首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
CD36 is involved in high-affinity peripheral FFA uptake. CD36-deficient (cd36(-)(/)(-)) mice exhibit increased plasma FFA and triglyceride (TG) levels. The aim of the present study was to elucidate the cause of the increased plasma TG levels in cd36(-)(/)(-) mice. cd36(-)(/)(-) mice showed no differences in hepatic VLDL-TG production or intestinal [(3)H]TG uptake compared with wild-type littermates. cd36(-)(/)(-) mice showed a 2-fold enhanced postprandial TG response upon an intragastric fat load (P < 0.05), with a concomitant 2.5-fold increased FFA response (P < 0.05), suggesting that the increased FFA in cd36(-/-) mice may impair LPL-mediated TG hydrolysis. Postheparin LPL levels were not affected. However, the in vitro LPL-mediated TG hydrolysis rate as induced by postheparin plasma of cd36(-)(/)(-) mice in the absence of excess FFA-free BSA was reduced 2-fold compared with wild-type plasma (P < 0.05). This inhibition was relieved upon the addition of excess FFA-free BSA. Likewise, increasing plasma FFA in wild-type mice to the levels observed in cd36(-)(/)(-) mice by infusion prolonged the plasma half-life of glycerol tri[(3)H]oleate-labeled VLDL-like emulsion particles by 2.5-fold (P < 0.05). We conclude that the increased plasma TG levels observed in cd36(-)(/)(-) mice are caused by decreased LPL-mediated hydrolysis of TG-rich lipoproteins resulting from FFA-induced product inhibition of LPL.  相似文献   

2.
We have recently shown that the predominant hypertriglyceridemia in human apolipoprotein C1 (APOC1) transgenic mice is mainly explained by apoCI-mediated inhibition of the lipoprotein lipase (LPL)-dependent triglyceride (TG)-hydrolysis pathway. Since the very-low-density lipoprotein receptor (VLDLr) and apoCIII are potent modifiers of LPL activity, our current aim was to study whether the lipolysis-inhibiting action of apoCI would be dependent on the presence of the VLDLr and apoCIII in vivo. Hereto, we employed liver-specific expression of human apoCI by using a novel recombinant adenovirus (AdAPOC1). In wild-type mice, moderate apoCI expression leading to plasma human apoCI levels of 12-33 mg/dl dose-dependently and specifically increased plasma TG (up to 6.6-fold, P < 0.001), yielding the same hypertriglyceridemic phenotype as observed in human APOC1 transgenic mice. AdAPOC1 still increased plasma TG in vldlr(-/-) mice (4.1-fold, P < 0.001) and in apoc3(-/-) mice (6.8-fold, P < 0.001) that were also deficient for the low-density lipoprotein receptor (LDLr) and LDLr-related protein (LRP) or apoE, respectively. Thus, irrespective of receptor-mediated remnant clearance by the liver, liver-specific expression of human apoCI causes hypertriglyceridemia in the absence of the VLDLr and apoCIII. We conclude that apoCI is a powerful and direct inhibitor of LPL activity independent of the VLDLr and apoCIII.  相似文献   

3.
The Hyplip2 congenic mouse strain contains part of chromosome 15 from MRL/MpJ on the BALB/cJ background. Hyplip2 mice show increased plasma levels of cholesterol and predominantly triglycerides (TGs) and are susceptible to diet-induced atherosclerosis. This study aimed at elucidation of the mechanism(s) explaining the hypertriglyceridemia. Hypertriglyceridemia can result from increased intestinal or hepatic TG production and/or by decreased LPL-mediated TG clearance. The intestinal TG absorption and chylomicron formation were studied after intravenous injection of Triton WR1339 and an intragastric load of olive oil containing glycerol tri[(3)H]oleate. No difference was found in intestinal TG absorption. Moreover, the hepatic VLDL-TG production rate and VLDL particle production, after injection of Triton WR1339, were also not affected. To investigate the LPL-mediated TG clearance, mice were injected intravenously with glycerol tri[(3)H]oleate-labeled VLDL-like emulsion particles. In Hyplip2 mice, the particles were cleared at a decreased rate (half-life of 25 +/- 6 vs. 11 +/- 2 min; P < 0.05) concomitant with a decreased uptake of emulsion TG-derived (3)H-labeled fatty acids by the liver and white adipose tissue. The increased plasma TG levels in Hyplip2 mice do not result from an enhanced intestinal absorption or increased hepatic VLDL production but are caused by decreased LPL-mediated TG clearance.  相似文献   

