首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wyma DJ  Kotov A  Aiken C 《Journal of virology》2000,74(20):9381-9387
Assembly of infectious human immunodeficiency virus type 1 (HIV-1) virions requires incorporation of the viral envelope glycoproteins gp41 and gp120. Several lines of evidence have suggested that the cytoplasmic tail of the transmembrane glycoprotein, gp41, associates with Pr55(Gag) in infected cells to facilitate the incorporation of HIV-1 envelope proteins into budding virions. However, direct evidence for an interaction between gp41 and Pr55(Gag) in HIV-1 particles has not been reported. To determine whether gp41 is associated with Pr55(Gag) in HIV-1 particles, viral cores were isolated from immature HIV-1 virions by sedimentation through detergent. The cores contained a major fraction of the gp41 that was present on untreated virions. Association of gp41 with cores required the presence of the gp41 cytoplasmic tail. In HIV-1 particles containing a functional protease, a mutation that prevents cleavage of Pr55(Gag) at the matrix-capsid junction was sufficient for the detergent-resistant association of gp41 with the isolated cores. In addition to gp41, a major fraction of virion-associated gp120 was also detected on immature HIV-1 cores. Isolation of cores under conditions known to disrupt lipid rafts resulted in the removal of a raft-associated protein incorporated into virions but not the HIV-1 envelope proteins. These results provide biochemical evidence for a stable interaction between Pr55(Gag) and the cytoplasmic tail of gp41 in immature HIV-1 particles. Moreover, findings in this study suggest that the interaction of Pr55(Gag) with gp41 may regulate the function of the envelope proteins during HIV-1 maturation.  相似文献   

2.
Formation of human immunodeficiency virus type 1 (HIV-1) particles takes place at the plasma membrane of cells and is directed by the Pr55Gag polyprotein. A functional assembly domain (the M domain) within the N-terminal portion of Pr55Gag mediates the interaction of Gag with cellular membranes. However, the determinants that provide specificity for assembly on the plasma membrane, as opposed to intracellular membranes, have not been identified. Recently, it was reported that Pr55Gag interacts with lipid raft microdomains of the plasma membrane. We sought to identify the domains within Pr55Gag that contribute to lipid raft association of Gag. Here we demonstrate that the I domain is required for interaction with detergent-resistant membrane fractions (DRMs). Mutation of key I-domain residues or loss of myristylation abrogated the association of Gag with DRMs. Thus, the I domain and the M domain combine to mediate Gag-lipid raft interactions as defined by these biochemical criteria. However, Gag protein complexes defined by flotation studies were much denser than classical lipid rafts, failed to incorporate classical lipid raft marker proteins, and were not disrupted by cholesterol extraction. Large sheets of Gag protein were identified in DRM fractions upon examination by electron microscopy. These results indicate that HIV-1 Pr55Gag forms detergent-resistant complexes at the cellular periphery that are distinct from lipid raft microdomains.  相似文献   

3.
Human immunodeficiency virus (HIV) type 1 particles assemble at the plasma membrane of cells in a manner similar to that of the type C oncoretroviruses. The Pr55(Gag) molecule directs the assembly process and is sufficient for particle assembly in the absence of all other viral gene products. The I domain is an assembly domain that has been previously localized to the nucleocapsid (NC) region of Gag. In this study we utilized a series of Gag-green fluorescent protein (GFP) fusion proteins to precisely identify sequences that constitute the N-terminal I domain of Pr55(Gag). The minimal sequence required for the I domain was localized to the extreme N terminus of NC. Two basic residues (arginine 380 and arginine 384) within the initial seven residues of NC were found to be critical for the function of the N-terminal I domain. The presence of positive charge alone in these two positions, however, was not sufficient to mediate the formation of dense Gag particles. The I domain was required for the formation of detergent-resistant complexes of Gag protein, and confocal microscopy demonstrated that the I domain was also required for the formation of punctate foci of Gag proteins at the plasma membrane. Electron microscopic analysis of cells expressing Gag-GFP fusion constructs with an intact I domain revealed numerous retrovirus-like particles (RVLPs) budding from the plasma membrane, while I domain-deficient constructs failed to generate visible RVLPs. These results provide evidence that Gag-Gag interactions mediated by the I domain play a central role in the assembly of HIV particles.  相似文献   

