首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
BACKGROUND: The aim of this study was to evaluate the significance of albumin in bronchial washing fluid (BWF) and its relationship to three tumor markers (CEA, CA 19-9 and NSE). METHODS: Serum and BWF samples were collected in a group of 60 patients. Albumin and tumor markers in the BWF and serum of three groups: a control group (CG), a chronic bronchitis group (CBG) and a lung cancer group (CaG), were analyzed in a prospective cross-sectional study. The diagnostic yields of the tests in each environment (serum and BWF) were evaluated by using as cutoff points the values of the corresponding 90th percentile of CG and CBG taken together. RESULTS: A significant difference in albumin level (p < 0.001) was noted in the BWF of patients with cancer compared with the other two groups. In addition, a significant difference in CEA level (p < 0.001) was observed in the serum of cancer patients compared with the other two groups. The cutoff values for CEA in serum and albumin in BWF were 2.20 ng/mL and 2.00 g/dL, respectively. The areas under the corresponding ROC curves were 93% and 97%. Combination of CEA-serum and albumin-BWF by logistic regression analysis increased their diagnostic value. CONCLUSION: Measurement of albumin levels in BWF could be a useful additional diagnostic tool to differentiate malignant from non-malignant lung diseases. Moreover, the combined measurement of CEA in serum and albumin in BWF could be of aid in the follow-up of lung cancer patients.  相似文献   

5.
Since the wide usage of ionizing radiation, the cancer risk of low dose radiation (LDR) (<0.1 Gy) has become attractive for a long time. However, most results are derived from epidemiologic studies on atomic-bomb survivors and nuclear accidents surrounding population, and the molecular mechanism of this risk is elusive. To explore the potential of a long-term LDR-induced malignant transformation, human bronchial epithelial cells Beas-2B were fractionally irradiated with 0.025 Gy α-particles for 8 times in total and then further cultured for 1–2 months. It was found that the cell proliferation, the abilities of adhesion and invasion, and the protein expressions of p-ERK, p-Akt, especially p-P38 were not only increased in the multiply-irradiated cells but also in their offspring 1–2 months after the final exposure, indicating high potentiality of cell malignant transformation. On opposite, the expressions of p-JNK and p-P66 were diminished in the subcultures of irradiated cells and thus may play a role of negative regulation in canceration. When the cells were transferred with p38 siRNA, the LDR-induced enhancements of cell adhesion and invasion were significantly reduced. These findings suggest that long-term LDR of α-particles could enhance the potential of malignant transformation incidence in human bronchial epithelial cells through MAPK/Akt pathway.  相似文献   

6.
7.
8.
Reepithelialization of remodeled air spaces with bronchial epithelial cells is a prominent pathological finding in idiopathic pulmonary fibrosis (IPF) and is implicated in IPF pathogenesis. Recent studies suggest that epithelial senescence is a risk factor for development of IPF, indicating such reepithelialization may be influenced by the acceleration of cellular senescence. Among the sirtuin (SIRT) family, SIRT6, a class III histone deacetylase, has been demonstrated to antagonize senescence. We evaluated the senescence of bronchiolization in association with SIRT6 expression in IPF lung. Senescence-associated β-galactosidase staining and immunohistochemical detection of p21 were performed to evaluate cellular senescence. As a model for transforming growth factor (TGF)-β-induced senescence of abnormal reepithelialization, we used primary human bronchial epithelial cells (HBEC). The changes of SIRT6, p21, and interleukin (IL)-1β expression levels in HBEC, as well as type I collagen expression levels in fibroblasts, were evaluated. In IPF lung samples, an increase in markers of senescence and SIRT6 expression was found in the bronchial epithelial cells lining cystically remodeled air spaces. We found that TGF-β induced senescence in primary HBEC by increasing p21 expression, and, whereas TGF-β also induced SIRT6, it was not sufficient to inhibit cellular senescence. However, overexpression of SIRT6 efficiently inhibited TGF-β-induced senescence via proteasomal degradation of p21. TGF-β-induced senescent HBEC secreted increased amounts of IL-1β, which was sufficient to induce myofibroblast differentiation in fibroblasts. These findings suggest that accelerated epithelial senescence plays a role in IPF pathogenesis through perpetuating abnormal epithelial-mesenchymal interactions, which can be antagonized by SIRT6.  相似文献   