4.
Previous studies have shown that overexpression of human apolipoprotein C-I (apoC-I) results in moderate hypercholesterolemia and severe hypertriglyceridemia in mice in the presence and absence of apoE. We assessed whether physiological endogenous apoC-I levels are sufficient to modulate plasma lipid levels independently of effects of apoE on lipid metabolism by comparing apolipoprotein E gene-deficient/apolipoprotein C-I gene-deficient (apoe-/-apoc1-/-), apoe-/-apoc1+/-, and apoe-/-apoc1+/+ mice. The presence of the apoC-I gene-dose-dependently increased plasma cholesterol (+45%; P < 0.001) and triglycerides (TGs) (+137%; P < 0.001), both specific for VLDL. Whereas apoC-I did not affect intestinal [3H]TG absorption, it increased the production rate of hepatic VLDL-TG (+35%; P < 0.05) and VLDL-[35S]apoB (+39%; P < 0.01). In addition, apoC-I increased the postprandial TG response to an intragastric olive oil load (+120%; P < 0.05) and decreased the uptake of [3H]TG-derived FFAs from intravenously administered VLDL-like emulsion particles by gonadal and perirenal white adipose tissue (WAT) (-34% and -25%, respectively; P < 0.05). As LPL is the main enzyme involved in the clearance of TG-derived FFAs by WAT, and total postheparin plasma LPL levels were unaffected, these data demonstrate that endogenous apoC-I suffices to attenuate the lipolytic activity of LPL. Thus, we conclude that endogenous plasma apoC-I increases VLDL-total cholesterol and VLDL-TG dose-dependently in apoe-/- mice, resulting from increased VLDL particle production and LPL inhibition.  相似文献   

5.
LPL activity plays an important role in preceding the VLDL remnant clearance via the three major apolipoprotein E (apoE)-recognizing receptors: the LDL receptor (LDLr), LDL receptor-related protein (LRP), and VLDL receptor (VLDLr). The aim of this study was to determine whether LPL activity is also important for VLDL remnant clearance irrespective of these receptors and to determine the mechanisms involved in the hepatic remnant uptake. Administration of an adenovirus expressing LPL (AdLPL) into lrp(-)ldlr(-/-)vldlr(-/-) mice reduced both VLDL-triglyceride (TG) and VLDL-total cholesterol (TC) levels. Conversely, inhibition of LPL by AdAPOC1 increased plasma VLDL-TG and VLDL-TC levels. Metabolic studies with radiolabeled VLDL-like emulsion particles showed that the clearance and hepatic association of their remnants positively correlated with LPL activity. This hepatic association was independent of the bridging function of LPL and HL, since heparin did not reduce the liver association. In vitro studies demonstrated that VLDL-like emulsion particles avidly bound to the cell surface of primary hepatocytes from lrp(-)ldlr(-/-)vldlr(-/-) mice, followed by slow internalization, and involved heparin-releaseable cell surface proteins as well as scavenger receptor class B type I (SR-BI). Collectively, we conclude that hepatic VLDL remnant uptake in the absence of the three classical apoE-recognizing receptors is regulated by LPL activity and involves heparan sulfate proteoglycans and SR-BI.  相似文献   