4.
The structural biology of HIV assembly   总被引:6,自引:0,他引:6  
HIV assembly and replication proceed through the formation of morphologically distinct immature and mature viral capsids that are organized by the Gag polyprotein (immature) and by the fully processed CA protein (mature). The Gag polyprotein is composed of three folded polypeptides (MA, CA, and NC) and three smaller peptides (SP1, SP2, and p6) that function together to coordinate membrane binding and Gag-Gag lattice interactions in immature virions. Following budding, HIV maturation is initiated by proteolytic processing of Gag, which induces conformational changes in the CA domain and results in the assembly of the distinctive conical capsid. Retroviral capsids are organized following the principles of fullerene cones, and the hexagonal CA lattice is stabilized by three distinct interfaces. Recently identified inhibitors of viral maturation act by disrupting the final stage of Gag processing, or by inhibiting the formation of a critical intermolecular CA-CA interface in the mature capsid. Following release into a new host cell, the capsid disassembles and host cell factors can potently restrict this stage of retroviral replication. Here, we review the structures of immature and mature HIV virions, focusing on recent studies that have defined the global organization of the immature Gag lattice, identified sites likely to undergo conformational changes during maturation, revealed the molecular structure of the mature capsid lattice, demonstrated that capsid architectures are conserved, identified the first capsid assembly inhibitors, and begun to uncover the remarkable biology of the mature capsid.  相似文献   

5.
The Mason-Pfizer monkey virus (M-PMV) Gag protein possesses the ability to assemble into an immature capsid when synthesized in a reticulocyte lysate translation system. In contrast, the human immunodeficiency virus (HIV) Gag protein is incapable of assembly in parallel assays. To enable the assembly of HIV Gag, we have combined or inserted regions of M-PMV Gag into HIV Gag. By both biochemical and morphological criteria, several of these chimeric Gag molecules are capable of assembly into immature capsid-like structures in this in vitro system. Chimeric species containing large regions of M-PMV Gag fused to HIV Gag sequences failed to assemble, while species consisting of only the M-PMV p12 region, and its internal scaffold domain (ISD), fused to HIV Gag were capable of assembly, albeit at reduced kinetics compared to M-PMV Gag. The ability of the ISD to induce assembly of HIV Gag, which normally assembles at the plasma membrane, suggests a common requirement for a concentrating factor in retrovirus assembly. Despite the dramatic effect of the ISD on chimera assembly, the function of HIV Gag domains in that process was found to remain essential, since an assembly-defective mutant of HIV CA, M185A, abolished assembly when introduced into the chimera. This continued requirement for HIV Gag domain function in the assembly of chimeric molecules will allow this in vitro system to be used for the analysis of potential inhibitors of HIV immature particle assembly.  相似文献   

6.
Retrovirus assembly involves a complex series of events in which a large number of proteins must be targeted to a point on the plasma membrane where immature viruses bud from the cell. Gag polyproteins of most retroviruses assemble an immature capsid on the cytoplasmic side of the plasma membrane during the budding process (C-type assembly), but a few assemble immature capsids deep in the cytoplasm and are then transported to the plasma membrane (B- or D-type assembly), where they are enveloped. With both assembly phenotypes, Gag polyproteins must be transported to the site of viral budding in either a relatively unassembled form (C type) or a completely assembled form (B and D types). The molecular nature of this transport process and the host cell factors that are involved have remained obscure. During the development of a recombinant baculovirus/insect cell system for the expression of both C-type and D-type Gag polyproteins, we discovered an insect cell line (High Five) with two distinct defects that resulted in the reduced release of virus-like particles. The first of these was a pronounced defect in the transport of D-type but not C-type Gag polyproteins to the plasma membrane. High Five cells expressing wild-type Mason-Pfizer monkey virus (M-PMV) Gag precursors accumulate assembled immature capsids in large cytoplasmic aggregates similar to a transport-defective mutant (MA-A18V). In contrast, a larger fraction of the Gag molecules encoded by the M-PMV C-type morphogenesis mutant (MA-R55W) and those of human immunodeficiency virus were transported to the plasma membrane for assembly and budding of virions. When pulse-labeled Gag precursors from High Five cells were fractionated on velocity gradients, they sedimented more rapidly, indicating that they are sequestered in a higher-molecular-mass complex. Compared to Sf9 insect cells, the High Five cells also demonstrate a defect in the release of C-type virus particles. These findings support the hypothesis that host cell factors are important in the process of Gag transport and in the release of enveloped viral particles.  相似文献   

