allosteric model for BK channels, we find these properties are explained by distinct and opposing actions of beta4 on BK channels. beta4 reduces channel opening by decreasing the intrinsic gating equilibrium (L(0)), and decreasing the allosteric coupling between calcium binding and voltage sensor activation (E). However, beta4 has a compensatory effect on channel opening following depolarization by shifting open channel voltage sensor activation (Vh(o)) to more negative membrane potentials. The consequence is that beta4 causes a net positive shift of the G-V relationship (relative to alpha subunit alone) at low calcium. At higher calcium, the contribution by Vh(o) and an increase in allosteric coupling to Ca(2+) binding (C) promotes a negative G-V shift of alpha+beta4 channels as compared to alpha subunits alone. This manner of modulation predicts that type II BK channels are downregulated by beta4 at resting voltages through effects on L(0). However, beta4 confers a compensatory effect on voltage sensor activation that increases channel opening during depolarization.  相似文献   

5.
The mechanisms of Ca(2+) release from intracellular stores in CNS white matter remain undefined. In rat dorsal columns, electrophysiological recordings showed that in vitro ischemia caused severe injury, which persisted after removal of extracellular Ca(2+); Ca(2+) imaging confirmed that an axoplasmic Ca(2+) rise persisted in Ca(2+)-free perfusate. However, depletion of Ca(2+) stores or reduction of ischemic depolarization (low Na(+), TTX) were protective, but only in Ca(2+)-free bath. Ryanodine or blockers of L-type Ca(2+) channel voltage sensors (nimodipine, diltiazem, but not Cd(2+)) were also protective in zero Ca(2+), but their effects were not additive with ryanodine. Immunoprecipitation revealed an association between L-type Ca(2+) channels and RyRs, and immunohistochemistry confirmed colocalization of Ca(2+) channels and RyR clusters on axons. Similar to "excitation-contraction coupling" in skeletal muscle, these results indicate a functional coupling whereby depolarization sensed by L-type Ca(2+) channels activates RyRs, thus releasing damaging amounts of Ca(2+) under pathological conditions in white matter.  相似文献   

6.
A pair of tyrosine residues, located on the cytoplasmic linker between the third and fourth domains of human heart sodium channels, plays a critical role in the kinetics and voltage dependence of inactivation. Substitution of these residues by glutamine (Y1494Y1495/QQ), but not phenylalanine, nearly eliminates the voltage dependence of the inactivation time constant measured from the decay of macroscopic current after a depolarization. The voltage dependence of steady state inactivation and recovery from inactivation is also decreased in YY/QQ channels. A characteristic feature of the coupling between activation and inactivation in sodium channels is a delay in development of inactivation after a depolarization. Such a delay is seen in wild-type but is abbreviated in YY/QQ channels at -30 mV. The macroscopic kinetics of activation are faster and less voltage dependent in the mutant at voltages more negative than -20 mV. Deactivation kinetics, by contrast, are not significantly different between mutant and wild-type channels at voltages more negative than -70 mV. Single-channel measurements show that the latencies for a channel to open after a depolarization are shorter and less voltage dependent in YY/QQ than in wild-type channels; however the peak open probability is not significantly affected in YY/QQ channels. These data demonstrate that rate constants involved in both activation and inactivation are altered in YY/QQ channels. These tyrosines are required for a normal coupling between activation voltage sensors and the inactivation gate. This coupling insures that the macroscopic inactivation rate is slow at negative voltages and accelerated at more positive voltages. Disruption of the coupling in YY/QQ alters the microscopic rates of both activation and inactivation.  相似文献   

7.
The apically restricted, voltage-dependent K+ conductance of Necturus taste receptor cells was studied using cell-attached, inside-out and outside-out configurations of the patch-clamp recording technique. Patches from the apical membrane typically contained many channels with unitary conductances ranging from 30 to 175 pS in symmetrical K+ solutions. Channel density was so high that unitary currents could be resolved only at negative voltages; at positive voltages patch recordings resembled whole-cell recordings. These multi-channel patches had a small but significant resting conductance that was strongly activated by depolarization. Patch current was highly K+ selective, with a PK/PNa ratio of 28. Patches containing single K+ channels were obtained by allowing the apical membrane to redistribute into the basolateral membrane with time. Two types of K+ channels were observed in isolation. Ca(2+)-dependent channels of large conductance (135-175 pS) were activated in cell-attached patches by strong depolarization, with a half-activation voltage of approximately -10 mV. An ATP-blocked K+ channel of 100 pS was activated in cell-attached patches by weak depolarization, with a half-activation voltage of approximately -47 mV. All apical K+ channels were blocked by the sour taste stimulus citric acid directly applied to outside-out and perfused cell-attached patches. The bitter stimulus quinine also blocked all channels when applied directly by altering channel gating to reduce the open probability. When quinine was applied extracellularly only to the membrane outside the patch pipette and also to inside-out patches, it produced a flickery block. Thus, sour and bitter taste stimuli appear to block the same apical K+ channels via different mechanisms to produce depolarizing receptor potentials.  相似文献   

