首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The type and distribution of mineral binding and collagenous matrix-associated chondroitin sulphate and dermatan sulphate proteoglycans in rabbit alveolar bone were studied biochemically and immunocytochemically, using three monoclonal antibodies (mAb 2B6, 3B3, and 1B5). The antibodies specifically recognize oligosaccharide stubs that remain attached to the core protein after enzymatic digestion of proteoglycans and identify epitopes in chondroitin 4-sulphate and dermatan sulphate; chondroitin 6-sulphate and unsulphated chondroitin; and unsulphated chondroitin, respectively. In addition, mAb 2B6 detects chondroitin 4-sulphate with chondroitinase ACII pre-treatment, and dermatan sulphate with chondroitinase B pre-treatment. Bone proteins were extracted from fresh specimens with a three-step extraction procedure: 4m guanidine HCl (G-1 extract), 0.4m EDTA (E-extract), followed by guanidine HCl (G-2 extract), to characterize mineral binding and collagenous matrix associated proteoglycans in E- and G2-extracts, respectively. Biochemical results using Western blot analysis of SDS-polyacrylamide gel electrophoresis of E- and G2-extracts demonstrated that mineral binding proteoglycans contain chondroitin 4-sulphate, chondroitin 6-sulphate, and dermatan sulphate, whereas collagenous matrix associated proteoglycans showed a predominance of dermatan sulphate with a trace of chondroitin 4-sulphate and no detectable chondroitin 6-sulphate or unsulphated chondroitin. Immunocytochemistry showed that staining associated with the mineral phase was limited to the walls of osteocytic lacunae and bone canaliculi, whereas staining associated with the matrix phase was seen on and between collagen fibrils in the remainder of the bone matrix. These results indicate that mineral binding proteoglycans having chondroitin 4-sulphate, dermatan sulphate, and chondroitin 6-sulphate were localized preferentially in the walls of the lacunocanalicular system, whereas collagenous associated dermatan sulphate proteoglycans were distributed over the remainder of the bone matrix.  相似文献   

2.
Ordered conformations from the sodium salts of chondroitin 4-sulphate, dermatan sulphate and heparan sulphate were observed by X-ray diffraction. Chondroitin 4-sulphate shows similar threefold helical character to that previously reported for chondroitin 6-sulphate and hyaluronates. Dermatan sulphate forms an eightfold helix with an axial rise per disaccharide of 0.93nm, which favours the l-iduronic acid moiety in the normal C1 chair form. The layer-line spacing and axial projection in heparan sulphate of 1.86nm favours a tetrasaccharide repeat with glycosidic linkages alternating beta-d-(1-->4) and alpha-d-(1-->4).  相似文献   

3.
The excretion and degradation was studied of (35)S-labelled 4-chondroitin sulphate injected into guinea pigs in the form of proteoglycan isolated from cartilage and in the form of free chondroitin 4-sulphate prepared from the same proteoglycan by proteolysis. When the proteoglycan was injected there was a delay of about 15-20min before significant amounts or radioactivity were excreted, whereas after injection of chondroitin 4-sulphate a considerable amount of radioactivity was excreted within 10min and a much higher proportion of the radioactive dose was excreted in 1h or 24h compared with the proteoglycan. In both cases, however, a major part of the radioactivity was not excreted even in 24h. Sterile conditions were used to collect the radioactive material directly from the bladder. When chondroitin 4-sulphate was injected, the molecular sizes of injected and excreted materials were similar, as assessed by gel chromatography on Sephadex G-200, whereas when proteoglycan was injected the molecular size of the excreted labelled material was similar to that of the chondroitin 4-sulphate chains in the original proteoglycan. In neither case did the size of the excreted labelled material change with time over 1h, and low-molecular-weight labelled material was virtually absent. In contrast, when urine was collected for 24h without preservative the labelled material in it was extensively degraded after either the proteoglycan or chondroitin 4-sulphate had been given. Chondroitin 4-sulphate became similarly degraded when incubated with non-sterile urine, but not when the urine was passed through a bacterial filter, suggesting that degradation was caused by contaminating micro-organisms in the experiments in which urine was collected for 24 h. It is concluded that chondroitin 4-sulphate chains of about 18000 molecular weight can be excreted readily as such, whereas intact proteoglycans must be degraded to free glycosaminoglycans first, although both are taken up by the tissues more rapidly than they are excreted.  相似文献   