6.
Adenovirus-mediated overexpression of human apolipoprotein E (apoE) induces hyperlipidemia by stimulating the VLDL-triglyceride (TG) production rate and inhibiting the LPL-mediated VLDL-TG hydrolysis rate. Because apoC-III is a strong inhibitor of TG hydrolysis, we questioned whether Apoc3 deficiency might prevent the hyperlipidemia induced by apoE overexpression in vivo. Injection of 2 x 10(9) plaque-forming units of AdAPOE4 caused severe combined hyperlipidemia in Apoe-/- mice [TG from 0.7 +/- 0.2 to 57.2 +/- 6.7 mM; total cholesterol (TC) from 17.4 +/- 3.7 to 29.0 +/- 4.1 mM] that was confined to VLDL/intermediate density lipoprotein-sized lipoproteins. In contrast, Apoc3 deficiency resulted in a gene dose-dependent reduction of the apoE4-associated hyperlipidemia (TG from 57.2 +/- 6.7 mM to 21.2 +/- 18.5 and 1.5 +/- 1.4 mM; TC from 29.0 +/- 4.1 to 16.4 +/- 9.8 and 2.3 +/- 1.8 mM in Apoe-/-, Apoe-/-.Apoc3+/-, and Apoe-/-.Apoc3-/- mice, respectively). In both Apoe-/- mice and Apoe-/-.Apoc3-/- mice, injection of increasing doses of AdAPOE4 resulted in up to a 10-fold increased VLDL-TG production rate. However, Apoc3 deficiency resulted in a significant increase in the uptake of TG-derived fatty acids from VLDL-like emulsion particles by white adipose tissue, indicating enhanced LPL activity. In vitro experiments showed that apoC-III is a more specific inhibitor of LPL activity than is apoE. Thus, Apoc3 deficiency can prevent apoE-induced hyperlipidemia associated with a 10-fold increased hepatic VLDL-TG production rate, most likely by alleviating the apoE-induced inhibition of VLDL-TG hydrolysis.  相似文献   

7.
8.
Chronic intermittent hypoxia (CIH) inhibits plasma lipoprotein clearance and adipose lipoprotein lipase (LPL) activity in association with upregulation of an LPL inhibitor angiopoietin-like protein 4 (Angptl4). We hypothesize that CIH inhibits triglyceride (TG) uptake via Angptl4 and that an anti-Angptl4-neutralizing antibody would abolish the effects of CIH. Male C57BL/6J mice were exposed to four weeks of CIH or intermittent air (IA) while treated with Ab (30 mg/kg ip once a week). TG clearance was assessed by [H3]triolein administration retroorbitally. CIH delayed TG clearance and suppressed TG uptake and LPL activity in all white adipose tissue depots, brown adipose tissue, and lungs, whereas heart, liver, and spleen were not affected. CD146+ CD11b− pulmonary microvascular endothelial cells were responsible for TG uptake in the lungs and its inhibition by CIH. Antibody to Angptl4 decreased plasma TG levels and increased TG clearance and uptake into adipose tissue and lungs in both control and CIH mice to a similar extent, but did not reverse the effects of CIH. The antibody reversed the effects of CIH on LPL in adipose tissue and lungs. In conclusion, CIH inactivates LPL by upregulating Angptl4, but inhibition of TG uptake occurs predominantly via an Angptl4/LPL-independent mechanism.  相似文献   

9.
The postprandial excursion of plasma triglyceride (TG) concentration is greater in men than in women. In this study, the disposition of dietary fat was examined in lean healthy men and women (n = 8/group) in either the overnight-fasted or fed (4.5 h after breakfast) states. A [14C]oleate tracer was incorporated into a test meal, providing 30% of total daily energy requirements. After ingestion of the test meal, measures of arteriovenous differences in TG and 14C across the leg were combined with needle biopsies of skeletal muscle and adipose tissue and respiratory gas collections to define the role of skeletal muscle in the clearance of dietary fat. The postprandial plasma TG and 14C tracer excursions were lower (P = 0.04) in women than in men in the overnight-fasted and fed states. Women, however, had significantly greater limb uptake of total TG compared with men on both the fasted (3,849 +/- 846 vs. 528 +/- 221 total micro mol over 6 h) and fed (4,847 +/- 979 vs. 1,571 +/- 334 total micromol over 6 h) days. This was also true for meal-derived 14C lipid uptake. 14C content of skeletal muscle tissue (micro Ci/g tissue) was significantly greater in women than in men 6 h after ingestion of the test meal. In contrast, 14C content of adipose tissue was not significantly different between men and women at 6 h. The main effect of nutritional state, fed vs. fasted, was to increase the postmeal glucose (P = 0.01) excursion (increase from baseline) and decrease the postmeal TG excursion (P = 0.02). These results support the notion that enhanced skeletal muscle clearance of lipoprotein TG in women contributes to their reduced postprandial TG excursion. Questions remain as to the mechanisms causing these sex-based differences in skeletal muscle TG uptake and metabolism. Furthermore, nutritional state can significantly impact postprandial metabolism in both men and women.  相似文献   