8.
BK (Slo1) potassium channels are activated by millimolar intracellular Mg(2+) as well as micromolar Ca(2+) and membrane depolarization. Mg(2+) and Ca(2+) act in an approximately additive manner at different binding sites to shift the conductance-voltage (G(K)-V) relation, suggesting that these ligands might work through functionally similar but independent mechanisms. However, we find that the mechanism of Mg(2+) action is highly dependent on voltage sensor activation and therefore differs fundamentally from that of Ca(2+). Evidence that Ca(2+) acts independently of voltage sensor activation includes an ability to increase open probability (P(O)) at extreme negative voltages where voltage sensors are in the resting state; 2 microM Ca(2+) increases P(O) more than 15-fold at -120 mV. However 10 mM Mg(2+), which has an effect on the G(K)-V relation similar to 2 microM Ca(2+), has no detectable effect on P(O) when voltage sensors are in the resting state. Gating currents are only slightly altered by Mg(2+) when channels are closed, indicating that Mg(2+) does not act merely to promote voltage sensor activation. Indeed, channel opening is facilitated in a voltage-independent manner by Mg(2+) in a mutant (R210C) whose voltage sensors are constitutively activated. Thus, 10 mM Mg(2+) increases P(O) only when voltage sensors are activated, effectively strengthening the allosteric coupling of voltage sensor activation to channel opening. Increasing Mg(2+) from 10 to 100 mM, to occupy very low affinity binding sites, has additional effects on gating that more closely resemble those of Ca(2+). The effects of Mg(2+) on steady-state activation and I(K) kinetics are discussed in terms of an allosteric gating scheme and the state-dependent interactions between Mg(2+) and voltage sensor that may underlie this mechanism.  相似文献   

9.
In skeletal muscle, the waveform of Ca(2+) release under clamp depolarization exhibits an early peak. Its decay reflects an inactivation, which locally corresponds to the termination of Ca(2+) sparks, and is crucial for rapid control. In cardiac muscle, both the frequency of spontaneous sparks (i.e., their activation) and their termination appear to be strongly dependent on the Ca(2+) content in the sarcoplasmic reticulum (SR). In skeletal muscle, no such role is established. Seeking a robust measurement of Ca(2+) release and a way to reliably modify the SR content, we combined in the same cells the "EGTA/phenol red" method (Pape et al., 1995) to evaluate Ca(2+) release, with the "removal" method (Melzer et al., 1987) to evaluate release flux. The cytosol of voltage-clamped frog fibers was equilibrated with EGTA (36 mM), antipyrylazo III, and phenol red, and absorbance changes were monitored simultaneously at three wavelengths, affording largely independent evaluations of Delta[H(+)] and Delta[Ca(2+)] from which the amount of released Ca(2+) and the release flux were independently derived. Both methods yielded mutually consistent evaluations of flux. While the removal method gave a better kinetic picture of the release waveform, EGTA/phenol red provided continuous reproducible measures of calcium in the SR (Ca(SR)). Steady release permeability (P), reached at the end of a 120-ms pulse, increased as Ca(SR) was progressively reduced by a prior conditioning pulse, reaching 2.34-fold at 25% of resting Ca(SR) (four cells). Peak P, reached early during a pulse, increased proportionally much less with SR depletion, decreasing at very low Ca(SR). The increase in steady P upon depletion was associated with a slowing of the rate of decay of P after the peak (i.e., a slower inactivation of Ca(2+) release). These results are consistent with a major inhibitory effect of cytosolic (rather than intra-SR) Ca(2+) on the activity of Ca(2+) release channels.  相似文献   