4.
1. Whole tissue preparations and subcellular fractions from embryonic chicken cartilage were used to measure the rate of incorporation of inorganic sulphate into chondroitin sulphate in vitro. 2. In cartilage from 14-day-old embryos, [(35)S]sulphate is incorporated to an equal extent into chondroitin 4-sulphate and chondroitin 6-sulphate at a rate of 1.5nmoles of sulphate/hr./mg. dry wt. of cartilage. 3. Microsomal and soluble enzyme preparations from embryonic cartilage catalyse the transfer of sulphate from adenosine 3'-phosphate 5'-sulphatophosphate into both chondroitin 4-sulphate and chondroitin 6-sulphate. 4. The effects of pH, ionic strength, adenosine 3'-phosphate 5'-sulphatophosphate concentration and acceptor chondroitin sulphate concentration on the soluble sulphotransferase activity were examined. These factors all influence the activity of the sulphotransferase, and pH and incubation time also influence the percentage of chondroitin 4-sulphate formed.  相似文献   

5.
The cysteine protease legumain participates in several biological and pathological processes including tumour invasion and metastasis. Legumain is synthesized as a zymogen and undergoes pH-dependent autoactivation of the proform in order to reach an enzymatically active form. Here we demonstrate that the naturally occurring polyanionic glycosaminoglycans (GAGs) chondroitin 4-sulphate (C4S), chondroitin 6-sulphate (C6S), chondroitin 4,6-sulphate (C4,6S), heparin, heparan sulphate (HS) as well as chondroitin sulphate (CS)-derived decasaccharides accelerated the autocatalytic activation of prolegumain through ionic interactions in a concentration-, size- and time-dependent manner at pH 4.0. In contrast, at pH 5.0 only C4S and C4,6S were able to promote prolegumain activation, while CS-derived decasaccharides, C6S, heparin and HS lost their effect at this pH.  相似文献   

6.
Radiolabelled chondroitin 4-sulphate was isolated after incubation of rat rib cartilage with N-acetyl-D-[6-3H]galactosamine. After proteolytic digestion of the tissue with either papain or trypsin the released [3H]chondroitin 4-sulphate was added to an isolated perfused rat liver system. Analysis of perfusate after several hours perfusion showed that radiolabelled amino sugars were secreted by the liver in a low-molecular-weight form and as components of glycoproteins.  相似文献   

7.
Complete assignments are given for the 13C NMR spectra of hyaluronate and chondroitin in deuterium oxide solution at 50.32 MHz. The assignments published earlier for chondroitin 4-sulphate and chondroitin 6-sulphate were largely confirmed but were found to need some revision in detail. Our conclusions for hyaluronate and the chondroitin sulphates were confirmed by off-resonance experiments based on the proton NMR assignments. The spectra for hyaluronate show line narrowing and chemical shift changes from neutral to alkaline solution which are consistent with, and clearer than, the effects reported earlier for the proton spectra. As before no such changes occur for the chondroitin sulphates. The suggested interpretation is in terms of a conformation change for hyaluronate which originates mainly in altered interaction energies across the 1 leads to 3 linkage with the results that motional freedom is enhanced above that of the parent hyaluronate and even above the chondroitin sulphates. This, and the evidence from a temperature effect, suggests that an additional potential energy minimum is made favourable in alkali so that the overall amplitudes of the bond oscillations are increased.  相似文献   

8.
Ordered conformations from the sodium salts of chondroitin 4-sulphate, dermatan sulphate and heparan sulphate were observed by X-ray diffraction. Chondroitin 4-sulphate shows similar threefold helical character to that previously reported for chondroitin 6-sulphate and hyaluronates. Dermatan sulphate forms an eightfold helix with an axial rise per disaccharide of 0.93nm, which favours the l-iduronic acid moiety in the normal C1 chair form. The layer-line spacing and axial projection in heparan sulphate of 1.86nm favours a tetrasaccharide repeat with glycosidic linkages alternating β-d-(1→4) and α-d-(1→4).  相似文献   

9.
Km and Vmax. were determined for the degradation by chondroitinase of chondroitin 4-sulphate, 4-sulphate-proteoglycna, chondroitin 6-sulphate, dermatan sulphate and hyaluronic acid. Degradation of chondroitin 4-sulphate was inhibited by hyaluronic acid but not by keratan sulphate. The results are discussed with regard to the use to the use of chondroitinase as a sleective reagent for the degradation of tissue glycosaminoglycans.  相似文献   

