首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The model polynucleotide poly(dG-dC).poly(dG-dC) (polyGC) was titrated with a strong acid (HCl) in aqueous unbuffered solutions and in the quaternary w/o microemulsion CTAB/n-pentanol/n-hexane/water. The titrations, performed at several concentrations of NaCl in the range 0.005 to 0.600 M, were followed by recording the modifications of the electronic absorption and of the CD spectra (210< or = lambda < or =350 nm) upon addition of the acid. In solution, the polynucleotide undergoes two acid-induced transitions, neither of which corresponds to denaturation of the duplex to single coil. The first transition leads to the Hoogsteen type synG.C+ duplex, while the second leads to the C+.C duplex. The initial B-form of polyGC was recovered by back-titration with NaOH. The apparent pKa values were obtained for both steps of the titration, at all salt concentrations. A reasonably linear dependence of pKa1 and pKa2 from p[NaCl] was obtained, with both pKa values decreasing with increasing ionic strength. In microemulsion, at salt concentrations < or = 0.300 M, an acid-induced transition was observed, matching the first conformational transition recorded also in solution. However, further addition of acid led to denaturation of the protonated duplex. Renaturation of polyGC was obtained by back-titration with NaOH. At salt concentrations > 0.300 M, polyGC is present as a mixture of B-form and psi- aggregates, that slowly separate from the microemulsion. The acid titration induces at first a conformational transition similar to the one observed at low salt or in solution, then denaturation occurs, which is however preceded by the appearance of a transient conformation, that has been tentatively classified as a left-handed Z double helix.  相似文献   

2.
Urease was immobilized in mixed monolayers of poly(N-vinyl carbazole) (PNVK) and stearic acid (SA) formed at an air-water interface. The monolayers were transferred onto indium-tin-oxide (ITO) coated glass plates using Langmuir-Blodgett (LB) film deposition technique. Urease immobilized on PNVK/SA LB films, characterized using FTIR and UV-visible spectroscopy, was found to exhibit increased stability over a wide pH (6.5-8.5) and temperature (25-50 degrees C) range. Potentiometric measurements on these urease electrodes were carried out using an ammonium ion analyzer. Two values for K(m)(app) were obtained at lower and higher concentrations of substrate urea.  相似文献   

3.
It is shown that there are three parts on the potentiometric titration curves of isoionic solutions of poly(A) ascribed to the three protonated structures. Double-helical protonated structures are especially stable in isoionic solution. These parts on potentiometric curves are attributed to the single-stranded poly(A), to the completely protonated double-stranded poly(A+).poly(A+), and to the semiprotonated poly(A+).poly(A) structures: D, A, B forms of poly(A), respectively. pK0 values of these forms are calculated. The D form portion is found to be about 18% in isoionic solution, 40% in KCl solution (from 0.01 to 1.0 M), 40% in solution, containing 1.2 X 10(-3) M MgCl2 and 70% in 8 X 10(-4) M MgCl2 solution. The increase of MgCl2 concentration up to 8 X 10(-4) M leads to complete degradation of the double-helical structure. Only single-stranded D form exists in 5 X 10(-3) M MgCl2 solution. About 5-7% of all protons become inaccessible for titration in all solutions containing KCl and in the presence of small amounts of MgCl2. This phenomenon can not be explained by aggregation of poly(A), because all protons become accessible for titration in more concentrated MgCl2 solution when aggregation of poly(A) is significant and accompanied by the precipitation of sediment insoluble in NaOH. The supposition is made, that unprotonated double-stranded poly(A) can exist in salt-free solution at neutral pH. It is this form that is protonated with decrease of pH.  相似文献   

4.
We present a theoretical study of the self-complementary single-stranded 30-mer d(TC*TTC*C*TTTTCCTTCTC*CCGAGAAGGTTTT) (PDB ID: 1b4y) that was designed to form an intramolecular triplex by folding back twice on itself. At neutral pH the molecule exists in a duplex hairpin conformation, whereas at acidic pH the cytosines labeled by an asterisk (*) are protonated, forming Hoogsteen hydrogen bonds with guanine of a GC Watson-Crick basepair to generate a triplex. As a first step in an investigation of the energetics of the triplex-hairpin transition, we applied the Bashford-Karplus multiple site model of protonation to calculate the titration curves for the two conformations. Based on these data, a two-state model is used to study the equilibrium properties of transition. Although this model properly describes the thermodynamics of the protonation-deprotonation steps that drive the folding-unfolding of the oligomer, it cannot provide insight into the time-dependent mechanism of the process. A series of molecular dynamics simulations using the ff94 force field of the AMBER 6.0 package was therefore run to explore the dynamics of the folding/unfolding pathway. The molecular dynamics method was combined with Poisson-Boltzmann calculations to determine when a change in protonation state was warranted during a trajectory. This revealed a sequence of elementary protonation steps during the folding/unfolding transition and suggests a strong coupling between ionization and folding in cytosine-rich triple-helical triplexes.  相似文献   

