首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of the complex between the d-fragment of the complement component C3 (C3d) and the modular complement receptor-2 (CR2) is important for cross-linking foreign antigens with surface-bound antibodies and C3d on the surface of B cells. The first two modules of CR2, complement control protein modules (CCPs), participate in non-bonded interactions with C3d. We have used computational methods to analyze the dynamic and electrostatic properties of the C3d-CR2(CCP1-2) complex. The interaction between C3d and CR2 is known to depend on pH and ionic strength. Also, the intermodular mobility of the CR2 modules has been questioned before. We performed a 10 ns molecular dynamics simulation to generate a relaxed structure from crystal packing effects for the C3d-CR2(CCP1-2) complex and to study the energetics of the C3d-CR2(CCP1-2) association. The MD simulation suggests a tendency for intermodular twisting in CR2(CCP1-2). We propose a two-step model for recognition and binding of C3d with CR2(CCP1-2), driven by long and short/medium-range electrostatic interactions. We have calculated the matrix of specific short/medium-range pairwise electrostatic free energies of interaction involved in binding and in intermodular communications. Electrostatic interactions may mediate allosteric effects important for C3d-CR2(CCP1-2) association. We present calculations for the pH and ionic strength-dependence of C3d-CR2(CCP1-2) ionization free energies, which are in overall agreement with experimental binding data. We show how comparison of the calculated and experimental data allows for the decomposition of the contributions of electrostatic from other effects in association. We critically compare predicted stabilities for several mutants of the C3d-CR2(CCP1-2) complex with the available experimental data for binding ability. Finally, we propose that CR2(CCP1-2) is capable of assuming a large array of intermodular topologies, ranging from closed V-shaped to open linear states, with similar recognition properties for C3d, but we cannot exclude an additional contact site with C3d.  相似文献   

2.
Human C4b-binding protein (C4BP) protects host tissue, and those pathogens able to hijack this plasma glycoprotein, from complement-mediated destruction. We now show that the first two complement control protein (CCP) modules of the C4BP alpha-chain, plus the four residues connecting them, are necessary and sufficient for binding a bacterial virulence factor, the Streptococcus pyogenes M4 (Arp4) protein. Structure determination by NMR reveals two tightly coupled CCP modules in an elongated arrangement within this region of C4BP. Chemical shift perturbation studies demonstrate that the N-terminal, hypervariable region of M4 binds to a site including strand 1 of CCP module 2. This interaction is accompanied by an intermodular reorientation within C4BP. We thus provide a detailed picture of an interaction whereby a pathogen evades complement.  相似文献   

3.
Factor H is a regulatory glycoprotein of the complement system. We expressed the three N-terminal complement control protein modules of human factor H (FH1-3) and confirmed FH1-3 to be the minimal unit with cofactor activity for C3b proteolysis by factor I. We reconstructed FH1-3 from NMR-derived structures of FH1-2 and FH2-3 revealing an approximately 105-A-long rod-like arrangement of the modules. In structural comparisons with other C3b-engaging proteins, factor H module 3 most closely resembles factor B module 3, consistent with factor H competing with factor B for binding C3b. Factor H modules 1, 2, and 3 each has a similar backbone structure to first, second, and third modules, respectively, of functional sites in decay accelerating factor and complement receptor type 1; the equivalent intermodular tilt and twist angles are also broadly similar. Resemblance between molecular surfaces is closest for first modules but absent in the case of second modules. Substitution of buried Val-62 with Ile (a factor H single nucleotide polymorphism potentially protective for age-related macular degeneration and dense deposit disease) causes rearrangements within the module 1 core and increases thermal stability but does not disturb the interface with module 2. Replacement of partially exposed (in module 1) Arg-53 by His (an atypical hemolytic uremic syndrome-linked mutation) did not impair structural integrity at 37 degrees C, but this FH1-2 mutant was less stable at higher temperatures; furthermore, chemical shift differences indicated potential for small structural changes at the module 1-2 interface.  相似文献   