10.
A subtype of retinal amacrine cells displayed a distinctive array of K(+) currents. Spontaneous miniature outward currents (SMOCs) were observed in the narrow voltage range of -60 to -40 mV. Depolarizations above approximately -40 mV were associated with the disappearance of SMOCs and the appearance of transient (I(to)) and sustained (I(so)) outward K(+) currents. I(to) appeared at about -40 mV and its apparent magnitude was biphasic with voltage, whereas I(so) appeared near -30 mV and increased linearly. SMOCs, I(to), and a component of I(so) were Ca(2+) dependent. SMOCs were spike shaped, occurred randomly, and had decay times appreciably longer than the time to peak. In the presence of cadmium or cobalt, SMOCs with pharmacologic properties identical to those seen in normal Ringer's could be generated at voltages of -20 mV and above. Their mean amplitude was Nernstian with respect to [K(+)](ext) and they were blocked by tetraethylammonium. SMOCs were inhibited by iberiotoxin, were insensitive to apamin, and eliminated by nominally Ca(2+)-free solutions, indicative of BK-type Ca(2+)-activated K(+) currents. Dihydropyridine Ca(2+) channel antagonists and agonists decreased and increased SMOC frequencies, respectively. Ca(2+) permeation through the kainic acid receptor had no effect. Blockade of organelle Ca(2+) channels by ryanodine, or intracellular Ca(2+) store depletion with caffeine, eradicated SMOCs. Internal Ca(2+) chelation with 10 mM BAPTA eliminated SMOCs, whereas 10 mM EGTA had no effect. These results suggest a mechanism whereby Ca(2+) influx through L-type Ca(2+) channels and its subsequent amplification by Ca(2+)-induced Ca(2+) release via the ryanodine receptor leads to a localized elevation of internal Ca(2+). This amplified Ca(2+) signal in turn activates BK channels in a discontinuous fashion, resulting in randomly occurring SMOCs.  相似文献   

11.
Rossi B  Ogden D  Llano I  Tan YP  Marty A  Collin T 《PloS one》2012,7(6):e39983
In developing cerebellar molecular layer interneurons (MLIs), NMDA increases spontaneous GABA release. This effect had been attributed to either direct activation of presynaptic NMDA receptors (preNMDARs) or an indirect pathway involving activation of somato-dendritic NMDARs followed by passive spread of somatic depolarization along the axon and activation of axonal voltage dependent Ca(2+) channels (VDCCs). Using Ca(2+) imaging and electrophysiology, we searched for preNMDARs by uncaging NMDAR agonists either broadly throughout the whole field or locally at specific axonal locations. Releasing either NMDA or glutamate in the presence of NBQX using short laser pulses elicited current transients that were highly sensitive to the location of the spot and restricted to a small number of varicosities. The signal was abolished in the presence of high Mg(2+) or by the addition of APV. Similar paradigms yielded restricted Ca(2+) transients in interneurons loaded with a Ca(2+) indicator. We found that the synaptic effects of NMDA were not inhibited by blocking VDCCs but were impaired in the presence of the ryanodine receptor antagonist dantrolene. Furthermore, in voltage clamped cells, bath applied NMDA triggers Ca(2+) elevations and induces neurotransmitter release in the axonal compartment. Our results suggest the existence of preNMDARs in developing MLIs and propose their involvement in the NMDA-evoked increase in GABA release by triggering a Ca(2+)-induced Ca(2+) release process mediated by presynaptic Ca(2+) stores. Such a mechanism is likely to exert a crucial role in various forms of Ca(2+)-mediated synaptic plasticity.  相似文献   