5.
The report describes the study of hydrogen-ion binding of Langmuir-Blodgett films contained with polycytidylic acid. A variety of multilayer films are analyzed and their UV absorption spectra are recorded. Poly (C) molecules established between dimethyldioctadecylammonium (DODA) layers are shown to exist in double stranded and semiprotonated form, independent of the pH value of the solution from which the films were made. A large hysteresis was found between forward and back proton titration of poly(C) immobilized in the LB films. This hysteresis points to a marked transference of both types of molecules during the film titration. This behavior also depends upon the types of molecules from which the films were made.  相似文献   

6.
M Vives  R Gargallo  R Tauler 《Biopolymers》2001,59(7):477-488
Analytical speciation of acid-base equilibria and thermal unfolding transitions of an alternating random polynucleotide containing cytosine and hypoxanthine, poly(C, I), is studied. The results are compared with those obtained previously for single-stranded polynucleotides, poly(I) and poly(C), and for the double-stranded poly(I). poly(C), to examine the influence of the secondary structure on the acid-base properties of bases. This study is based on monitoring acid-base titrations and thermal unfolding experiments by molecular absorption, CD, and molecular fluorescence spectroscopies. Experimental data were analyzed by a novel chemometric approach based on a recently developed three-way Multivariate Curve Resolution method, which allowed the simultaneous analysis of data from several spectroscopies. This procedure improves the resolution of the concentration profiles and pure spectra for the species and conformations present in folding-unfolding and acid-base equilibria. The results from acid-base studies showed the existence of only three species in the pH range 2-12 at 37 degrees C and 0.15M ionic strength. No cooperative effects were detected from the resolved concentration profiles, showing that equilibria concerning alternating polynucleotides like poly(C, I) are simpler than those involving poly(I). poly(C). Thermal unfolding experiments at neutral pH confirmed the existence of two transitions and one intermediate conformation. This intermediate conformation could only be detected and resolved without ambiguities when molecular absorption and CD spectral data were analyzed simultaneously.  相似文献   

7.
A qualitative and quantitative analysis of the conformation of Langmuir-Blodgett (LB) dried films of cytochrome C on silicon wafers was performed by Fourier transform ir (FTIR) spectroscopy. A deconvolution procedure was applied to the amide I band analysis, in order to determine the percentage of the different secondary structures. Qualitative analysis was performed by examining difference spectra. Films obtained by spreading protein solutions at pH 7.4 and 1, dried at 25 and 100°C, on silicon wafers were also examined in order to detect spectral components associated with denatured protein domains, and to compare them with cytochrome C LB films. FTIR spectroscopy showed that the following important changes characterise LB film spectra: (a) the α-helix component is higher (its percentage is 57 and 54%) than the one estimated in dried film obtained by spreading the solutions at pH 7.4 on a silicon substrate (43%), (b) there is an increase in the intensity of bands attributed to protonated carboxy group bands, involved and not involved in the formation of hydrogen bonds, and a decrease in those attributed to deprotonated carboxy groups, (c) the intensity of several bands attributed to aromatic amino acids and aliphatic chains increases, and (d) bands due to O(SINGLEBOND)H stretching vibrations of crystallization water are present. These conformational changes could be induced by protein-protein interaction caused by the close packing of molecules that occurs during LB film formation; it cannot be excluded that they may be accompanied by partial changes in the tertiary structure of the protein. A preferential orientation of protein molecules in LB films is also a possibility. © 1997 John Wiley & Sons, Inc. Biopoly 42: 227–237, 1997  相似文献   

8.
Ultraviolet differential spectra of single-stranded poly C, taken in the presence of Cu2+ ions, are studied at various ionic strengths and temperatures. Coordinational and conformational components of these spectra are obtained. The Cu2+ ion coordination site on the polynucleotide bases is found to be N(3) and possibly O(2). The direction of the poly C absorption band shift due to ion binding and conformational transitions is established. At low ionic strengths of the solution Cu2+ ions cause the helical parts of poly C to melt. At high ones the formation of double-stranded parts was observed in addition to the above effect. The calculated concentration dependences of ion-poly C bases association constants show that binding is cooperative at any ionic strength.  相似文献   