9.
10.
MUC1 (mucin 1), a membrane-tethered mucin glycoprotein, is highly expressed on the surface of respiratory epithelial cells and plays a key role in anti-inflammatory and antiapoptotic responses against infections. However, little is known about the link between MUC1 and necroptosis in asthma. This study aimed to investigate the effects of MUC1 on TNF-α-induced necroptosis in human bronchial epithelial (16HBE) cells and the underlying molecular mechanism. Negative control and MUC1-siRNA cells were treated with TNF-α in the presence or absence of necrostatin-1 (Nec-1). Necroptosis was investigated using flow cytometry analyses, and the protein expression levels of MUC1, receptor-interacting protein kinase-1 (RIPK1), RIPK3, and phosphorylated RIPK1 were detected by western blot analysis. In addition, the interactions between RIPK and MUC1 were analyzed by coimmunoprecipitation. The results demonstrated that TNF-α could induce necroptosis of 16HBE cells, and MUC1 expression was increased upon treatment with TNF-α. The coimmunoprecipitation outcomes showed that MUC1 interacted with RIPK1 but not with RIPK3 in 16HBE cells, and the interaction was augmented by TNF-α. Furthermore, MUC1 downregulation obviously increased the TNF-α-induced necroptosis of 16HBE cells and enhanced the expression of p-RIPK1-Ser166 and RIPK3, whereas these phenomena were partially attenuated by Nec-1. These results may provide a new insight into the mechanism of severe asthma-related necroptosis and lay a foundation for the future development of new anti-inflammatory drugs for asthma.  相似文献   

11.
The mitotic spindle checkpoint and apoptosis in response to nocodazole, a microtubule-disrupting agent, were investigated in the -particle transformed human bronchial epithelial cell lines BERP35T1, BERP35T4 and the parental BEP2D cell line. When treated with 0.2 g/ml of nocodazole, BEP2D and BERP35T1 cells were efficiently arrested in the mitotic phase, whilst BERP35T4, a transformed cell line showing chromosomal instability, failed to be arrested as evidenced by a low G2/M fraction. BERP35T4 cells also showed a higher proportion of aneuploids when treated with nocodazole or not. Thus, the BERP35T4 cell line has a defect in spindle checkpoint function. The extent of apoptosis induced by nocodazole (0.3 g/ml) was significantly higher (2-fold to 2.5-fold) in BEP2D cells than in the two transformed cell lines. Furthermore, the induced apoptosis was found to occur predominantly before mitotic division in BEP2D cells. In BERP35T4 cells, however, 50% of induced apoptosis occurred before mitotic division and 50% occurred after division in binucleated cells when co-treated with cytochalasin B. The 5-CpG island of the Chfr gene, a mitotic checkpoint gene that functions in entry into metaphase, was found to be methylated in BERP35T4 cells but not in BEP2D cells. Consistent with methylation, the expression of the Chfr gene was markedly suppressed in BERP35T4 cells. Our results suggest that the impaired spindle checkpoint and abnormal apoptotic response may be related to the oncogenic progression of human bronchial epithelial cells initiated by exposure to -particles.  相似文献   

12.
The development of selective PAF receptor antagonists may provide a novel approach to the treatment of human bronchial asthma. In preclinical animal models of human asthma, PAF receptor antagonists have been found to be efficacious in blocking antigen-induced changes in lung function. However, the majority of these models involve acute inflammatory events and transient changes in lung function and, therefore, their relevance to human asthma is questionable. In a recent study with a primate model of chronic airway inflammation and hyperresponsiveness, we have shown that treatment with a PAF receptor antagonist had no effect on reducing chronic inflammation and hyperresponsiveness. Similarly, recent studies in human asthmatics with PAF receptor antagonists have failed to show efficacy in blocking allergen-induced airway responses or to have any steroid sparing effects in patients with ongoing asthma. Thus, it seems that PAF may not be a key mediator which can be blocked and thereby provide therapy for bronchial asthma.  相似文献   

13.
OBJECTIVE: To date, there are only few systematic reports on the quality of DNA extracted from routine diagnostic cytologic specimens. It was the aim of the present study to evaluate the ability of 50% ethanol/2% carbowax (Saccomanno fixative) to preserve bronchial secretions with high quality genomic DNA as well as to compare different DNA extraction methods. METHODS: DNA was extracted from 45 bronchial aspirates by four different extraction protocols. Beside DNA yield, DNA quality with regard to purity, integrity, and PCR success rate were investigated. RESULTS: No fragmentation of sample DNA due to the fixative was detected. It was preserved as high molecular weight DNA. DNA yield, purity, and integrity were dependent on the DNA extraction method to some extend. Irrespective of the DNA extraction method the PCR success rate for amplification of beta-globin gene fragments (268, 536, and 989 bp) was 100%. CONCLUSION: A fixative containing 50% ethanol/2% carbowax preserves high quality DNA which is well suited for PCR-based assays regardless of the extraction protocol used. The selection of the DNA extraction protocol has to be adjusted to the circumstances of application.  相似文献   