10.
Lipoprotein lipase (LPL) is important for clearance of triacylglycerols (TG) from plasma both as an enzyme and as a bridging factor between lipoproteins and receptors for endocytosis. The amount of LPL at the luminal side of the capillary endothelium determines to what extent lipids are taken up. Mechanisms to control both the activity of LPL and its transport to the endothelial sites are regulated, but poorly understood. Angiopoietin-like proteins (ANGPTLs) 3 and 4 are potential control proteins for LPL, but plasma concentrations of ANGPTLs do not correlate with plasma TG levels. We investigated the effects of recombinant human N-terminal (NT) ANGPTLs3 and 4 on LPL-mediated bridging of TG-rich lipoproteins to primary mouse hepatocytes and found that the NT-ANGPTLs, in concentrations sufficient to cause inactivation of LPL in vitro, were unable to prevent LPL-mediated lipoprotein uptake. We therefore investigated the effects of lipoproteins (chylomicrons, VLDL and LDL) on the inactivation of LPL in vitro by NT-ANGPTLs3 and 4 and found that LPL activity was protected by TG-rich lipoproteins. In vivo, postprandial TG protected LPL from inactivation by recombinant NT-ANGPTL4 injected to mice. We conclude that lipoprotein-bound LPL is stabilized against inactivation by ANGPTLs. The levels of ANGPTLs found in blood may not be sufficient to overcome this stabilization. Therefore it is likely that the prime site of action of ANGPTLs on LPL is in subendothelial compartments where TG-rich lipoprotein concentration is lower than in blood. This could explain why the plasma levels of TG and ANGPTLs do not correlate.  相似文献   

11.
Acylation-stimulating protein (ASP) is a lipogenic hormone secreted by white adipose tissue (WAT). Male C3 knockout (KO; C3(-/-)) ASP-deficient mice have delayed postprandial triglyceride (TG) clearance and reduced WAT mass. The objective of this study was to examine the mechanism(s) by which ASP deficiency induces differences in postprandial TG clearance and body composition in male KO mice. Except for increased (3)H-labeled nonesterified fatty acid (NEFA) trapping in brown adipose tissue (BAT) of KO mice (P = 0.02), there were no intrinsic tissue differences between wild-type (WT) and KO mice in (3)H-NEFA or [(14)C]glucose oxidation, TG synthesis or lipolysis in WAT, muscle, or liver. There were no differences in WAT or skeletal muscle hydrolysis, uptake, and storage of [(3)H]triolein substrate [in situ lipoprotein lipase (LPL) activity]. ASP, however, increased in situ LPL activity in WAT (+64.8%, P = 0.02) but decreased it in muscle (-35.0%, P = 0.0002). In addition, after prelabeling WAT with [(3)H]oleate and [(14)C]glucose, ASP increased (3)H-lipid retention, [(3)H]TG synthesis, and [(3)H]TG-to-[(14)C]TG ratio, whereas it decreased (3)H-NEFA release, indicating increased NEFA trapping in WAT. Conversely, in muscle, ASP induced effects opposite to those in WAT and increased lipolysis, indicating reduced NEFA trapping within muscle by ASP (P < 0.05 for all parameters). In conclusion, novel data in this study suggest that 1) there is little intrinsic difference between KO and WT tissue in the parameters examined and 2) ASP differentially regulates in situ LPL activity and NEFA trapping in WAT and skeletal muscle, which may promote optimal insulin sensitivity in vivo.  相似文献   