9.
Fluorescence spectroscopy was used to investigate the binding of Escherichia coli recA protein to a single-stranded polynucleotide. Poly(deoxy-1,N6-ethenoadenylic acid) was prepared by reaction of chloroacetaldehyde with poly(deoxyadenylic acid). The fluorescence of poly(deoxy-1,N6-ethenoadenylic acid) was enhanced upon recA protein binding. The kinetics of the binding process were studied as a function of several parameters: ionic concentration (KCl and MgCl2), pH, nature of the nucleoside triphosphate [adenosine 5'-triphosphate or adenosine 5'-O-(gamma-thiotriphosphate)], protein and polynucleotide concentrations, polynucleotide chain length, and order of sequential additions. The observed kinetic curves exhibited a lag phase followed by a slow binding process characteristic of a nucleation-elongation mechanism with an additional slow step governing the rate of the association process. The lag phase reflecting the nucleation step was not observed when the protein was first bound to the polynucleotide before addition of adenosine 5'-triphosphate. Adenosine 5'-triphosphate induced a dissociation of the recA protein, which was immediately followed by binding of the recA-adenosine 5'-triphosphate-Mg2+ ternary complex. The origin of this "mnemonic effect" and of the different kinetic steps is discussed with respect to protein conformational changes and aggregation phenomena.  相似文献   

10.
The interaction between poly (I) and poly (C) in acid medium has been studied by potentiometric titration, mixing curves and thermal denaturation. Phase diagramms as a function of ionic strength, pH, and temperature have been established. From these data it is shown that the acid titration of the complex poly (I) · poly (C) passes through a triple-stranded intermediate poly (I) · poly (C) · poly (C+) to yield finally the protonated double-helical complex poly (I) · poly (C+). The mixing curves indicate the sole presence of the three-stranded complex in the intermediate zone. On the basis of the pK's the coexistence between the three-stranded complex with the neighboring double-stranded structure is demonstrated in a narrow rang of pH and ionic strength. The geometry of the base arrangements, their conformation and the sense of the strands are discussed in the light of the data presented. A Hoogsteen-type pairing between the bases for poly (I) · poly (C+) is favored, although the reverse Hoogsteen pair cannot be excluded.  相似文献   

11.
Approximate details of the spatial configuration of the ordered single-stranded poly(rA) molecule in dilute solution have been obtained in a combined theoretical analysis of base stacking and chain flexibility. Only those regularly repeating structures which fulfill the criterion of conformational flexibility (based upon all available experimental and theoretical evidence of preferred bond rotations) and which also exhibit the right-handed base stacking pattern observed in nmr investigations of poly(rA) are deemed suitable single-stranded helices. In addition, the helical geometry of the stacked structures is required to be consistent with the experimentally observed dimensions of both completely ordered and partially ordered poly(rA) chains. Only a single category of poly(rA) helices (very similar in all conformational details to the individual chains of the poly(rA) double-stranded X-ray structure) is thus obtained. Other conformationally feasible polynucleotide helices characterized simply by a parallel and overlapping base stacking arrangement are also discussed.  相似文献   

12.
gp32 I is a protein with a molecular weight of 27 000. It is obtained by limited hydrolysis of T4 gene 32 coded protein, which is one of the DNA melting proteins. gp32 I itself appears to be also a melting protein. It denatures poly[d(A-T)].poly[d(A-T)] and T4 DNA at temperatures far (50-60 degrees C) below their regular melting temperatures. Under similar conditions gp32 I will denature poly[d(A-T).poly[d(A-T)] at temperatures approximately 12 degrees C lower than those measured for the intact gp32 denaturation. For T4 DNA gp32 shows no melting behavior while gp32 I shows considerable denaturation (i.e., hyperchromicity) even at 1 degree C. In this paper the denaturation of poly[d(A-T)].poly[d(A-T)] and T4 DNA by gp32 I is studied by means of circular dichroism. It appears that gp32 I forms a complex with poly[d(A-T)]. The conformation of the polynucleotide in the complex is equal to that of one strand of the double-stranded polymer in 6 M LiCl. In the gp32 I DNA complex formed upon denaturation of T4 DNA, the single-stranded DNA molecule has the same conformation as one strand of the double-strand T4 DNA molecule in the C-DNA conformation.  相似文献   