10.
The association of low density lipoprotein (LDL) with proteoglycans of the intima, in particular chondroitin 6-sulphate proteoglycans, may contribute to LDL accumulation during atherogenesis. We studied the interactions of apolipoprotein B-100 (apo B-100) peptide segments and model peptides with chondroitin 6-sulphate. The ability of these peptides to inhibit complex formation between LDL and chondroitin 6-sulphate was used as a measurement of the interaction. Results from earlier studies suggest that surface located segments of apo B-100 are responsible for the interaction of LDL with heparin and chondroitin sulphate-rich arterial proteoglycans. Therefore 16 hydrophilic apo B-100 peptides were selected for studies and synthesized with a peptide synthesizer. These synthetic peptides were 7 to 26 amino acids long. Four of the peptides inhibited the association of LDL with chondroitin 6-sulphate, namely apo B segments 4230–4254, 3359–3377, 3145–3157 and 2106–2121. The 3359–3377 segment was the most efficient. A common feature betweeb the interacting peptides was an excess of positively charged side chains and based on these results we synthesized nine model peptides that shared sequence characateristics with the interacting apo B-100 peptides. Five of these: RSGRKRSGK, RSSRKRSGK, RGGRKRGGK, RSRSRSRSR AND RGRGRGRGR were shown to block the LDL-chrondroitin-6-sulphate association, RSRSRSRSR being the most effective. The results suggest that the optimal association of the peptides with chrondroitin 6-sulphate is obtained with a minimal chain length of nine amino acids and a minimum of five positive charges and that flexibility in the binding region is important.  相似文献   

11.
Complete assignments are given for the 1H nuclear magnetic resonance (NMR) spectra at 300 MHz of chondroitin 4-sulphate, chondroitin 6-sulphate and hyaluronate in deuterium oxide solution, supported by spin decoupling and computer simulation. Coupling constants and chemical shifts are as expected from spectra of the model glycosides, methyl beta-D-glucopyranosiduronate, methyl 2-acetamido-2-deoxy-beta-D-glucopyranoside and methyl 2-acetamido-2-deoxy-beta-D-galactopyranoside, when allowance is made for systematic influences on chemical shifts of interglycosidic linkages and sulphate substitution. As reported elsewhere, addition of alkali causes the hyaluronate spectrum to sharpen considerably. This is taken to indicate that segmental motion is enhanced by disruption of some system of inter-residue bonding on ionisation of hydroxy groups. Concomitant changes in chemical shifts are seen mainly for H-2 of the glucuronate residue, and the CH3 and H-2 of the acetamidodeoxyglucose residue. Similar effects are not seen for chondroitin sulphates, either in line widths or chemical shifts. Comparison of the spectra of hyaluronate, chondroitin sulphates, and the model glycosides, indicates that proton chemical shifts are sensitive to the conformation differences between the polysaccharides in alkaline solution, but do not detect the differences in neutral solution that are known from NMR relaxation to be present. The altered configuration and/or substitution pattern of the acetamidodeoxyhexose residue in hyaluronate compared with chondroitin sulphates appears to have a critical influence on overall conformation in both alkaline and neutral solution.  相似文献   

12.
The only glycosaminoglycans that can be isolated from the ear cartilage of 2-month-old rabbits are chondroitin 4-sulphate and chondroitin 6-sulphate. These chondroitin sulphates exhibit molecular-weight polydispersity when isolated from tissue by papain digestion. The chondroitin sulphate is metabolically heterogeneous in that radioactive precursors [(14)C]glucose or [(35)S]sulphate are preferentially incorporated into the higher-molecular-weight polymers both in vivo and in vitro. No transfer of radioactivity from the high-molecular-weight chondroitin sulphate to the low-molecular-weight chondroitin sulphate was seen during 15 days in vivo. It is suggested that there are at least two pools of proteoglycan in the tissue. One of these pools is metabolically active whereas the other is not.  相似文献   

13.
Crystal growth in native collagen gels has been used to determine the role of extracellular matrix macromolecules in biological calcification phenomena. In this system, type I collagen gels containing sodium phosphate and buffered at pH 7.4 are overlayed with a solution containing CaCl2. Crystals form in the collagen gel adjacent to the gel-solution interface. Conditions were determined which permit the growth of crystals of hydroxyapatite [Ca10(PO4)6(OH)2]. At a Ca/P molar ratio of 2:1, the minimum concentrations of calcium and phosphate necessary for precipitation of hydroxyapatite are 10 mM and 5 mM, respectively. Under these conditions, precipitation is initiated at 18-24h, and is maximal between 24h and 6 days. Addition of high concentrations of chondroitin 4-sulphate inhibits the formation of hydroxyapatite in collagen gels; initiation of precipitation is delayed, and the final (equilibrium) amount of precipitation is decreased. Inhibition of hydroxyapatite formation requires concentrations of chondroitin sulphate higher than those required to inhibit calcium pyrophosphate crystal formation.  相似文献   