12.
The peroxisome proliferator-activated receptor alpha (PPARα) activator fenofibrate efficiently decreases plasma triglycerides (TG), which is generally attributed to enhanced very low density lipoprotein (VLDL)-TG clearance and decreased VLDL-TG production. However, because data on the effect of fenofibrate on VLDL production are controversial, we aimed to investigate in (more) detail the mechanism underlying the TG-lowering effect by studying VLDL-TG production and clearance using APOE*3-Leiden.CETP mice, a unique mouse model for human-like lipoprotein metabolism. Male mice were fed a Western-type diet for 4 weeks, followed by the same diet without or with fenofibrate (30 mg/kg bodyweight/day) for 4 weeks. Fenofibrate strongly lowered plasma cholesterol (−38%) and TG (−60%) caused by reduction of VLDL. Fenofibrate markedly accelerated VLDL-TG clearance, as judged from a reduced plasma half-life of glycerol tri[3H]oleate-labeled VLDL-like emulsion particles (−68%). This was associated with an increased post-heparin lipoprotein lipase (LPL) activity (+110%) and an increased uptake of VLDL-derived fatty acids by skeletal muscle, white adipose tissue, and liver. Concomitantly, fenofibrate markedly increased the VLDL-TG production rate (+73%) but not the VLDL-apolipoprotein B (apoB) production rate. Kinetic studies using [3H]palmitic acid showed that fenofibrate increased VLDL-TG production by equally increasing incorporation of re-esterified plasma fatty acids and liver TG into VLDL, which was supported by hepatic gene expression profiling data. We conclude that fenofibrate decreases plasma TG by enhancing LPL-mediated VLDL-TG clearance, which results in a compensatory increase in VLDL-TG production by the liver.  相似文献   

13.
Omega-3 fatty acids (FAs) reduce postprandial triacylglycerol (TG) concentrations. This study was undertaken to determine whether this effect was due to reduced production or increased clearance of chylomicrons. Healthy subjects (n = 33) began with a 4-week, olive oil placebo (4 g/d) run-in period. After a 4-week wash-out period, subjects were randomized to supplementation with 4 g/d of ethyl esters of either safflower oil (SAF), eicosapentaenoic acid (EPA), or docosahexaenoic acid (DHA) for 4 weeks. Results for EPA and DHA were similar, and therefore the data were combined into one omega-3 FA group. Omega-3 FA supplementation reduced the postprandial TG and apolipoprotein B (apo B)-48 and apoB-100 concentrations by 16% (P = 0.08), 28% (P < 0.001), and 24% (P < 0.01), respectively. Chylomicron TG half-lives in the fed state were reduced after omega-3 FA treatment (6.0 +/- 0.5 vs. 5.1 +/- 0.4 min; P < 0.05), but not after SAF (6.9 +/- 0.7 vs. 7.1 +/- 0.7 min). Omega-3 FA supplementation decreased chylomicron particle sizes (mean diameter; 293 +/- 44 vs. 175 +/- 25 nm; P < 0.01) and increased preheparin lipoprotein lipase (LPL; 0.6 +/- 0.1 vs. 0.9 +/- 0.1 micromol/h/ml; P < 0.05) activity during the fed state, but had no effect on postheparin LPL or hepatic lipase activities. The results suggest that omega-3 FA supplementation accelerates chylomicron TG clearance by increasing LPL activity, and that EPA and DHA are equally effective.  相似文献   

14.
This study determines whether changes in abdominal (ABD) and gluteal (GLT) adipose tissue lipoprotein lipase (LPL) activity in response to a 6-mo weight loss intervention, comprised of a hypocaloric diet and low-intensity walking, affect changes in body composition, fat distribution, lipid metabolism, and the magnitude of weight regain in 36 obese postmenopausal women. Average adipose tissue LPL activity did not change with an average 5.6-kg weight loss, but changes in LPL activity were inversely related to baseline LPL activity (ABD: r = -0.60, GLT: r = -0.48; P < 0.01). The loss of abdominal body fat and decreases in total and low-density lipoprotein cholesterol were greater in women whose adipose tissue LPL activity decreased with weight loss despite a similar loss of total body weight and fat mass. Moreover, weight regain after a 6-mo follow-up was less in women whose adipose tissue LPL activity decreased than in women whose LPL increased (ABD: 0.9 +/- 0.5 vs. 2.8 +/- 0.6 kg, P < 0.05; GLT: 0.2 +/- 0.5 vs. 2.8 +/- 0.5 kg, P < 0.01). These results suggest that a reduction in adipose tissue LPL activity with weight loss is associated with improvements in lipid metabolic risk factors with weight loss and with diminished weight regain in postmenopausal women.  相似文献   