7.
Mason-Pfizer monkey virus (M-PMV), the prototypical type D retrovirus, assembles immature capsids within the cytoplasm of the cell prior to plasma membrane interaction. Several mutants of M-PMV Gag have been described which display altered transport, assembly, or both. In this report, we describe the use of an in vitro synthesis and assembly system to distinguish between defects in intracellular transport and the process of assembly itself for two previously described gag gene mutants. Matrix domain mutant R55W converts the type D morphogenesis of M-PMV particles into type C and has been hypothesized to alter the transport of Gag, redirecting it to the plasma membrane where assembly subsequently occurs. We show here that R55W can assemble in both the in vitro translation-assembly system and within inclusion bodies in bacteria and thus has retained the capacity to assemble in the cytoplasm. This supports the concept that R55 is located within a domain responsible for the transport of Gag to an intracellular site for assembly. In contrast, deletions within the p12 domain of M-PMV Gag had previously been shown to affect the efficiency of particle formation such that under low-level expression conditions, Gag would fail to assemble. We demonstrate here that the efficiency of assembly in the in vitro system mirrors that seen in cells under expression conditions similar to that of an infection. These results argue that the p12 domain of this D-type retrovirus plays a critical role in the membrane-independent assembly of immature capsids.  相似文献   

8.
The interaction of the human immunodeficiency virus (HIV) Gag protein with the plasma membrane of a cell is a critical event in the assembly of HIV particles. The matrix protein region (MA) of HIV type 1 (HIV-1) Pr55Gag has previously been demonstrated to confer membrane-binding properties on the precursor polyprotein. Both the myristic acid moiety and additional determinants within MA are essential for plasma membrane binding and subsequent particle formation. In this study, we demonstrated the myristylation-dependent membrane interaction of MA in an in vivo membrane-binding assay. When expressed within mammalian cells, MA was found both in association with cellular membranes and in a membrane-free form. In contrast, the intact precursor Pr55Gag molecule analyzed in an identical manner was found almost exclusively bound to membranes. Both membrane-bound and membrane-free forms of MA were myristylated and phosphorylated. Differential membrane binding was not due to the formation of multimers, as dimeric and trimeric forms of MA were also found in both membrane-bound and membrane-free fractions. To define the requirements for membrane binding of MA, we analyzed the membrane binding of a series of MA deletion mutants. Surprisingly, deletions within alpha-helical regions forming the globular head of MA led to a dramatic increase in overall membrane binding. The stability of the MA-membrane interaction was not affected by these deletions, and no deletion eliminated membrane binding of the molecule. These results establish that myristic acid is a primary determinant of the stability of the Gag protein-membrane interaction and provide support for the hypothesis that a significant proportion of HIV-1 MA molecules may adopt a conformation in which myristic acid is hidden and unavailable for membrane interaction.  相似文献   

9.
Myristoylation of the Pr65gag protein from Moloney murine leukemia virus has been shown to be essential for virus particle formation [Rein et al., Proc. Natl. Acad. Sci. USA 83 (1986) 7246-7250], and by analogy, myristoylation of the human immunodeficiency virus (HIV) Gag precursor could possibly play a similar role. We have investigated the expression and myristoylation of the complete HIV Gag precursor Pr55gag in yeast, the subcellular localization of that protein, and the contribution of the myristoyl-glycine residue to this localization. Immunogold labelling of myristoylated Pr55gage with antibodies directed against HIV Gag products was apparent in the vicinity of the plasma membrane. On the contrary, non-myristoylated derivatives of Pr55gag were only detected in relatively well-defined regions of the cytoplasm. These results show that targeting and accumulation of the HIV Gag precursor, Pr55gag, at the plasma membrane occurs in yeast in the absence of other viral components and requires the N-myristoyl-glycine residue.  相似文献   