13.
The alternative structures of the synthetic poly(amino2dA-dT) duplex have been studied using infrared spectroscopy in films and in solution (D2O and H2O) in the presence and in the absence of magnesium salt. In solution without magnesium salt, the polynucleotide exists in a B genus conformation with some of the sugar puckers possibly in the C3'-endo/anti geometry. In magnesium-containing solution (66 mM MgCl2), however, we report infrared spectra of Mg(2+)-poly(amino2dA-dT) which have characteristic marker bands of the A form. Film samples in 70% relative humidity (RH) give similar infrared spectra to those of the polynucleotide obtained using Mg2+. Thus, when analyzed in comparison with previously reported infrared spectra of other oligo and polynucleotides, our data show that double helical poly(amino2dA-dT) goes into the same (or very closely related) conformation in dehydrated films as in solutions containing Mg2+.  相似文献   

14.
Interactions between Ni2+, Co2+ and purine bases have been studied by I.R. spectroscopy in the case of double stranded regularly alternating purine-pyrimidine polynucleotides poly d(A-T), poly d(A-C).poly d(G-T) and poly d(G-C). The spectra of polynucleotide films have been recorded in hydration and salt content conditions which correspond to the obtention of the classical right-handed (A,B) and left-handed (Z) helical conformations. Selective deuteration of the 8C site of purines has been obtained and is used to detect interactions between the transition metal ions and the adenine or guanine bases. The spectral region between 1500 and 1250 cm-1 corresponding to base in-plane vibrations and involving also the glycosidic linkage torsion is discussed in detail. The selective interaction between the transition metal ion and the 7N site of the purine base is considered to be partly responsible for the stabilization of the base in a syn conformation, which favours the adoption by the polynucleotide (poly d(G-C), poly d(A-C).poly d(G-T) or poly d(A-T)) of a Z type conformation.  相似文献   

15.
The decadeoxynucleotide d(AAAAATTTTT)2 in duplex form and the double-helical polynucleotide poly(dA).poly(dT) have been studied by Raman and infrared (IR) spectroscopy under a variety of environmental conditions. The IR spectra have been taken of cast films and compared to the IR spectra of the alternating poly(dA-dT), which shows clear B-genus and A-genus vibrational spectra under conditions of high (greater than 92%) and low (75%) relative humidity (RH). From the IR data, it is shown that d-(AAAAATTTTT)2 and poly(dA).poly(dT) adopt a B-genus conformation in films with high water content. When the relative humidity of the film is decreased, the IR spectra reflect a gradual evolution of the geometry of both d(AAAAATTTTT)2 and poly(dA).poly(dT) into a form intermediate between the B genus and A genus, but the IR spectrum of a pure A genus has not been obtained. In these DNAs at 75% RH, the IR bands of adenosine have the same frequencies as those found in poly(dA-dT) at 75% RH where the local furanose conformation is C3' endo/anti, but the thymidine frequencies do not resemble those of poly(dA-dT) at 75% RH but rather those of poly(dA-dT) at high humidities. It is concluded that both poly(dA).poly(dT) and d(AAAAATTTTT)2 adopt a fully heteronomous duplex geometry in cast films at low humidity. For studies in aqueous solution the Raman effect was employed. As a model for the heteronomous conformation in solution, the duplex poly(rA).poly(dT) was used.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We assessed the correlation between charge distribution and conformation of flexible peptides by comparing the theoretically calculated potentiometric-titration curves of two model peptides, Ac-Lys5-NHMe (a model of poly-L-lysine) and Ac-Lys-Ala11-Lys-Gly2-Tyr-NH2 (P1) in water and methanol, with the experimental curves. The calculation procedure consisted of three steps: (i) global conformational search of the peptide under study using the electrostatically driven Monte Carlo (EDMC) method with the empirical conformational energy program for peptides (ECEPP)/3 force field plus the surface-hydration (SRFOPT) or the generalized Born surface area (GBSA) solvation model as well as a molecular dynamics method with the assisted model building and energy refinement (AMBER)99/GBSA force field; (ii) reevaluation of the energy in the pH range considered by using the modified Poisson-Boltzmann approach and taking into account all possible protonation microstates of each conformation, and (iii) calculation of the average degree of protonation of the peptide at a given pH value by Boltzmann averaging over conformations. For Ac-Lys5-NHMe, the computed titration curve agrees qualitatively with the experimental curve of poly-L-lysine in 95% methanol. The experimental titration curves of peptide P1 in water and methanol indicate a remarkable downshift of the first pK(a) value compared to the values for reference compounds (n-butylamine and phenol, respectively), suggesting the presence of a hydrogen bond between the tyrosine hydroxyl oxygen and the H(epsilon) proton of a protonated lysine side chain. The theoretical titration curves agree well with the experimental curves, if conformations with such hydrogen bonds constitute a significant part of the ensemble; otherwise, the theory predicts too small a downward pH shift.  相似文献   