15.
Peroxisome proliferator-activated receptor-gamma (PPARgamma) agonism potently reduces circulating triglycerides (TG) in rodents and more modestly so in humans. This study aimed to quantify in vivo the relative contribution of hepatic VLDL-TG secretion and tissue-specific TG clearance to such action. Rats were fed an obesogenic diet, treated with the PPARgamma full agonist COOH (30 mg.kg(-1).day(-1)) for 3 wk, and studied in both the fasted and refed (fat-free) states. Hepatic VLDL-TG secretion rate was not affected by chronic COOH in the fasted state and was only modestly decreased (-30%) in refed rats. In contrast, postprandial VLDL-TG clearance was increased 2.6-fold by COOH, which concomitantly stimulated adipose tissue TG-derived lipid uptake and one of its major determinants, lipoprotein lipase (LPL) activity, in a highly depot-specific manner. TG-derived lipid uptake and LPL were indeed strongly increased in subcutaneous inguinal white adipose tissue and in brown adipose tissue, independently of the nutritional state, whereas of the three visceral fat depots examined (epididymal, retroperitoneal, mesenteric) only the latter responded consistently to COOH. Robust correlations (0.5 < r < 0.9) were observed between TG-derived lipid uptake and LPL in adipose tissues. The agonist did not increase LPL in muscle, and its enhancing action on postprandial muscle lipid uptake appeared to be mediated by post-LPL processes involving increased expression of fatty acid binding/transport proteins (aP2, likely in infiltrated adipocytes, FAT/CD36, and FATP-1). The study establishes in a diet-induced obesity model the major contribution of lipid uptake by specific, metabolically safe adipose depots to the postprandial hypotriglyceridemic action of PPARgamma agonism, and suggests a key role for LPL therein.  相似文献   

16.
We sought to test the hypothesis that dietary long-chain n-3 PUFA (LC n-3 PUFA) in fish oil stimulate the gene expression of lipoprotein lipase (LPL) in human adipose tissue (AT). In a randomized, double blind, placebo-controlled, cross-over study, 51 male subjects expressing an atherogenic lipoprotein phenotype (ALP) had their diets supplemented with fish oil for 6 weeks. As we previously reported for this group, supplementation with LC n-3 PUFA produced a decrease in fasting plasma triglyceride (TG) (-35%, P < 0.05), attenuation of the postprandial TG response (area and incremental area under the curve; AUC and IAUC, P < 0.05), and a decrease in small, dense LDL. The present study extended these observations by showing that these changes were accompanied by a marked increase in the concentration of LPL mRNA in adipose tissue (AT-LPL mRNA, +55%, P = 0.003) and post-heparin LPL activity (PH-LPL, +31%, P = 0.036). There was also evidence of an association between LPL gene expression and polymorphism in the apolipoprotein E gene. We conclude that the favorable influence of dietary n-3 PUFA on the ALP may be mediated, in part, through an increase in the plasma activity and gene expression of lipoprotein lipase in human adipose tissue.  相似文献   

17.
Acylation stimulating protein (ASP, C3adesArg) is an adipose tissue derived hormone that stimulates triglyceride (TG) synthesis. ASP stimulates lipoprotein lipase (LPL) activity by relieving feedback inhibition caused by fatty acids (FA). The present study examines plasma ASP and lipids in male and female LPL-deficient subjects primarily with the P207L mutation, common in the population of Quebec, Canada. We evaluated the fasting and postprandial states of LPL heterozygotes and fasting levels in LPL homozygotes. Homozygotes displayed increased ASP (58–175% increase, P < 0.05–0.01), reduced HDL-cholesterol (64–75% decrease, P < 0.0001), and elevated levels of TG (19–38-fold, P < 0.0001) versus control (CTL) subjects. LPL heterozygotes with normal fasting TG (1.3–1.9 mmol/l) displayed increased ASP (101–137% increase, P < 0.05–0.01) and delayed TG clearance after a fatload; glucose levels remained similar to controls. Hypertriglyceridemics with no known LPL mutation also had increased ASP levels (63–192% increase, P < 0.001). High-TG LPL heterozygotes were administered a fatload before and after fibrate treatment. The treatment reduced fasting and postprandial plasma ASP, TG, and FA levels without changing insulin or glucose levels. ASP enhances adipose tissue fatty-acid trapping following a meal; however in LPL deficiency, high ASP levels are coupled with delayed lipid clearance.  相似文献   