14.
Oversulphated chondroitin sulphate proteoglycan from squid skin was isolated from 4 M guanidine hydrochloride extract by ion-exchange chromatography, gel chromatography and density gradient centrifugation. The proteoglycan had Mr 3.5 x 10(5), contained on average six oversulphated chondroitin sulphate chains (Mr 4 x 10(4)) bound on a polypeptide of Mr 2.8 x 10(4), and oligosaccharides consisting of both hexosamines, glucuronic acid, sulphates and fucose as the only neutral monosaccharide. The major amino acids of the proteoglycan protein core are glycine (corresponding to about one third of the total amino acids), aspartic acid/asparagine and serine, together amounting to 50% of the total. The proteoglycan was resistant to the proteolytic enzymes V8 protease, trypsin (treated with diphenylcarbamoyl chloride), alpha-chymotrypsin and pronase, while it was completely degraded by papain and to a large extent by collagenase. Pretreated proteoglycan with chondroitinase AC was degraded by pronase to a large extent and slightly by V8 protease and trypsin. The proteoglycan did not interact with hyaluronic acid and did not form self-aggregates. Oversulphated chondroitin sulphate chains were composed of unusual sulphated disaccharide units which were isolated and characterized by HPLC. In particular, it contained 2-acetamido-2-deoxy-3-O-(alpha-L-threo-4-enopyranosyluronic acid)-D-galactose 4-sulphate (delta di-4S) and disulphated disaccharides (delta di-diS) [90% 2-acetamido-2-deoxy-3-O-(alpha-L-threo-4-enopyranosyluronic acid 2/3-sulphate)-D-galactose 6-sulphate (delta di-diSD) and 10% 2-acetamido-2-deoxy-3-O-(alpha-L-threo-4-enopyranosyluronic acid 2/3-sulphate)-D-galactose 4-sulphate (delta di-diSK)] as the major disaccharides, significant amounts of trisulphated disaccharides (delta di-triS) and small amounts of 2-acetamido-2-deoxy-3-O-(alpha-L-threo-4-enopyranosyluronic acid)-D-galactose 6-sulphate (delta di-6S) and 2-acetamido-2-deoxy-3-O-(alpha-L-threo-4-enopyranosyluronic acid)-D-galactose (delta di-OS). Trisulphated disaccharides contained sulphate groups at C-4 and C-6 of the galactosamine and at C-2 or C-3 of the glucuronic acid. By HPLC analysis of a pure preparation of oversulphated chondroitin sulphate, it was found that it contains glucose, galactose, mannose and fucose most likely as branches.  相似文献   

15.
Ordered conformations of proteoglycan-hyaluronic acid aggregates in the intercellular matrix in cartilage were observed by X-ray diffraction. The sodium salt form of three samples, (a) aggregated proteoglycan, (b) disaggregated proteoglycan and (c) reconstituted disaggregated proteoglycan, give essentially similar X-ray fibre-type diffraction photographs. The patterns correlate with the chondroitin 4-sulphate component and can be interpreted as twofold helical conformations, similar to that observed previously for the free acid form of chondroitin 4-sulphate (Isaac & Atkins, 1973). The information takes us one step nearer the situation found in cartilage in vivo.  相似文献   

16.
Chondroitin sulfate-E (chondroitin-4, 6-disulfate) was prepared from chondroitin sulfate-A (chondroitin-4 - sulfate) by regioselective sulfonation, performed using trimethylamine sulfur trioxide in formamide under argon. The structure of semi-synthetic chondroitin sulfate-E was analyzed by PAGE, (1)H NMR, (13)C NMR, 2D NMR and disaccharide analysis and compared with natural chondroitin sulfate-E. Both semi-synthetic and natural chondroitin sulfate-E were each biotinylated and immobilized on BIAcore SA biochips and their interactions with fibroblast growth factors displayed very similar binding kinetics and binding affinities. The current semi-synthesis offers an economical approach for the preparation of the rare chondroitin sulfate-E from the readily available chondroitin sulfate-A.  相似文献   