4.
Focused complement activation on foreign targets depends on regulatory proteins that decay the bimolecular C3 convertases. Although this process is central to complement control, how the convertases engage and disassemble is not established. The second and third complement control protein (CCP) modules of the cell surface regulator, decay-accelerating factor (DAF, CD55), comprise the simplest structure mediating this activity. Positioning the functional effects of 31 substitution mutants of DAF CCP2 to -4 on partial structures was previously reported. In light of the high resolution crystal structure of the DAF four-CCP functional region, we now reexamine the effects of these and 40 additional mutations. Moreover, we map six monoclonal antibody epitopes and overlap their effects with those of the amino acid substitutions. The data indicate that the interaction of DAF with the convertases is mediated predominantly by two patches approximately 13 A apart, one centered around Arg69 and Arg96 on CCP2 and the other around Phe148 and Leu171 on CCP3. These patches on the same face of the adjacent modules bracket an intermodular linker of critical length (16 A.) Although the key DAF residues in these patches are present or there are conservative substitutions in all other C3 convertase regulators that mediate decay acceleration and/or provide factor I-cofactor activity, the linker region is highly conserved only in the former. Intra-CCP regions also differ. Linker region comparisons suggest that the active CCPs of the decay accelerators are extended, whereas those of the cofactors are tilted. Intra-CCP comparisons suggest that the two classes of regulators bind different regions on their respective ligands.  相似文献   

5.
The gamma-aminobutyric acid type B (GABA(B)) receptor is a heterodimeric G-protein-coupled receptor. In humans, three splice variants of the GABA(B) receptor 1 (R1) subunit differ in having one, both, or neither of two putative complement control protein (CCP) modules at the extracellular N terminus, prior to the GABA-binding domain. The in vivo function of these predicted modules remains to be discovered, but a likely association with extracellular matrix proteins is intriguing. The portion of the GABA(B) R1a variant encompassing both of its CCP module-like sequences has been expressed, as have the sequences corresponding to each individual module. Each putative CCP module exhibits the expected pattern of disulfide formation. However, the second module (CCP2) is more compactly folded than the first, and the three-dimensional structure of this more C-terminal module (expressed alone) was solved on the basis of NMR-derived nuclear Overhauser effects. This revealed a strong similarity to previously determined CCP module structures in the regulators of complement activation. The N-terminal module (CCP1) displayed conformational heterogeneity under a wide range of conditions whether expressed alone or together with CCP2. Several lines of evidence indicated the presence of native disorder in CCP1, despite the fact that recombinant CCP1 contributes to binding to the extracellular matrix protein fibulin-2. Thus, we have shown that the two CCP modules of GABA(B) R1a have strikingly different structural properties, reflecting their different functions.  相似文献   

6.
The complement control protein (CCP) module (also known as the short consensus repeat) is a consensus sequence of about 60 amino acid residues which is thought to fold independently. It occurs over 140 times in more than 20 extracellular mosaic proteins including 12 proteins of the complement cascade. An isolated CCP module, the 16th repeat from human complement factor H, has been expressed in a yeast vector and shown to fold with the same pattern of disulfide bond formation as is seen in the native protein. Two-dimensional 600-MHz 1H NMR spectra of this module have been recorded at pH 3.3 and 6.0 and analyzed to permit determination of secondary structure in solution. The CCP module comprises two predominantly extended segments (Glu1-His13 and Ala17-Glu27), two segments of double-stranded antiparallel beta-sheet (Gly14-Val16 paired with Tyr31-Cys33 and Gly38-Asp40 paired with Ser57-Ile59), and a short piece of triple-stranded beta-sheet (Glu27-Thr30, Ile44-Leu48, and Lys51-Ser53). Turns occur at Asp22, Gly36, and Glu50, while Gly41-Ala43 appear to form a looped-out segment or bulge. This structure is compared with a secondary structure prediction made on the basis of an alignment scheme of 101 sequences for CCP modules [Perkins, S. J., Haris, P. I., Sim, R. B., & Chapman, D. (1988) Biochemistry 27, 4004-4012]--the experimentally determined secondary structure bears an overall resemblance to the predicted one but differs in the number and position of turns. Some of those amino acid residues which are highly conserved throughout the range of CCP modules appear to play a role in stabilizing the global fold.  相似文献   

