首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pac1+ gene of the fission yeast Schizosaccharomyces pombe is essential for viability and its overexpression induces sterility and suppresses mutations in the pat1+ and snm1+ genes. The pac1+ gene encodes a protein that is structurally similar to RNase III from Escherichia coli, but its normal function is unknown. We report here the purification and characterization of the Pac1 protein after overexpression in E. coli. The purified protein is a highly active, double-strand-specific endoribonuclease that converts long double-stranded RNAs into short oligonucleotides and also cleaves a small hairpin RNA substrate. The Pac1 RNase is inhibited by a variety of double- and single-stranded polynucleotides, but polycytidylic acid greatly enhances activity and also promotes cleavage specificity. The Pac1 RNase produces 5'-phosphate termini and requires Mg2+; Mn2+ supports activity but causes a loss of cleavage specificity. Optimal activity was obtained at pH 8.5, at low ionic strength, in the presence of a reducing agent. The enzyme is relatively insensitive to N-ethylmaleimide but is strongly inhibited by ethidium bromide and vanadyl ribonucleoside complexes. The properties of the Pac1 RNase support the hypothesis that it is a eukaryotic homolog of RNase III.  相似文献   

2.
Members of the double-stranded RNA (dsRNA) specific RNase III family are known to use a conserved dsRNA-binding domain (dsRBD) to distinguish RNA A-form helices from DNA B-form ones, however, the basis of this selectivity and its effect on cleavage specificity remain unknown. Here, we directly examine the molecular requirements for dsRNA recognition and cleavage by the budding yeast RNase III (Rnt1p), and compare it to both bacterial RNase III and fission yeast RNase III (Pac1). We synthesized substrates with either chemically modified nucleotides near the cleavage sites, or with different DNA/RNA combinations, and investigated their binding and cleavage by Rnt1p. Substitution for the ribonucleotide vicinal to the scissile phosphodiester linkage with 2'-deoxy-2'-fluoro-beta-d-ribose (2' F-RNA), a deoxyribonucleotide, or a 2'-O-methylribonucleotide permitted cleavage by Rnt1p, while the introduction of a 2', 5'-phosphodiester linkage permitted binding, but not cleavage. This indicates that the position of the phosphodiester link with respect to the nuclease domain, and not the 2'-OH group, is critical for cleavage by Rnt1p. Surprisingly, Rnt1p bound to a DNA helix capped with an NGNN tetraribonucleotide loop indicating that the binding of at least one member of the RNase III family is not restricted to RNA. The results also suggest that the dsRBD may accommodate B-form DNA duplexes. Interestingly, Rnt1p, but not Pac1 nor bacterial RNase III, cleaved the DNA strand of a DNA/RNA hybrid, indicating that A-form RNA helix is not essential for cleavage by Rnt1p. In contrast, RNA/DNA hybrids bound to, but were not cleaved by Rnt1p, underscoring the critical role for the nucleotide located at 3' end of the tetraloop and suggesting an asymmetrical mode of substrate recognition. In cell extracts, the native enzyme effectively cleaved the DNA/RNA hybrid, indicating much broader Rnt1p substrate specificity than previously thought. The discovery of this novel RNA-dependent deoxyribonuclease activity has potential implications in devising new antiviral strategies that target actively transcribed DNA.  相似文献   

3.
H Li  A W Nicholson 《The EMBO journal》1996,15(6):1421-1433
Ethylation interference and hydroxyl radical footprinting were used to identify substrate ribose-phosphate backbone sites that interact with the Escherichia coli RNA processing enzyme, ribonuclease III. Two RNase III mutants were employed, which bind substrate in vitro similarly as wild-type enzyme, but lack detectable phosphodiesterase activity. Specifically, altering glutamic acid at position 117 to lysine or alanine uncouples substrate binding from cleavage. The two substrates examined are based on the bacteriophage T7 R1.1 RNase III processing signal. One substrate, R1.1 RNA, undergoes accurate single cleavage at the canonical site, while a close variant, R1.1[WC-L] RNA, undergoes coordinate double cleavage. The interference and footprinting patterns for each substrate (i) overlap, (ii) exhibit symmetry and (iii) extend approximately one helical turn in each direction from the RNase III cleavage sites. Divalent metal ions (Mg2+, Ca2+) significantly enhance substrate binding, and confer stronger protection from hydroxyl radicals, but do not significantly affect the interference pattern. The footprinting and interference patterns indicate that (i) RNase III contacts the sugar-phosphate backbone; (ii) the RNase III-substrate interaction spans two turns of the A-form helix; and (iii) divalent metal ion does not play an essential role in binding specificity. These results rationalize the conserved two-turn helix motif seen in most RNase III processing signals, and which is necessary for optimal processing reactivity. In addition, the specific differences in the footprint and interference patterns of the two substrates suggest why RNase III catalyzes the coordinate double cleavage of R1.1[WC-L] RNA, and dsRNA in general, while catalyzing only single cleavage of R1.1 RNA and related substrates in which the scissle bond is within an asymmetric internal loop.  相似文献   