12.
The whole-cell secretory response evoked by acetylcholine (ACh) in human chromaffin cells was examined using a new protocol based on quickly switching from the voltage-clamp to the current-clamp (CC) configuration of the patch-clamp technique. Our experiments revealed that Ca(2+) entry through the nicotinic receptor at hyperpolarized membrane potentials contributed as much to the exocytosis (100.4 +/- 27.3 fF) evoked by 200 ms pulses of ACh, as Ca(2+) flux through voltage-dependent Ca(2+) channels at depolarized membrane potentials. The nicotinic current triggered a depolarization event with a peak at +49.3 mV and a 'plateau' phase that ended at -23.9 mV, which was blocked by 10 mumol/L mecamylamine. When a long ACh stimulus (15 s) was applied, the nicotinic current at the end of the pulse reached a value of 15.45 +/- 3.6 pA, but the membrane potential depolarization still remained at the 'plateau' stage until withdrawal of the agonist. Perfusion with 200 mumol/L Cd(2+) during the 15 s ACh pulse completely abolished the plasma membrane depolarization at the end of the pulse, indicating that Ca(2+) entry through Ca(2+) channels contributed to the membrane potential depolarization provoked by prolonged ACh pulses. These findings also reflect that voltage-dependent Ca(2+) channels were recruited by the small current flowing through the desensitized nicotinic receptor to maintain the depolarization. Finally, muscarinic receptor activation triggered a delayed exocytotic process after prolonged ACh stimulation, dependent on Ca(2+) mobilization from the endoplasmic reticulum. In summary, we show here that nicotinic and muscarinic receptors contribute to the exocytosis of neurotransmitters in human chromaffin cells, and that the nicotinic receptor plays a key role in several stages of the stimulus-secretion coupling process in these cells.  相似文献   

13.
In skeletal muscle, the release of calcium (Ca(2+)) by ryanodine sensitive sarcoplasmic reticulum (SR) Ca(2+) release channels (i.e., ryanodine receptors; RyR1s) is the primary determinant of contractile filament activation. Much attention has been focused on calsequestrin (CASQ1) and its role in SR Ca(2+) buffering as well as its potential for modulating RyR1, the L-type Ca(2+) channel (dihydropyridine receptor, DHPR) and other sarcolemmal channels through sensing luminal [Ca(2+)]. The genetic ablation of CASQ1 expression results in significant alterations in SR Ca(2+) content and SR Ca(2+) release especially during prolonged activation. While these findings predict a significant loss-of-function phenotype in vivo, little information on functional status of CASQ1 null mice is available. We examined fast muscle in vivo and in vitro and identified significant deficits in functional performance that indicate an inability to sustain contractile activation. In single CASQ1 null skeletal myofibers we demonstrate a decrease in voltage dependent RyR Ca(2+) release with single action potentials and a collapse of the Ca(2+) release with repetitive trains. Under voltage clamp, SR Ca(2+) release flux and total SR Ca(2+) release are significantly reduced in CASQ1 null myofibers. The decrease in peak Ca(2+) release flux appears to be solely due to elimination of the slowly decaying component of SR Ca(2+) release, whereas the rapidly decaying component of SR Ca(2+) release is not altered in either amplitude or time course in CASQ1 null fibers. Finally, intra-SR [Ca(2+)] during ligand and voltage activation of RyR1 revealed a significant decrease in the SR[Ca(2+)](free) in intact CASQ1 null fibers and a increase in the release and uptake kinetics consistent with a depletion of intra-SR Ca(2+) buffering capacity. Taken together we have revealed that the genetic ablation of CASQ1 expression results in significant functional deficits consistent with a decrease in the slowly decaying component of SR Ca(2+) release.  相似文献   

14.
Although a considerable number of studies have characterized inactivation and facilitation of macroscopic L-type Ca(2+) channel currents, the single channel properties underlying these important regulatory processes have only rarely been examined using Ca(2+) ions. We have compared unitary L-type Ca(2+) channel currents recorded with a low concentration of Ca(2+) ions with those recorded with Ba(2+) ions to elucidate the ionic dependence of the mechanisms responsible for the prepulse-dependent modulation of Ca(2+) channel gating kinetics. Conditioning prepulses were applied across a wide range of voltages to examine their effects on the subsequent Ca(2+) channel activity, recorded at a constant test potential. All recordings were made in the absence of any Ca(2+) channel agonists. Moderate-depolarizing prepulses resulted in a decrease in the probability of opening of the Ca(2+) channels during subsequent test voltage steps (inactivation), the extent of which was more dramatic with Ca(2+) ions than Ba(2+) ions. Facilitation, or increase of the average probability of opening with strong predepolarization, was due to long-duration mode 2 openings with Ca(2+) ions and Ba(2+) ions, despite a decrease in Ca(2+) channel availability (inactivation) under these conditions. The degree of both prepulse-induced inactivation and facilitation decreased with increasing Ba(2+) ion concentration. The time constants (and their proportions) describing the distributions of Ca(2+) channel open times (which reflect mode switching) were also prepulse-, and ion-dependent. These results support the hypothesis that both prior depolarization and the nature and concentration of permeant ions modulate the gating properties of cardiac L-type Ca(2+) channels.  相似文献   