14.
Pyocyanin (N-methyl-1-hydroxyphenazine), a redox-active virulence factor produced by the human pathogen Pseudomonas aeruginosa, is known to compromise mucociliary clearance. Exposure of human bronchial epithelial cells to pyocyanin increased the rate of cellular release of H2O2 threefold above the endogenous H2O2 production. Real-time measurements of the redox potential of the cytosolic compartment using the redox sensor roGFP1 showed that pyocyanin (100 μM) oxidized the cytosol from a resting value of − 318 ± 5 mV by 48.0 ± 4.6 mV within 2 h; a comparable oxidation was induced by 100 μM H2O2. Whereas resting Cl secretion was slightly activated by pyocyanin (to 10% of maximal currents), forskolin-stimulated Cl secretion was inhibited by 86%. The decline was linearly related to the cytosolic redox potential (1.8% inhibition/mV oxidation). Cystic fibrosis bronchial epithelial cells homozygous for ΔF508 CFTR failed to secrete Cl in response to pyocyanin or H2O2, indicating that these oxidants specifically target the CFTR and not other Cl conductances. Treatment with pyocyanin also decreased total cellular glutathione levels to 62% and cellular ATP levels to 46% after 24 h. We conclude that pyocyanin is a key factor that redox cycles in the cytosol, generates H2O2, depletes glutathione and ATP, and impairs CFTR function in Pseudomonas-infected lungs.  相似文献   

15.
Chikova A  Grando SA 《PloS one》2011,6(11):e27978
Isolation of polyadenilated mRNA from human immortalized bronchial epithelial cell line BEP2D revealed the presence of multiple isoforms of RNA coded by the CHRNA9 gene for α9 nicotinic acetylcholine receptor (nAChR). BEP2D cells were homozygous for the rs10009228 polymorphism encoding for N442S amino acid substitution, and also contained mRNA coding for several truncated isoforms of α9 protein. To elucidate the biologic significance of the naturally occurring variants of α9 nAChR, we compared the biologic effects of overexpression of full-length α9 N442 and S442 proteins, and the truncated α9 variant occurring due to a loss of the exon 4 sequence that causes frame shift and early termination of the translation. These as well as control vector were overexpressed in the BEP2D cells that were used in the assays of proliferation rate, spontaneous vs. tobacco nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced cellular transformation, and tumorigenicity in cell culture and mice. Overexpression of the S442 variant significantly increased cellular proliferation, and spontaneous and NNK-induced transformation. The N442 variant significantly decreased cellular transformation, without affecting proliferation rate. Overexpression of the truncated α9 significantly decreased proliferation and suppressed cellular transformation. These results suggested that α9 nAChR plays important roles in regulation of bronchial cell growth by endogenous acetylcholine and exogenous nicotine, and susceptibility to NNK-induced carcinogenic transformation. The biologic activities of α9 nAChR may be regulated at the splicing level, and genetic polymorphisms in CHRNA9 affecting protein levels, amino acid sequence and RNA splicing may influence the risk for lung cancer.  相似文献   

16.
Introduction: The human respiratory system is highly prone to diseases and complications. Many lung diseases, including lung cancer (LC), tuberculosis (TB), and chronic obstructive pulmonary disease (COPD) have been among the most common causes of death worldwide. Cystic fibrosis (CF), the most common genetic disease in Caucasians, has adverse impacts on the lungs. Bronchial proteomics plays a significant role in understanding the underlying mechanisms and pathogenicity of lung diseases and provides insights for biomarker and therapeutic target discoveries.

Areas covered: We overview the recent achievements and discoveries in human bronchial proteomics by outlining how some of the different proteomic techniques/strategies are developed and applied in LC, TB, COPD, and CF. Also, the future roles of bronchial proteomics in predictive proteomics and precision medicine are discussed.