4.
Bacterial double-stranded RNA-specific RNase III recognizes the A-form of an RNA helix with little sequence specificity. In contrast, baker yeast RNase III (Rnt1p) selectively recognizes NGNN tetraloops even when they are attached to a B-form DNA helix. To comprehend the general mechanism of RNase III substrate recognition, we mapped the Rnt1p binding signal and directly compared its substrate specificity to that of both Escherichia coli RNase III and fission yeast RNase III (PacI). Rnt1p bound but did not cleave long RNA duplexes without NGNN tetraloops, whereas RNase III indiscriminately cleaved all RNA duplexes. PacI cleaved RNA duplexes with some preferences for NGNN-capped RNA stems under physiological conditions. Hydroxyl radical footprints indicate that Rnt1p specifically interacts with the NGNN tetraloop and its surrounding nucleotides. In contrast, Rnt1p interaction with GAAA-capped hairpins was weak and largely unspecific. Certain duality of substrate recognition was exhibited by PacI but not by bacterial RNase III. E. coli RNase III recognized RNA duplexes longer than 11 bp with little specificity, and no specific features were required for cleavage. On the other hand, PacI cleaved long, but not short, RNA duplexes with little sequence specificity. PacI cleavage of RNA stems shorter than 27 bp was dependent on the presence of an UU-UC internal loop two nucleotides upstream of the cleavage site. These observations suggest that yeast RNase IIIs have two recognition mechanisms, one that uses specific structural features and another that recognizes general features of the A-form RNA helix.  相似文献   

5.
6.
Dicer is a member of the double-stranded (ds) RNA-specific ribonuclease III (RNase III) family that is required for RNA processing and degradation. Like most members of the RNase III family, Dicer possesses a dsRNA binding domain and cleaves long RNA duplexes in vitro. In this study, Dicer substrate selectivity was examined using bipartite substrates. These experiments revealed that an RNA helix possessing a 2-nucleotide (nt) 3'-overhang may bind and direct sequence-specific Dicer-mediated cleavage in trans at a fixed distance from the 3'-end overhang. Chemical modifications of the substrate indicate that the presence of the ribose 2'-hydroxyl group is not required for Dicer binding, but some located near the scissile bonds are needed for RNA cleavage. This suggests a flexible mechanism for substrate selectivity that recognizes the overall shape of an RNA helix. Examination of the structure of natural pre-microRNAs (pre-miRNAs) suggests that they may form bipartite substrates with complementary mRNA sequences, and thus induce seed-independent Dicer cleavage. Indeed, in vitro, natural pre-miRNA directed sequence-specific Dicer-mediated cleavage in trans by supporting the formation of a substrate mimic.  相似文献   

7.
8.
When designed to cleave a target RNA in trans, the hammerhead ribozyme contains two antisense flanks which form helix I and helix III by pairing with the complementary target RNA. The sequences forming helix II are contained on the ribozyme strand and represent a major structural component of the hammerhead structure. In the case of an inhibitory 429 nucleotides long trans-ribozyme (2as-Rz12) which was directed against the 5'-leader/gag region of the human immunodeficiency virus type 1 (HIV-1), helix II was not pre-formed in the single-stranded molecule. Thus, major structural changes are necessary before cleavage can occur. To study whether pre-formation of helix II in the non-paired 2as-Rz12 RNA could influence the observed cleavage rate in vitro and its inhibitory activity on HIV-1 replication, we extended the 4 base pair helix II of 2as-Rz12 to 6, 10, 21, and 22 base pairs respectively. Limited RNase cleavage reactions performed in vitro at 37 degrees C and at physiological ion strength indicated that a helix II of the hammerhead domain was pre-formed when its length was at least six base pairs. This modification neither affected the association rate with target RNA nor the cleavage rate in vitro. In contrast to this, extension of helix II led to a significantly decreased inhibition of HIV-1 replication in human cells. Together with the finding of others that shortening of helix II to less than two base pairs reduces the catalytic activity in vitro, this observation indicates that the length of helix II in the naturally occurring RNAs with a hammerhead domain is already close or identical to the optimal length for catalytic activity in vitro and in vivo.  相似文献   