7.
The first eight and the last two of 20 complement control protein (CCP) modules within complement factor H (fH) encompass binding sites for C3b and polyanionic carbohydrates. These binding sites cooperate self-surface selectively to prevent C3b amplification, thus minimising complement-mediated damage to host. Intervening fH CCPs, apparently devoid of such recognition sites, are proposed to play a structural role. One suggestion is that the generally small CCPs 10-15, connected by longer-than-average linkers, act as a flexible tether between the two functional ends of fH; another is that the long linkers induce a 180° bend in the middle of fH. To test these hypotheses, we determined the NMR-derived structure of fH12-13 consisting of module 12, shown here to have an archetypal CCP structure, and module 13, which is uniquely short and features a laterally protruding helix-like insertion that contributes to a prominent electropositive patch. The unusually long fH12-13 linker is not flexible. It packs between the two CCPs that are not folded back on each other but form a shallow vee shape; analytical ultracentrifugation and X-ray scattering supported this finding. These two techniques additionally indicate that flanking modules (within fH11-14 and fH10-15) are at least as rigid and tilted relative to neighbours as are CCPs 12 and 13 with respect to one another. Tilts between successive modules are not unidirectional; their principal axes trace a zigzag path. In one of two arrangements for CCPs 10-15 that fit well with scattering data, CCP 14 is folded back onto CCP 13. In conclusion, fH10-15 forms neither a flexible tether nor a smooth bend. Rather, it is compact and has embedded within it a CCP module (CCP 13) that appears to be highly specialised given both its deviant structure and its striking surface charge distribution. A passive, purely structural role for this central portion of fH is unlikely.  相似文献   

8.
The regulators of complement activation (RCA) are critical to health and disease because their role is to ensure that a complement-mediated immune response to infection is proportionate and targeted. Each protein contains an uninterrupted array of from four to 30 examples of the very widely occurring complement control protein (CCP, or sushi) module. The CCP modules mediate specific protein-protein and protein-carbohydrate interactions that are key to the biological function of the RCA and, paradoxically, provide binding sites for numerous pathogens. Although structural and mutagenesis studies of CCP modules have addressed some aspects of molecular recognition, there have been no studies of the role of molecular dynamics in the interaction of CCP modules with their binding partners. NMR has now been used in the first full characterization of the backbone dynamics of CCP modules. The dynamics of two individual modules-the 16th of the 30 modules of complement receptor type 1 (CD35), and the N-terminal module of membrane cofactor protein (CD46)-as well as their solution structures, are compared. Although both examples share broadly similar three-dimensional structures, many structurally equivalent residues exhibit different amplitudes and timescales of local backbone motion. In each case, however, regions of the module-surface implicated by mutagenesis as sites of interactions with other proteins include several mobile residues. This observation suggests further experiments to explore binding mechanisms and identify new binding sites.  相似文献   

9.
Vaccinia virus encodes a homolog of the human complement regulators named vaccinia virus complement control protein (VCP). It is composed of four contiguous complement control protein (CCP) domains. Previously, VCP has been shown to bind to C3b and C4b and to inactivate the classical and alternative pathway C3 convertases by accelerating the decay of the classical pathway C3 convertase and (to a limited extent) the alternative pathway C3 convertase, as well as by supporting the factor I-mediated inactivation of C3b and C4b (the subunits of C3 convertases). In this study, we have mapped the CCP domains of VCP important for its cofactor activities, decay-accelerating activities, and binding to the target proteins by utilizing a series of deletion mutants. Our data indicate the following. (i) CCPs 1 to 3 are essential for cofactor activity for C3b and C4b; however, CCP 4 also contributes to the optimal activity. (ii) CCPs 1 to 2 are enough to mediate the classical pathway decay-accelerating activity but show very minimal activity, and all the four CCPs are necessary for its efficient activity. (iii) CCPs 2 to 4 mediate the alternative pathway decay-accelerating activity. (iv) CCPs 1 to 3 are required for binding to C3b and C4b, but the presence of CCP 4 enhances the affinity for both the target proteins. These results together demonstrate that the entire length of the protein is required for VCP's various functional activities and suggests why the four-domain structure of viral CCP is conserved in poxviruses.  相似文献   