10.
We have examined structural interactions between Gag proteins within Moloney murine leukemia virus (M-MuLV) particles by making use of the cysteine-specific cross-linking agents iodine and bis-maleimido hexane. Virion-associated wild-type M-MuLV Pr65Gag proteins in immature particles were intermolecularly cross-linked at cysteines to form Pr65Gag oligomers, from dimers to pentamers or hexamers. Following a systematic approach of cysteine-to-serine mutagenesis, we have shown that cross-linking of Pr65Gag occurred at cysteines of the nucleocapsid (NC) Cys-His motif, suggesting that the Cys-His motifs within virus particles are packed in close proximity. The M-MuLV Pr65Gag protein did not cross-link to the human immunodeficiency virus Pr55Gag protein when the two molecules were coexpressed, indicating either that they did not coassemble or that heterologous Gag proteins were not in close enough proximity to be cross-linked. Using an assembly-competent, protease-minus, cysteine-minus Pr65Gag protein as a template, novel cysteine residues were generated in the M-MuLV capsid domain major homology region (MHR). Cross-linking of proteins containing MHR cysteines showed above-background levels of Gag-Gag dimers but also identified a novel cellular factor, present in virions, that cross-linked to MHR residues. Although the NC cysteine mutation was compatible with M-MuLV particle assembly, deletions of the NC domain were not tolerated. These results suggest that the Cys-His motif is held in close proximity within immature M-MuLV particles by interactions between CA domains and/or non-Cys-His motif domains of the NC.  相似文献   

11.
Assembly of human immunodeficiency virus type 1 (HIV-1) particles occurs at the plasma membrane of infected cells. Myristylation of HIV-1 Gag precursor polyprotein Pr55Gag is required for stable membrane binding and for assembly of viral particles. We expressed a series of proteins representing major regions of the HIV-1 Gag protein both with and without an intact myristyl acceptor glycine and performed subcellular fractionation studies to identify additional regions critical for membrane binding. Myristylation-dependent binding of Pr55Gag was demonstrated by using the vaccinia virus/T7 hybrid system for protein expression. Domains within the matrix protein (MA) region downstream of the initial 15 amino acids were required for membrane binding which was resistant to a high salt concentration (1 M NaCl). A myristylated construct lacking most of the matrix protein did not associate with the plasma membrane but formed intracellular retrovirus-like particles. A nonmyristylated construct lacking most of the MA region also was demonstrated by electron microscopy to form intracellular particles. Retrovirus-like extracellular particles were produced with a Gag protein construct lacking all of p6 and most of the nucleocapsid region. These studies suggest that a domain within the MA region downstream from the myristylation site is required for transport of Gag polyprotein to the plasma membrane and that stable plasma membrane binding requires both myristic acid and a downstream MA domain. The carboxyl-terminal p6 region and most of the nucleocapsid region are not required for retrovirus-like particle formation.  相似文献   

12.
Human immunodeficiency virus type 1 particles form by budding at the surface of most cell types. In this process, a piece of the plasma membrane is modified into an enveloped virus particle. The process is driven by the internal viral protein Pr55(gag). We have studied how host proteins in the membrane are dealt with by Pr55(gag) during budding. Are they included in or excluded from the particle? The question was approached by measuring the relative concentrations of host and viral proteins in the envelope of Pr55(gag) particles and in their donor membranes in the cell. We observed that the bulk of the host proteins, including actin and clathrin, were passively included into the virus-like Gag particles. This result suggests that budding by Pr55(gag) proceeds without significant alteration of the original host protein composition at the cell membrane. Nevertheless, some proteins were concentrated in the particles, and a few were excluded. The concentrated proteins included cyclophilin A and Tsg-101. These were recruited to the plasma membrane by Pr55(gag). The membrane-bound cyclophilin A was concentrated into particles as efficiently as Pr55(gag), whereas Tsg-101 was concentrated more efficiently. The latter finding is consistent with a role for Tsg-101 in Gag particle release.  相似文献   

13.
The unprocessed Gag precursor from HIV-1, when expressed in recombinant baculovirus-infected insect cells, is targeted to the plasma membrane and assembles in 100-120 nm particles budding from the cell surface. This process mimics HIV immature particle formation and is dependent on myristoylation of the N-terminal glycine, as deletion of the latter results in particle accumulation in the cytoplasm and, interestingly, in the nucleus, pointing to a potential role of this non-fatty-acid-acylated species in the viral life cycle. Inclusion of the pol gene in the construct results in efficient processing of Pr55gag and a pronounced decrease in particle formation. Deletion of the C terminus (p16) of the Gag precursor, including the finger domains, abolishes particle assembly, but membrane targeting and evagination still occur. Heterologous expression in insect cells may prove very useful for the study of the molecular events leading to retroviral particle morphogenesis.  相似文献   