17.
Complexation of cisplatin (CDDP) and chondroitin sulfate A (CSA) or C (CSC) has been reported to reduce the nephrotoxicity of CDDP. However the mechanism of interaction between CDDP and CSA or CSC was not known. In this study, spectroscopic analyses including NMR were carried out to examine the complexation interactions of CSA and CSC with CDDP. The time-dependent changes in the UV spectra indicate that CSA and CSC effectively complexes with CDDP in aqueous solution and that the reaction occurs subsequent to the hydrolysis of CDDP. The time-dependent change results measured by capillary electrophoresis showed that complexation of chondroitin sulfate (CS) followed first-order reaction kinetics and that the rate of CDDP hydrolysis in the complexation for both CSA and CSC was the same. These results suggested that the mechanism of complexation was a two-step process with monoaqua formation proved to be the first step, which was also the reaction rate controlling step. Moreover, NMR data suggested that the carboxylic and sulfate groups of CS played an important role in its interaction with CDDP.  相似文献   

18.
A chondroitin sulfate was purified from the body of Viviparus ater (Mollusca gastropoda) and analyzed for molecular mass, constituent disaccharides, and structure by 1H NMR and 1H 2D NMR. A quite unique glycosaminoglycan species was isolated having a high molecular mass (greater than 45,000) and low charge density, about 0.60, due to the presence of 42% non-sulfated disaccharide, 5% 6-sulfated disaccharide, 48% 4-sulfated disaccharide, and 5% 4,6-disulfated disaccharide. Specimens of Mollusca were also submitted to lead exposure for different times, and the effect on chondroitin sulfate structure was studied. After 96 h treatment a strong decrease in chondroitin sulfate content was observed with a significant modification of its structure producing a more desulfated polymer, in particular in position 4 of the galactosamine unit. Simultaneously, the amount of unsaturated non-sulfated disaccharide increased with an overall decrease of the charge density.  相似文献   

19.
Chondroitin sulfate (CS) was purified for the first time from the bones of sturgeon and analyzed to evaluate its structure and properties. A single polysaccharide was extracted from sturgeon bone in a concentration of 0.28-0.34% for dry tissue and characterized as CS. By means of specific chondroitinases and HPLC separation of generated unsaturated repeating disaccharides, this polymer was found to be composed of ∼55% of disaccharide monosulfated in position 6 of the GalNAc, ∼38% of disaccharide monosulfated in position 4 of the GalNAc, and ∼7% of nonsulfated disaccharide. The charge density was 0.93 and the ratio of 4:6 sulfated residues was equal to 0.69, a value confirmed by 13C NMR experiments. Chondroitinase B confirmed that the purified sturgeon CS contained mainly GlcA (>99.5%) as uronic acid. PAGE analysis showed a CS having a high molecular mass with an average value of 39,880 according to HPSEC values producing a weight average molecular weight (Mw) of 37,500. On the basis of the data collected, it is reasonable to assume that CS isolated from sturgeon bone might be potentially useful for scientific and pharmacological applications, making this bony fish, which is generally discarded after ovary collection, a useful source of this polymer. Finally, this newly identified source of CS would enable the production of this macromolecule having a particular repeating disaccharide composition, structure, and biological properties.  相似文献   

20.
The D-glucuronosyl (GlcA)- and N-acetyl-D-galactosaminyl (GalNAc)-transferases involved in chondroitin sulphate biosynthesis were studied in a microsomal preparation from chick-embryo chondrocytes. Transfer of GlcA and GalNAc from their UDP derivatives to 3H-labelled oligosaccharides prepared from chondroitin sulphate and hyaluronic acid was assayed by h.p.l.c. of the reaction mixture. Conditions required for maximal activities of the two enzymes were remarkably similar. Activities were stimulated 3.5-6-fold by neutral detergents. Both enzymes were completely inhibited by EDTA and maximally stimulated by MnCl2 or CoCl2. MgCl2 neither stimulated nor inhibited. The GlcA transferase showed a sharp pH optimum between pH5 and 6, whereas the GalNAc transferase gave a broad optimum from pH 5 to 8. At pH 7 under optimal conditions, the GalNAc transferase gave a velocity that was twice that of the GlcA transferase. Oligosaccharides prepared from chondroitin 4-sulphate and hyaluronic acid were almost inactive as acceptors for both enzymes, whereas oligosaccharides from chondroitin 6-sulphate and chondroitin gave similar rates that were 70-80-fold higher than those observed with the endogenous acceptors. Oligosaccharide acceptors with degrees of polymerization of 6 or higher gave similar Km and Vmax. values, but the smaller oligosaccharides were less effective acceptors. These results are discussed in terms of the implications for regulation of the overall rates of the chain-elongation fractions in chondroitin sulphate synthesis in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号