10.
The complement control protein (CCP) modules (also known as short consensus repeats) are defined by a consensus sequence within a stretch of about 60 amino acid residues. These modules have been identified more than 140 times in over 20 proteins, including 12 proteins of the complement system. The solution structure of the 16th CCP module from human complement factor H has been determined by a combination of 2-dimensional nuclear magnetic resonance spectroscopy and restrained simulated annealing. In all, 548 structurally important nuclear Overhauser enhancement cross-peaks were quantified as distance restraints and, together with 41 experimentally measured angle restraints, were incorporated into a simulated annealing protocol to determine a family of closely related structures that satisfied the experimental observations. The CCP structure is shown to be based on a beta-sandwich arrangement; one face made up of three beta-strands hydrogen-bonded to form a triple-stranded region at its centre and the other face formed from two separate beta-strands. Both faces of the molecule contribute highly conserved hydrophobic side-chains to a compact core. The regions between the beta-strands are composed of both well-defined turns and less well-defined loops. Analysis of CCP sequence alignments, in light of the determined structure, reveals a high degree of conservation amongst residues of obvious structural importance, while almost all insertions, deletions or replacements observed in the known sequences are found in the less well-defined loop regions. On the basis of these observations it is postulated that models of other CCP modules that are based on the structure presented here will be accurate. Certain families of CCP modules differ from the consensus in that they contain extra cysteine residues. As a test of structural consensus, the extra disulphide bridges are shown to be easily accommodated within the determined CCP model.  相似文献   

11.
Variola and vaccinia viruses, the two most important members of the family Poxviridae, are known to encode homologs of the human complement regulators named smallpox inhibitor of complement enzymes (SPICE) and vaccinia virus complement control protein (VCP), respectively, to subvert the host complement system. Intriguingly, consistent with the host tropism of these viruses, SPICE has been shown to be more human complement-specific than VCP, and in this study we show that VCP is more bovine complement-specific than SPICE. Based on mutagenesis and mechanistic studies, we suggest that the major determinant for the switch in species selectivity of SPICE and VCP is the presence of oppositely charged residues in the central complement control modules, which help enhance their interaction with factor I and C3b, the proteolytically cleaved form of C3. Thus, our results provide a molecular basis for the species selectivity in poxviral complement regulators.  相似文献   

12.
The complement inhibitors C4b-binding protein (C4BP) and factor H (FH) both consist of complement control protein (CCP) domains. Here we examined the secondary structure of both proteins by circular dichroism and Fourier-transform infrared technique at temperatures ranging from 30 degrees C-90 degrees C. We found that predominantly beta-sheet structure of both proteins was stable up to 70 degrees C, and that a reversible conformational change toward alpha-helix was apparent at temperatures ranging from 70 degrees C to 90 degrees C. The ability of both proteins to inhibit complement was not impaired after incubation at 95 degrees C, exposure to extreme pH conditions, and storage at room temperature for several months. Similar remarkable stability was previously observed for vaccinia virus control protein (VCP), which is also composed of CCP domains; it therefore seems to be a general property of CCP-containing proteins. A typical CCP domain has a hydrophobic core, which is wrapped in beta-sheets and stabilized by two disulphide bridges. How the CCP domains tolerate harsh conditions is unclear, but it could be due to a combination of high content of prolines, hydrophobic residues, and the presence of two disulphide bridges within each domain. These findings are of interest because CCP-containing complement inhibitors have been proposed as clinical agents to be used to control unwanted complement activation that contributes to many diseases.  相似文献   

13.
We report the use of methylotrophic yeast Pichia pastoris as a host to efficiently express complement control protein repeats (CCPs) 1-4 of mouse decay accelerating factor (DAF, CD55) as a soluble protein. With this system, the mouse DAF CCP1-4-active-domain-containing module linked to a 6x His tag at its C terminus was secreted into the culture supernatant at 15 mg/L after 24 h of induction with methanol. A mouse DAF CCP1-4 mutant protein in which its two potential N-glycosylation sites were deleted by changing Asn(187) and Asn(262) to Gln was also produced. Using Ni(2+)-immobilized agarose affinity chromatography, the recombinant mouse DAF modules with their 6x His tags could be one-step isolated to SDS-PAGE purity. Polyclonal antibody against native mouse DAF CCP1-4 was raised by immunizing NZW rabbits with the purified product. Measurements of the bioactivities of the wild-type and mutant mouse DAF proteins in C3b uptake assays showed no differences in regulatory activities in either the classical or the alternative pathways. With the use of the mutant DAF protein, small rod-shaped crystals were produced and preliminary data obtained. The production of large quantities of functional recombinant mouse DAF CCP1-4 modules and their antibody offers the opportunity to study DAF structure and DAF function in vivo.  相似文献   