9.
Pathways for the maturation of ribosomal RNAs are complex with numerous intermediate cleavage sites that are not always conserved closely in the course of evolution. Both in eukaryotes and bacteria genetic analyses and in vitro studies have strongly implicated RNase III-like enzymes in the processing of rRNA precursors. In Schizosacharomyces pombe, for example, the RNase III-like Pac1 nuclease has been shown to cleave the free 3′ETS at two known intermediate sites but, in the presence of RAC protein, the same RNA also is cleaved at the 3′-end of the 25 S rRNA sequence. In this study normal and mutant 3′ETS sequences were digested with the Pac1 enzyme to further evaluate its role in rRNA processing. Accurate cleavage at the known intermediate processing sites was dependent on the integrity of the helical structure at these sites as well as a more distal upper stem region in the conserved extended hairpin structure of the 3′ETS. The cleavage of mutant 3′ETS sequences also generally correlated with the known effects of these mutations on rRNA production, in vivo. One mutant, however, was efficiently processed in vivo but was not a substrate for the Pac1 nuclease, in vitro. In contrast, in the presence of RAC protein, the same RNA remained susceptible to Pac1 nuclease cleavage at the 3′-end of the 25 rRNA sequence, indicating that the removal of the 3′ETS does not require cleavage at the intermediate sites. These results suggest that basic maturation pathways may be less complex than previously reported raising similar questions about other intermediate processing sites, which have been identified by analyses of termini, and/or processing, in vitro.  相似文献   

10.
11.
The cleavage site of the Neurospora VS RNA ribozyme is located in a separate hairpin domain containing a hexanucleotide internal loop with an A-C mismatch and two adjacent G-A mismatches. The solution structure of the internal loop and helix la of the ribozyme substrate hairpin has been determined by nuclear magnetic resonance (NMR) spectroscopy. The 2 nt in the internal loop, flanking the cleavage site, a guanine and adenine, are involved in two sheared G.A base pairs similar to the magnesium ion-binding site of the hammerhead ribozyme. Adjacent to the tandem G.A base pairs, the adenine and cytidine, which are important for cleavage, form a noncanonical wobble A+-C base pair. The dynamic properties of the internal loop and details of the high-resolution structure support the view that the hairpin structure represents a ground state, which has to undergo a conformational change prior to cleavage. Results of chemical modification and mutagenesis data of the Neurospora VS RNA ribozyme can be explained in context with the present three-dimensional structure.  相似文献   

12.
We have characterized cloned His-tag human RNase H1. The activity of the enzyme exhibited a bell-shaped response to divalent cations and pH. The optimum conditions for catalysis consisted of 1 mM Mg(2+) and pH 7-8. In the presence of Mg(2+), Mn(2+) was inhibitory. Human RNase H1 shares many enzymatic properties with Escherichia coli RNase H1. The human enzyme cleaves RNA in a DNA-RNA duplex resulting in products with 5'-phosphate and 3'-hydroxy termini, can cleave overhanging single strand RNA adjacent to a DNA-RNA duplex, and is unable to cleave substrates in which either the RNA or DNA strand has 2' modifications at the cleavage site. Human RNase H1 binds selectively to "A-form"-type duplexes with approximately 10-20-fold greater affinity than that observed for E. coli RNase H1. The human enzyme displays a greater initial rate of cleavage of a heteroduplex-containing RNA-phosphorothioate DNA than an RNA-DNA duplex. Unlike the E. coli enzyme, human RNase H1 displays a strong positional preference for cleavage, i.e. it cleaves between 8 and 12 nucleotides from the 5'-RNA-3'-DNA terminus of the duplex. Within the preferred cleavage site, the enzyme displays modest sequence preference with GU being a preferred dinucleotide. The enzyme is inhibited by single-strand phosphorothioate oligonucleotides and displays no evidence of processivity. The minimum RNA-DNA duplex length that supports cleavage is 6 base pairs, and the minimum RNA-DNA "gap size" that supports cleavage is 5 base pairs.  相似文献   