14.
The Gag proteins of Rous sarcoma virus and human immunodeficiency virus (HIV) each contain a function involved in a late step in budding, defects in which result in the accumulation of these molecules at the plasma membrane. In the Rous sarcoma virus Gag protein (Pr76gag), this assembly domain is associated with a PPPY motif, which is located at an internal position between the MA and CA sequences. This motif is not contained anywhere within the HIV Gag protein (Pr55gag), and the MA sequence is linked directly to CA. Instead, a late assembly function of HIV has been associated with the p6 sequence situated at the C terminus of Gag. Here we demonstrate the remarkable finding that the late assembly domains from these two unrelated Gag proteins are exchangeable between retroviruses and can function in a positionally independent manner.  相似文献   

15.
During HIV-1 assembly, Gag polypeptides multimerize to form an immature capsid and also package HIV-1 genomic RNA. Assembling Gag forms immature capsids by progressing through a stepwise pathway of assembly intermediates containing the cellular ATPase ABCE1, which facilitates capsid formation. The NC domain of Gag is required for ABCE1 binding, acting either directly or indirectly. NC is also critical for Gag multimerization and RNA binding. Previous studies of GagZip chimeric proteins in which NC was replaced with a heterologous leucine zipper that promotes protein dimerization but not RNA binding established that the RNA binding properties of NC are dispensable for capsid formation per se. Here we utilized GagZip proteins to address the question of whether the RNA binding properties of NC are required for ABCE1 binding and for the formation of ABCE1-containing capsid assembly intermediates. We found that assembly-competent HIV-1 GagZip proteins formed ABCE1-containing intermediates, while assembly-incompetent HIV-1 GagZip proteins harboring mutations in residues critical for leucine zipper dimerization did not. Thus, these data suggest that ABCE1 does not bind to NC directly or through an RNA bridge, and they support a model in which dimerization of Gag, mediated by NC or a zipper, results in exposure of an ABCE1-binding domain located elsewhere in Gag, outside NC. Additionally, we demonstrated that immature capsids formed by GagZip proteins are insensitive to RNase A, as expected. However, unexpectedly, immature HIV-1 capsids were almost as insensitive to RNase A as GagZip capsids, suggesting that RNA is not a structural element holding together immature wild-type HIV-1 capsids.  相似文献   

16.
A biomimetic minimalist model membrane was used to study the mechanism and kinetics of cell-free in vitro HIV-1 Gag budding from a giant unilamellar vesicle (GUV). Real-time interaction of Gag, RNA, and lipid, leading to the formation of mini-vesicles, was measured using confocal microscopy. Gag forms resolution-limited punctae on the GUV lipid membrane. Introduction of the Gag and urea to a GUV solution containing RNA led to the budding of mini-vesicles on the inside surface of the GUV. The GUV diameter showed a linear decrease in time due to bud formation. Both bud formation and decrease in GUV size were proportional to Gag concentration. In the absence of RNA, addition of urea to GUVs incubated with Gag also resulted in subvesicle formation. These observations suggest the possibility that clustering of GAG proteins leads to membrane invagination even in the absence of host cell proteins. The method presented here is promising, and allows for systematic study of the dynamics of assembly of immature HIV and help classify the hierarchy of factors that impact the Gag protein initiated assembly of retroviruses such as HIV.  相似文献   

17.
During human immunodeficiency virus, type 1 (HIV-1) assembly, Gag polypeptides multimerize into immature HIV-1 capsids. The cellular ATP-binding protein ABCE1 (also called HP68 or RNase L inhibitor) appears to be critical for proper assembly of the HIV-1 capsid. In primate cells, ABCE1 associates with Gag polypeptides present in immature capsid assembly intermediates. Here we demonstrate that the NC domain of Gag is critical for interaction with endogenous primate ABCE1, whereas other domains in Gag can be deleted without eliminating the association of Gag with ABCE1. NC contains two Cys-His boxes that form zinc finger motifs and are responsible for encapsidation of HIV-1 genomic RNA. In addition, NC contains basic residues known to play a critical role in nonspecific RNA binding, Gag-Gag interactions, and particle formation. We demonstrate that basic residues in NC are needed for the Gag-ABCE1 interaction, whereas the cysteine and histidine residues in the zinc fingers are dispensable. Constructs that fail to interact with primate ABCE1 or interact poorly also fail to form capsids and are arrested at an early point in the immature capsid assembly pathway. Whereas others have shown that basic residues in NC bind nonspecifically to RNA, which in turn scaffolds or nucleates assembly, our data demonstrate that the same basic residues in NC act either directly or indirectly to recruit a cellular protein that also promotes capsid formation. Thus, in cells, basic residues in NC appear to act by two mechanisms, recruiting both RNA and a cellular ATPase in order to facilitate efficient assembly of HIV-1 capsids.  相似文献   