14.
C1r is the modular serine protease (SP) that mediates autolytic activation of C1, the macromolecular complex that triggers the classical pathway of complement. The crystal structure of a mutated, proenzyme form of the catalytic domain of human C1r, comprising the first and second complement control protein modules (CCP1, CCP2) and the SP domain has been solved and refined to 2.9 A resolution. The domain associates as a homodimer with an elongated head-to-tail structure featuring a central opening and involving interactions between the CCP1 module of one monomer and the SP domain of its counterpart. Consequently, the catalytic site of one monomer and the cleavage site of the other are located at opposite ends of the dimer. The structure reveals unusual features in the SP domain and provides strong support for the hypothesis that C1r activation in C1 is triggered by a mechanical stress caused by target recognition that disrupts the CCP1-SP interfaces and allows formation of transient states involving important conformational changes.  相似文献   

15.
The catalytic properties of C1r, the protease that mediates activation of the C1 complex of complement, are mediated by its C-terminal region, comprising two complement control protein (CCP) modules followed by a serine protease (SP) domain. Baculovirus-mediated expression was used to produce fragments containing the SP domain and either 2 CCP modules (CCP1/2-SP) or only the second CCP module (CCP2-SP). In each case, the wild-type species and two mutants stabilized in the proenzyme form by mutations at the cleavage site (R446Q) or at the active site serine residue (S637A), were produced. Both wild-type fragments were recovered as two-chain, activated proteases, whereas all mutants retained a single-chain, proenzyme structure, providing the first experimental evidence that C1r activation is an autolytic process. As shown by sedimentation velocity analysis, all CCP1/2-SP fragments were dimers (5.5-5.6 S), and all CCP2-SP fragments were monomers (3.2-3.4 S). Thus, CCP1 is essential to the assembly of the dimer, but formation of a stable dimer is not a prerequisite for self-activation. Activation of the R446Q mutants could be achieved by extrinsic cleavage by thermolysin, which cleaved the CCP2-SP species more efficiently than the CCP1/2-SP species and yielded enzymes with C1s-cleaving activities similar to their active wild-type counterparts. C1r and its activated fragments all cleaved C1s, with relative efficiencies in the order C1r < CCP1/2-SP < CCP2-SP, indicating that CCP1 is not involved in C1s recognition.  相似文献   

16.
As a part of innate immunity, the complement system relies on activation of the alternative pathway (AP). While feed-forward amplification generates an immune response towards foreign surfaces, the process requires regulation to prevent an immune response on the surface of host cells. Factor H (FH) is a complement protein secreted by native cells to negatively regulate the AP. In terms of structure, FH is composed of 20 complement-control protein (CCP) modules that are structurally homologous but vary in composition and function. Mutations in these CCPs have been linked to states of autoimmunity. In particular, several mutations in CCP 19-20 are correlated to atypical hemolytic uremic syndrome (aHUS). From crystallographic structures there are three putative binding sites of CCP 19-20 on C3d. Since there has been some controversy over the primary mode of binding from experimental studies, we approach characterization of binding using computational methods. Specifically, we compare each binding mode in terms of electrostatic character, structural stability, dissociative and associative properties, and predicted free energy of binding. After a detailed investigation, we found two of the three binding sites to be similarly stable while varying in the number of contacts to C3d and in the energetic barrier to complex dissociation. These sites are likely physiologically relevant and may facilitate multivalent binding of FH CCP 19-20 to C3b and either C3d or host glycosaminoglycans. We propose thermodynamically stable binding with modules 19 and 20, the latter driven by electrostatics, acting synergistically to increase the apparent affinity of FH for host surfaces.  相似文献   