17.
J E Herrera  J B Chaires 《Biochemistry》1989,28(5):1993-2000
Circular dichroism and UV absorbance spectroscopy were used to monitor and characterize a premelting conformational transition of poly(dA)-poly(dT) from one helical form to another. The transition was found to be broad, with a midpoint of tm = 29.9 degrees C and delta HVH = +19.9 kcal mol-1. The transition renders poly(dA)-poly(dT) more susceptible to digestion by DNase I and facilitates binding of the intercalator daunomycin. Dimethyl sulfoxide was found to perturb poly(dA)-poly(dT) structure in a manner similar to temperature. These combined results suggest that disruption of bound water might be linked to the observed transition. A thermodynamic analysis of daunomycin binding to poly(dA)-poly(dT) shows that antibiotic binding is coupled to the polynucleotide conformational transition. Daunomycin binding renders poly(dA)-poly(dT) more susceptible to DNase I digestion at low binding ratios, in contrast to the normal behavior of intercalators, indicating that antibiotic binding alters the conformation of the polynucleotide. The unusual thermodynamic profiles previously observed for the binding of many antibiotics to poly(dA)-poly(dT) can be explained by our results as arising from the coupling of ligand binding to the polynucleotide conformational transition. Our data further suggest a physical basis for the temperature dependence of DNA bending.  相似文献   

18.
Protonation-induced conformational changes in natural DNAs of diverse base composition under the influence of low pH, low temperature, and low ionic strength have been studied using various spectroscopic techniques. At pH3.40, 10mM [Na+], and at 5 degrees C, all natural DNAs irrespective of base composition adopted an unusual and stable conformation remarkably different from the canonical B-form conformation. This protonated conformation has been characterized to have unique absorption and circular dichroic spectral characteristics and exhibited cooperative thermal melting profiles with decreased thermal melting temperatures compared to their respective B-form counterparts. The nature of this protonated structure was further investigated by monitoring the interaction of the plant alkaloid, berberine that was previously shown from our laboratory to differentially bind to B-form and H(L)-form of poly[d(G-C)] [Bioorg. Med. Chem.2003, 11, 4861]. Binding of berberine to protonated conformation of natural DNAs resulted in intrinsic circular dichroic changes as well as generation of induced circular dichroic bands for the bound berberine molecule with opposite signs and magnitude compared with B-form structures. Nevertheless, the binding of the alkaloid to both the B and protonated forms was non-linear and non-cooperative as revealed from Scatchard plots derived from spectrophotometric titration data. Steady state fluorescence studies on the other hand showed remarkable increase of the rather weak intrinsic fluorescence of berberine on binding to the protonated structure compared to the B-form structure. Taken together, these results suggest that berberine can detect the formation of significant population of H(L)-form structures under the influence of protonation irrespective of heterogeneous base compositions in natural DNAs.  相似文献   

19.
The conformation of several samples of poly(α,β-L -Asp) with a molar fraction of β-bonds ranging from 0.1 to 0.55 was investigated by means of ir and CD spectroscopy and potentiometric titration and compared with the results obtained previously with poly(α-L -Asp). All samples investigated underwent a conformational change induced by changes in their degree of ionization: unpronounced ir absorption of amide V at 650 cm?1 was shifted to 620 cm?1 and substantially increased on deionization; CD spectra changed with the degree of ionization, passing through an isosbestic point; and the pattern of the titration curves was more complex than that of a simple polyelectrolyte. The conformation developing with the decreasing degree of ionization may be considered to be α-helix, as deduced according to the analogous behavior of other polypeptides. The extent of the conformational change in the individual samples depends on the molar fraction of β-bonds: the higher it is, the lower is the helix-forming ability of the sample.  相似文献   

20.
Poly (2'-chloro-2'-deoxyadenylic acid) and poly (2'-bromo-2'-deoxyadenylic acid) were synthesized from the corresponding diphosphates with the aid of polynucleotide phosphorylase from E. coli. UV, CD, acid titration and mixing with poly (U) were investigated. Comparing these properties with those of poly (A) and poly (2'-azido-2'-deoxyadenylic acid), it was found that 2'substituents exert significant effects on the thermal stability of these polynucleotides, though the overall conformational structure was not greatly changed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号