18.
HIV-1 assembly depends on its structural protein, Gag, which after synthesis on ribosomes, traffics to the late endosome/plasma membrane, associates with HIV Env glycoprotein, and forms infectious virions. While Env and Gag migrate to lipid microdomains, their stoichiometry and specificity of interaction are unknown. Pseudotyped viral particles can be made with one viral core surrounded by heterologous envelope proteins. Taking advantage of this property, we analyzed the association of HIV Env and Ebola glycoprotein (GP), with HIV-1 Gag coexpressed in the same cell. Though both viral glycoproteins were expressed, each associated independently with Gag, giving rise to distinct virion populations, each with a single glycoprotein type. Confocal imaging demonstrated that Env and GP localized to distinct lipid raft microdomains within the same cell where they associated with different virions. Thus, a single Gag particle associates "quantally" with one lipid raft, containing homogeneous trimeric viral envelope proteins, to assemble functional virions.  相似文献   

19.
In vitro assembly of human immunodeficiency virus type 1 Gag protein.   总被引:7,自引:0,他引:7  
Retroviral Gag protein is sufficient to produce Gag virus-like particles when expressed in higher eukaryotic cells. Here we describe the in vitro assembly reaction of human immunodeficiency virus Gag protein, which consists of two sequential steps showing the optimal conditions for each reaction. Following expression and purification, Gag protein lacking only the C-terminal p6 domain was present as a monomer (50 kDa) by velocity sedimentation analysis. Initial assembly of the Gag protein to 60 S intermediates occurred by dialysis at 4 degrees C in low salt at neutral to alkaline pH. However, higher order of assembly required incubation at 37 degrees C and was facilitated by the addition of Mg(2+). Prolonged incubation under these conditions produced complete assembly (600 S), equivalent to Gag virus-like particles obtained from Gag-expressing cells. Neither form disassembled by treatment with nonionic detergent, suggesting that correct assembly might occur in vitro. Electron microscopic observation confirmed that the 600 S assembly products were spherical particles similar to authentic immature human immunodeficiency virus particles. The latter assembly stage but not the former was accelerated by the addition of RNA although not inhibited by RNaseA treatment. These results suggest that Gag protein alone assembles in vitro, but that additional RNA facilitates the assembly reaction.  相似文献   

20.
The human immunodeficiency virus (HIV) Pr55Gag precursor proteins direct virus particle assembly. While Gag-Gag protein interactions which affect HIV assembly occur in the capsid (CA) domain of Pr55Gag, the nucleocapsid (NC) domain, which functions in viral RNA encapsidation, also appears to participate in virus assembly. In order to dissect the roles of the NC domain and the p6 domain, the C-terminal Gag protein domain, we examined the effects of NC and p6 mutations on virus assembly and RNA encapsidation. In our experimental system, the p6 domain did not appear to affect virus release efficiency but p6 deletions and truncations reduced the specificity of genomic HIV-1 RNA encapsidation. Mutations in the nucleocapsid region reduced particle release, especially when the p2 interdomain peptide or the amino-terminal portion of the NC region was mutated, and NC mutations also reduced both the specificity and the efficiency of HIV-1 RNA encapsidation. These results implicated a linkage between RNA encapsidation and virus particle assembly or release. However, we found that the mutant ApoMTRB, in which the nucleocapsid and p6 domains of HIV-1 Pr55Gag were replaced with the Bacillus subtilis MtrB protein domain, released particles efficiently but packaged no detectable RNA. These results suggest that, for the purposes of virus-like particle assembly and release, NC can be replaced by a protein that does not appear to encapsidate RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号