13.
S A White  D E Draper 《Biochemistry》1989,28(4):1892-1897
The way in which a single-base bulge might affect the structure of an RNA helix has been examined by preparing a series of six RNA hairpins, all with seven base pairs and a four-nucleotide loop. Five of the hairpins have single-base bulges at different positions. The intercalating cleavage reagent (methidiumpropyl)-EDTA-Fe(II) [MPE-Fe(II)] binds preferentially at a CpG sequence in the helix lacking a bulge and in four of the five hairpins with bulges. Hairpins with a bulge one or two bases to the 3' side of the CpG sequence bind ethidium 4-5-fold more strongly than the others. V1 RNase, which is sensitive to RNA backbone conformation in helices, detects a conformational change in all of the helices when ethidium binds; the most dramatic changes, involving the entire hairpin stem, are in one of the two hairpins with enhanced ethidium affinity. Only a slight conformational change is detected in the hairpin lacking a bulge. A bulge adjacent to a CpG sequence in a 100-nucleotide ribosomal RNA fragment enhances MPE-Fe(II) binding by an order of magnitude. These results extend our previous observations of bulges at a single position in an RNA hairpin [White, S. A., & Draper, D.E. (1987) Nucleic Acids Res. 15, 4049] and show that (1) a structural change in an RNA helix may be propagated for several base pairs, (2) bulges tend to increase the number of conformations available to a helix, and (3) the effects observed in small RNA hairpins are relevant to larger RNAs with more extensive structure. A bulge in a DNA hairpin identical in sequence with the RNA hairpins does not enhance MPE-Fe(II) binding affinity, relative to a control DNA hairpin. The effects of bulges on ethidium intercalation are evidently modulated by helix structure.  相似文献   

14.
Members of the RNase III family of double-stranded RNA (dsRNA) endonucleases are important enzymes of RNA metabolism in eukaryotic cells. Rnt1p is the only known member of the RNase III family of endonucleases in Saccharomyces cerevisiae. Previous studies have shown that Rnt1p cleaves dsRNA capped by a conserved AGNN tetraloop motif, which is a major determinant for Rnt1p binding and cleavage. The solution structure of the dsRNA-binding domain (dsRBD) of Rnt1p bound to a cognate RNA substrate revealed the structural basis for binding of the conserved tetraloop motif by alpha-helix 1 of the dsRBD. In this study, we have analyzed extensively the effects of mutations of helix 1 residues that contact the RNA. We show, using microarray analysis, that mutations of these amino acids induce substrate-specific processing defects in vivo. Cleavage kinetics and binding studies show that these mutations affect RNA cleavage and binding in vitro to different extents and suggest a function for some specific amino acids of the dsRBD in the catalytic positioning of the enzyme. Moreover, we show that 2'-hydroxyl groups of nucleotides of the tetraloop or adjacent base pairs predicted to interact with residues of alpha-helix 1 are important for Rnt1p cleavage in vitro. This study underscores the importance of a few amino acid contacts for positioning of a dsRBD onto its RNA target, and implicates the specific orientation of helix 1 on the RNA for proper positioning of the catalytic domain.  相似文献   

15.
16.
RNA substrates which form relatively short helices I and III with hammerhead ribozymes are generally cleaved more rapidly than substrates which create longer binding helices. We speculated that for optimum cleavage rates, one of the helices needed to be relatively weak. To identify this helix, a series of ribozymes and substrates of varying lengths were made such that in the complex, helices I and III consisted of 5 and 10 bp respectively or vice versa. In two independent systems, substrates in the complexes with the shorter helix I and longer helix III were cleaved one to two orders of magnitude more rapidly than those in the complexes with the longer helix I and shorter helix III. Similar results were obtained whether the numbers of base pairs in helices I and III were limited either by the length of the hybridizing arms of the ribozyme or the length of the substrate. The phenomenon was observed for both all-RNA and DNA armed ribozymes. Thus, a relatively short helix I is required for fast cleavage rates in pre-formed hammer-head ribozyme-substrate complexes. When helix III has 10 bp, the optimum length for helix I is approximately 5 bp.  相似文献   

17.
18.
19.
20.
The coding region of c-myc mRNA encompassing the coding region determinant (CRD) nucleotides (nts) 1705-1792 is critical in regulating c-myc mRNA stability. This is in part due to the susceptibility of c-myc CRD RNA to attack by an endoribonuclease. We have previously purified and characterized a mammalian endoribonuclease that cleaves c-myc CRD RNA in vitro. This enzyme is tentatively identified as a 35 kDa RNase1-like endonuclease. In an effort to understand the sequence and secondary structure requirements for RNA cleavage by this enzyme, we have determined the secondary structure of the c-myc CRD RNA nts 1705-1792 using RNase probing technique. The secondary structure of c-myc CRD RNA possesses five stems; two of which contain 4 base pairs (stems I and V) and three consisting of 3 base pairs (stems II, III, and IV). Endonucleolytic assays using the c-myc CRD and several c-myc CRD mutants as substrates led to the following conclusions: (i) the enzyme prefers to cleave in between the dinucleotides UA, CA, and UG in single-stranded regions; (ii) the enzyme is more specific towards UA dinucleotides. These properties further distinguish the enzyme from previously described mammalian endonuclease that cleaves c-myc mRNA in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号