15.
J Ma 《Biophysical journal》1995,68(3):893-899
Ca release channels from the junctional sarcoplasmic reticulum (SR) membranes of rabbit skeletal muscle were incorporated into the lipid bilayer membrane, and the inactivation kinetics of the channel were studied at large membrane potentials. The channels conducting Cs currents exhibited a characteristic desensitization that is both ligand and voltage dependent: 1) with a test pulse to -100 mV (myoplasmic minus luminal SR), the channel inactivated with a time constant of 3.9 s; 2) the inactivation had an asymmetric voltage dependence; it was only observed at voltages more negative than -80 mV; and 3) repetitive tests to -100 mV usually led to immobilization of the channel, which could be recovered by a conditioning pulse to positive voltages. The apparent desensitization was seen in approximately 50% of the experiments, with both the native Ca release channel (in the absence of ryanodine) and the ryanodine-activated channel (1 microM ryanodine). The native Ca release channels revealed heterogeneous gating with regard to activation by ATP and binding to ryanodine. Most channels had high affinity to ATP activation (average open probability (po) = 0.55, 2 mM ATP, 100 microM Ca), whereas a small portion of channels had low affinity to ATP activation (po = 0.11, 2 mM ATP, 100 microM Ca), and some channels bound ryanodine faster (< 2 min), whereas others bound much slower (> 20 min). The faster ryanodine-binding channels always desensitized at large negative voltages, whereas those that bound slowly did not show apparent desensitization. The heterogeneity of the reconstituted Ca release channels is likely due to the regulatory roles of other junctional SR membrane proteins on the Ca release channel.  相似文献   

16.
Spontaneous miniature outward currents (SMOCs) occur in a subset of retinal amacrine cells at membrane potentials between -60 and -40 mV. At more depolarized potentials, a transient outward current (I(to)) appears and SMOCs disappear. Both SMOCs and the I(to) are K(+) currents carried by BK channels. They both arise from Ca(2+) influx through high voltage-activated (HVA) Ca(2+) channels, which stimulates release of internal Ca(2+) from caffeine- and ryanodine-sensitive stores. An increase in Ca(2+) influx resulted in an increase in SMOC frequency, but also led to a decline in SMOC mean amplitude. This reduction showed a temporal dependence: the effect being greater in the latter part of a voltage step. Thus, Ca(2+) influx, although required to generate SMOCs, also produced a negative modulation of their amplitudes. Increasing Ca(2+) influx also led to a decline in the first latency to SMOC occurrence. A combination of these effects resulted in the disappearance of SMOCs, along with the concomitant appearance of the I(to) at high levels of Ca(2+) influx. Therefore, low levels of Ca(2+) influx, arising from low levels of activation of the HVA Ca(2+) channels, produce randomly occurring SMOCs within the range of -60 to -40 mV. Further depolarization leads to greater activation of the HVA Ca(2+) channels, larger Ca(2+) influx, and the disappearance of discontinuous SMOCs, along with the appearance of the I(to). Based on their characteristics, SMOCs in retinal neurons may function as synaptic noise suppressors at quiescent glutamatergic synapses.  相似文献   

17.
Using the lanthanide gadolinium (Gd(3+)) as a Ca(2+) replacing probe, we investigated the voltage dependence of pore blockage of Ca(V)1.2 channels. Gd(+3) reduces peak currents (tonic block) and accelerates decay of ionic current during depolarization (use-dependent block). Because diffusion of Gd(3+) at concentrations used (<1 microM) is much slower than activation of the channel, the tonic effect is likely to be due to the blockage that occurred in closed channels before depolarization. We found that the dose-response curves for the two blocking effects of Gd(3+) shifted in parallel for Ba(2+), Sr(2+), and Ca(2+) currents through the wild-type channel, and for Ca(2+) currents through the selectivity filter mutation EEQE that lowers the blocking potency of Gd(3+). The correlation indicates that Gd(3+) binding to the same site causes both tonic and use-dependent blocking effects. The apparent on-rate for the tonic block increases with the prepulse voltage in the range -60 to -45 mV, where significant gating current but no ionic current occurs. When plotted together against voltage, the on-rates of tonic block (-100 to -45 mV) and of use-dependent block (-40 to 40 mV) fall on a single sigmoid that parallels the voltage dependence of the gating charge. The on-rate of tonic block by Gd(3+) decreases with concentration of Ba(2+), indicating that the apparent affinity of the site to permeant ions is about 1 mM in closed channels. Therefore, we propose that at submicromolar concentrations, Gd(3+) binds at the entry to the selectivity locus and that the affinity of the site for permeant ions decreases during preopening transitions of the channel.  相似文献   