17.
Factor H (FH) is a soluble regulator of the human complement system affording protection to host tissues. It selectively inhibits amplification of C3b, the activation-specific fragment of the abundant complement component C3, in fluid phase and on self-surfaces and accelerates the decay of the alternative pathway C3 convertase, C3bBb. We have determined the crystal structure of the three carboxyl-terminal complement control protein (CCP) modules of FH (FH18-20) that bind to C3b, and which additionally recognize polyanionic markers specific to self-surfaces. These CCPs harbour nearly 30 disease-linked missense mutations. We have also deployed small-angle X-ray scattering (SAXS) to investigate FH18-20 flexibility in solution using FH18-20 and FH19-20 constructs. In the crystal lattice FH18-20 adopts a "J"-shape: A ~122-degree tilt between the structurally highly similar modules 18 and 19 precedes an extended, linear arrangement of modules 19 and 20 as observed in previously determined structures of these two modules alone. However, under solution conditions FH18-20 adopts multiple conformations mediated by flexibility between CCPs 18 and 19. We also pinpoint the locations of disease-associated missense mutations on the module 18 surface and discuss our data in the context of the C3b:FH interaction.  相似文献   

18.
We present immunophysical modeling for VCP, SPICE, and three mutants using MD simulations and Poisson-Boltzmann-type electrostatic calculations. VCP and SPICE are homologous viral proteins that control the complement system by imitating, structurally and functionally, natural regulators of complement activation. VCP and SPICE consist of four CCP modules connected with short flexible loops. MD simulations demonstrate that the rather complex modules of VCP/SPICE and their mutants exhibit a high degree of intermodular spatial mobility, which is affected by surface mutations. Electrostatic calculations using snapshots from the MD trajectories demonstrate variable spatial distribution of the electrostatic potentials, which suggests dynamic binding properties. We use covariance analysis to identify correlated modular oscillations. We also use electrostatic similarity indices to cluster proteins with common electrostatic properties. Our results are compared with experimental data to form correlations between the overall positive electrostatic potential of VCP/SPICE with binding and activity. We show how these correlations can be used to predict binding and activity properties. This work is expected to be useful for understanding the function of native CCP-containing regulators of complement activation and receptors and for the design of antiviral therapeutics and complement inhibitors.  相似文献   

19.
The first enzymatic event in the classical pathway of complement activation is autoactivation of the C1r subcomponent of the C1 complex. Activated C1r then cleaves and activates zymogen C1s. C1r is a multidomain serine protease consisting of N-terminal alpha region interacting with other subcomponents and C-terminal gammaB region mediating proteolytic activity. The gammaB region consists of two complement control protein modules (CCP1, CCP2) and a serine protease domain (SP). To clarify the role of the individual domains in the structural and functional properties of the gammaB region we produced the CCP1-CCP2-SP (gammaB), the CCP2-SP, and the SP fragments in recombinant form in Escherichia coli. We successfully renatured the inclusion body proteins. After renaturation all three fragments were obtained in activated form and showed esterolytic activity on synthetic substrates similar to each other. To study the self-activation process in detail zymogen mutant forms of the three fragments were constructed and expressed. Our major statement is that the ability of autoactivation and C1s cleavage is an inherent property of the SP domain. We observed that the CCP2 module significantly increases proteolytic activity of the SP domain on natural substrate, C1s. Therefore, we propose that CCP2 module provides accessory binding sites. Differential scanning calorimetric measurements demonstrated that CCP2 domain greatly stabilizes the structure of SP domain. Deletion of CCP1 domain from the CCP1-CCP2-SP fragment results in the loss of the dimeric structure. Our experiments also provided evidence that dimerization of C1r is not a prerequisite for autoactivation.  相似文献   

20.
Vaccinia virus complement control protein (VCP) is one of the proteins encoded by vaccinia virus to modulate the host inflammatory response. VCP modulates the inflammatory response and protects viral habitat by inhibiting the classical and the alternative pathways of complement activation. The extended structure of VCP, mobility between its sequential domains, charge distribution and type of residues at the binding regions are factors that have been identified to influence its ability to bind to complement proteins. We report that a Lister strain of vaccinia virus encodes a VCP homolog (Lis VCP) that is functional, glycosylated, has two amino acids less than the well-characterized VCP from vaccinia virus WR strain (WR VCP), and the human smallpox inhibitor of complement enzymes (SPICE) from variola virus. The glycosylated VCP of Lister is immunogenic in contrast to the weak immunogenicity of the nonglycosylated VCP. Lis VCP is the only orthopoxviral VCP homolog found to be glycosylated, and we speculate that glycosylation influences its pattern of complement inhibition. We also correlate dimerization of VCP observed only in mammalian and baculovirus expression systems to higher levels of activity than monomers, observed in the yeast expression system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号