Expert commentary: Much progress has been made in bronchial proteomics. Owing to the advances in proteomics, we now have better ability to isolate proteins from desired cellular compartments, greater protein separation methods, more powerful protein detection technologies, and more sophisticated bioinformatic techniques. These all contributed to our further understanding of lung diseases and for biomarker and therapeutic target discoveries.  相似文献   


17.
18.
Airway epithelial cells release proinflammatory mediators that may contribute to airway remodeling and leukocyte recruitment. We explored the hypothesis that leukotriene D? (LTD?) may trigger the release of proremodeling factors through activation of the EGF receptor (EGFR). We particularly focused on the effects of LTD? on release of heparin-binding EGF-like factor (HB-EGF) and IL-8 (CXCL8), a potent neutrophil chemoattractant that may be released downstream of EGFR activation. To address this hypothesis, both primary (NHBE) and transformed bronchial human epithelial cells (BEAS-2B) were grown on an air-liquid interface and stimulated with LTD?. HB-EGF and CXCL8 were evaluated by ELISA in cell culture supernatants. To explore the EGFR signaling pathway, we used a broad-spectrum matrix metalloproteinase (MMP) inhibitor, GM-6001, two selective EGFR tyrosine kinase inhibitors, AG-1478 and PD-153035, an HB-EGF neutralizing antibody, and a specific small interfering RNA (siRNA) against the EGFR. Expression of the CysLT? cysteinyl leukotriene receptor was demonstrated by RT-PCR and immunocytochemistry in both BEAS-2B and NHBE cells. Four hours after stimulation with LTD?, HB-EGF and CXCL8 were significantly increased in cell culture supernatant. GM-6001 and montelukast, a specific CysLT? receptor antagonist, blocked the LTD?-induced increase in HB-EGF. All inhibitors/antagonists decreased LTD?-induced CXCL8 release. siRNA against EGFR abrogated CXCL8 release following stimulation with LTD? and exogenous HB-EGF. These findings suggest LTD? induced EGFR transactivation through the release of HB-EGF in human bronchial epithelial cells with downstream release of CXCL8. These effects may contribute to epithelial-mediated airway remodeling in asthma and other conditions associated with cysteinyl leukotriene release.  相似文献   

19.
This study examined the contribution of delayed apoptosis of bronchial mucous cells to mucus accumulation in equine recurrent airway obstruction (RAO). In pilot studies, Bcl-2, an apoptosis inhibitor, was detected in airway mucous cells of RAO-affected horses in remission and during acute disease, when most mucus was secreted. To study whether delayed apoptosis results in an increase in the number of mucous cells during disease recovery, six RAO-affected and six control horses were fed hay for 5 days to induce inflammation and then pellets for 7 days to partially resolve RAO before euthanasia. RAO-affected horses had more airway obstruction and luminal mucus than control horses under both management systems. At the time of euthanasia, RAO-affected horses had more inflammation and Bcl-2-positive bronchial mucous cells than control animals. In horses with >10 and <10 neutrophils per microliter of bronchoalveolar lavage fluid, >50% and <10% of mucous cells stained positive for Bcl-2, respectively. No differences in mucous cell number or amount of stored mucosubstance were observed between RAO-affected and control horses, but in RAO-affected animals, the amount of stored mucosubstance decreased as the number of neutrophils in bronchoalveolar lavage fluid increased. Because the number of mucous cells was similar in both groups of horses but only mucous cells of RAO-affected horses expressed Bcl-2 during recovery from acute disease, a conclusive role for Bcl-2 in prolonging bronchial mucous cell life could not be determined. Future studies are needed to compare horses that are kept in remission for prolonged periods when all mucous cells are fully developed.  相似文献   

20.
Avian influenza viruses (AIV) are an important emerging threat to public health. It is thought that sialic acid (sia) receptors are barriers in cross-species transmission where the binding preferences of AIV and human influenza viruses are sias α2,3 versus α2,6, respectively. In this study, we show that a normal fully differentiated, primary human bronchial epithelial cell model is readily infected by low pathogenic H5N1, H5N2 and H5N3 AIV, which primarily bind to sia α2,3 moieties, and replicate in these cells independent of specific sias on the cell surface. NHBE cells treated with neuraminidase prior to infection are infected by AIV despite removal of sia α2,3 moieties. Following AIV infection, higher levels of IP-10 and RANTES are secreted compared to human influenza virus infection, indicating differential chemokine expression patterns, a feature that may contribute to differences in disease pathogenesis between avian and human influenza virus infections in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号