18.
Large-conductance Ca(2+)-activated K(+) channels (BK(Ca) channels) are regulated by the tissue-specific expression of auxiliary beta subunits. Beta1 is predominantly expressed in smooth muscle, where it greatly enhances the BK(Ca) channel's Ca(2+) sensitivity, an effect that is required for proper regulation of smooth muscle tone. Here, using gating current recordings, macroscopic ionic current recordings, and unitary ionic current recordings at very low open probabilities, we have investigated the mechanism that underlies this effect. Our results may be summarized as follows. The beta1 subunit has little or no effect on the equilibrium constant of the conformational change by which the BK(Ca) channel opens, and it does not affect the gating charge on the channel's voltage sensors, but it does stabilize voltage sensor activation, both when the channel is open and when it is closed, such that voltage sensor activation occurs at more negative voltages with beta1 present. Furthermore, beta1 stabilizes the active voltage sensor more when the channel is closed than when it is open, and this reduces the factor D by which voltage sensor activation promotes opening by approximately 24% (16.8-->12.8). The effects of beta1 on voltage sensing enhance the BK(Ca) channel's Ca(2+) sensitivity by decreasing at most voltages the work that Ca(2+) binding must do to open the channel. In addition, however, in order to fully account for the increase in efficacy and apparent Ca(2+) affinity brought about by beta1 at negative voltages, our studies suggest that beta1 also decreases the true Ca(2+) affinity of the closed channel, increasing its Ca(2+) dissociation constant from approximately 3.7 microM to between 4.7 and 7.1 microM, depending on how many binding sites are affected.  相似文献   

19.
The existence and mechanisms of inactivation of voltage-gated Ca2+ channels are important, but still debatable, physiological problems. By using the Ca2+ indicators quin2 and fura-2, we demonstrate that in PC12 cells voltage-gated Ca2+ channels undergo inactivation dependent on both voltage and [Ca2+]i. Inactivation, however, is never complete and a small number of channels remains open during prolonged depolarization, explaining the steady state elevation of [Ca2+]i observed in cells depolarized with high KCl. A close parallel exists between Ca2+ channel inactivation and the transient nature of neurotransmitter release: secretion is rapidly stimulated during the first 30 s of depolarization, when a transient overshoot in [Ca2+]i can be demonstrated, while it is negligible during the following period, despite the persistence of an elevated [Ca2+]i; predepolarization in Ca2+-free medium and subsequent addition of Ca2+ (a condition which allows the development of the voltage inactivation) abolishes the fast phase of secretion, while not modifying the steady state [Ca2+]i eventually attained; and increases in the intracellular Ca2+ buffering decreases the amplitude of the fast secretion phase induced by KCl without altering the steady state [Ca2+]i. We suggest that localized [Ca2+]i gradients form close to the plasma membrane shortly after depolarization and that the [Ca2+]i reached in these regions is the relevant parameter in the regulation of secretion.  相似文献   

20.
Here we compare excitation-contraction coupling in single muscle cells of frogs and rats. Because amphibians have isoform 3 (or 3) of the ryanodine receptor/Ca2+ release channel, in addition to 1 (alpha), which is also present in the mammal, any extra feature present in the frog may in principle be attributed to isoform 3. Ca2+ release under voltage clamp depolarization has a peak and a steady phase in both taxonomic classes, but the peak is more marked in the frog, where the ratio of amplitudes of the two phases is voltage-dependent. This dependence is a hallmark of CICR. Confocal imaging identified Ca2+ sparks in the frog, but not in the voltage-clamped rat cells. Because Ca2+ sparks involve CICR both observations indicate that the contribution of CICR is minor or null in the mammal. The "couplon" model well accounts for observations in the frog, but assumes a structure that we now know to be valid only for the rat. A revised model is proposed, whereby the isoform 3 channels, located parajunctionally, are activated by CICR and contribute its characteristic global and local features. Several issues regarding the roles of different channels remain open to further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号