18.
Evidence points to a role of the mammalian target of rapamycin (mTOR) signaling pathway as a regulator of adiposity, yet its involvement as a mediator of the positive actions of peroxisome proliferator-activated receptor (PPAR)γ agonism on lipemia, fat accretion, lipid uptake, and its major determinant lipoprotein lipase (LPL) remains to be elucidated. Herein we evaluated the plasma lipid profile, triacylglycerol (TAG) secretion rates, and adipose tissue LPL-dependent lipid uptake, LPL expression/activity, and expression profile of other lipid metabolism genes in rats treated with the PPARγ agonist rosiglitazone (15 mg/kg/day) in combination or not with the mTOR inhibitor rapamycin (2 mg/kg/day) for 15 days. Rosiglitazone stimulated adipose tissue mTOR complex 1 and AMPK and induced TAG-derived lipid uptake (136%), LPL mRNA/activity (2- to 6-fold), and fat accretion in subcutaneous (but not visceral) white adipose tissue (WAT; 50%) and in brown adipose tissue (BAT; 266%). Chronic mTOR inhibition attenuated the upregulation of lipid uptake, LPL expression/activity, and fat accretion induced by PPARγ activation in both subcutaneous WAT and BAT, which resulted in hyperlipidemia. In contrast, rapamycin did not affect most of the other WAT lipogenic genes upregulated by rosiglitazone. Together these findings demonstrate that mTOR is a major regulator of adipose tissue LPL-mediated lipid uptake and a critical mediator of the hypolipidemic and lipogenic actions of PPARγ activation.  相似文献   

19.
Studies in humans and mice have shown that increased expression of apolipoprotein C-I (apoC-I) results in combined hyperlipidemia with a more pronounced effect on triglycerides (TGs) compared with total cholesterol (TC). The aim of this study was to elucidate the main reason for this effect using human apoC-I-expressing (APOC1) mice. Moderate plasma human apoC-I levels (i.e., 4-fold higher than human levels) caused a 12-fold increase in TG, along with a 2-fold increase in TC, mainly confined to VLDL. Cross-breeding of APOC1 mice on an apoE-deficient background resulted in a marked 55-fold increase in TG, confirming that the apoC-I-induced hyperlipidemia cannot merely be attributed to blockade of apoE-recognizing hepatic lipoprotein receptors. The plasma half-life of [3H]TG-VLDL-mimicking particles was 2-fold increased in APOC1 mice, suggesting that apoC-I reduces the lipolytic conversion of VLDL. Although total postheparin plasma LPL activity was not lower in APOC1 mice compared with controls, apoC-I was able to dose-dependently inhibit the LPL-mediated lipolysis of [3H]TG-VLDL-mimicking particles in vitro with a 60% efficiency compared with the main endogenous LPL inhibitor apoC-III. Finally, purified apoC-I impaired the clearance of [3H]TG-VLDL-mimicking particles independent of apoE-mediated hepatic uptake in lactoferrin-treated mice. Therefore, we conclude that apoC-I is a potent inhibitor of LPL-mediated TG-lipolysis.  相似文献   

20.
Prior exercise decreases postprandial plasma triacylglycerol (TG) concentrations, possibly through changes to skeletal muscle TG extraction. We measured postprandial substrate extraction across the leg in eight normolipidemic men aged 21-46 yr. On the afternoon preceding one trial, subjects ran for 2 h at 64 +/- 1% of maximal oxygen uptake (exercise); before the control trial, subjects had refrained from exercise. Samples of femoral arterial and venous blood were obtained, and leg blood flow was measured in the fasting state and for 6 h after a meal (1.2 g fat, 1.2 g carbohydrate/kg body mass). Prior exercise increased time averaged postprandial TG clearance across the leg (total TG: control, 0.079 +/- 0.014 ml.100 ml tissue(-1).min(-1) ; exercise, 0.158 +/- 0.023 ml.100 ml tissue(-1).min(-1), P <0.01), particularly in the chylomicron fraction, so that absolute TG uptake was maintained despite lower plasma TG concentrations (control, 1.53 +/- 0.13 mmol/l; exercise, 1.01 +/- 0.16 mmol/l, P < 0.001). Prior exercise increased postprandial leg blood flow and glucose uptake (both P < 0.05). Mechanisms other than increased leg TG uptake must account for the effect of prior exercise on postprandial lipemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号