首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Borrelia burgdorferi , the causative agent of Lyme disease, activates multiple signalling pathways leading to induction of pro-inflammatory mediators at sites of inflammation. Binding of B. burgdorferi to integrin α3β1 on human chondrocytes activates signalling leading to release of several pro-inflammatory mediators, but the B. burgdorferi protein that binds integrin α3β1 and elicits this response has remained unknown. A search of the B. burgdorferi genome for a canonical integrin binding motif, the RGD (Arg–Gly–Asp) tripeptide, revealed several candidate ligands for integrins. In this study we show that one of these candidates, BBB07, binds to integrin α3β1 and inhibits attachment of intact B. burgdorferi to the same integrin. BBB07 is expressed during murine infection as demonstrated by recognition by infected mouse sera. Recombinant purified BBB07 induces pro-inflammatory mediators in primary human chondrocyte cells by interaction with integrin α3β1. This interaction is specific, as P66, another integrin ligand of B. burgdorferi , does not activate signalling through α3β1. In summary, we have identified a B. burgdorferi protein, BBB07, that interacts with integrin α3β1 and stimulates production of pro-inflammatory mediators in primary human chondrocyte cells.  相似文献   

2.
3.
Abstract: The pentameric subunit composition of a large population (36%) of the cerebellar granule cell GABAA receptors that show diazepam (or clonazepam)-insensitive [3H]Ro 15-4513 binding has been determined by immunoprecipitation with subunit-specific antibodies. These receptors have α6, α1, γ2S, γ2L, and β2 or β3 subunits colocalizing in the same receptor complex.  相似文献   

4.
5.
Borrelia hermsii , a spirochaete responsible for relapsing fever in humans, grows to high density in the bloodstream and causes thrombocytopenia. We show here that B. hermsii binds to human platelets. Extended culture in bacteriological medium resulted in both diminished infectivity in vivo and diminished platelet binding in vitro . Platelet binding was promoted by the platelet integrin αIIbβ3: the bacterium bound to purified integrin αIIbβ3, and bacterial binding to platelets was diminished by αIIbβ3 antagonists or by a genetic defect in this integrin. Integrin αIIbβ3 undergoes a conformational change upon platelet activation, and bacteria bound more efficiently to activated rather than resting platelets. Nevertheless, B. hermsii bound at detectable levels to preparations of resting platelets. The bacterium did not recognize a point mutant of αIIbβ3 that cannot acquire an active conformation. Rather, B. hermsii was capable of triggering platelet and integrin αIIbβ3 activation, as indicated by the expression of the platelet activation marker P-selectin and integrin αIIbβ3 in its active conformation. The degree of platelet activation varied depending upon bacterial strain and growth conditions. Prostacyclin I2, an inhibitor of platelet activation, diminished bacterial attachment, indicating that activation enhanced bacterial binding. Thus, B. hermsii signals the host cell to activate a critical receptor for the bacterium, thereby promoting high-level bacterial attachment.  相似文献   

6.
Abstract: The interactions of the atypical benzodiazepine 4'-chlorodiazepam (Ro 5-4864) with functionally expressed human GABAA receptor cDNAs were determined. Cotransfection of human α2, β1, and γ2 subunits was capable of reconstituting a 4'-chlorodiazepam recognition site as revealed by a dose-dependent potentiation of t -[35S]butylbicyclophosphorothionate ([35S]TBPS) binding to the GABA-activated chloride channel. This site is found on GABAA receptor complexes containing sites for GABA agonist-like benzodiazepines and neuroactive steroids. The importance of the α subunit was further demonstrated as substitution of either α1 or α3 for the α2 subunit did not reconstitute a 4'-chlorodiazepam recognition site that was capable of modulating [35S]TBPS binding under the same experimental conditions. The 4'-chlorodiazepam modulatory site was shown to be distinct from the benzodiazepine site, but the phenylquinolines PK 8165 and PK 9084 produced effects similar to 4'-chlorodiazepam, consistent with the previous analysis of the 4'-chlorodiazepam site in brain homogenates. Further analysis of the subunit requirements revealed that coexpression of α2 and β1 alone reconstituted a 4'-chlorodiazepam recognition site. It is interesting, however, that the 4'-chlorodiazepam site was found to inhibit [35S]TBPS binding to the GABA-activated chloride channel. Thus, the 4'-chlorodiazepam site may be reconstituted with only the α and β polypeptides.  相似文献   

7.
Abstract: In this report, we have examined the radioligand binding and second messenger signalling characteristics of β-adrenoceptors in the guinea-pig brain. [125I]lodocyanopindolol ([125I]ICYP)-labelled sites in the cerebellum and cerebral cortex were of similar densities ( B max 34 and 24 fmol·mg−1) and affinities ( K D 20 and 55 p M ), respectively. Analysis of competition for [125I]ICYP binding in the cerebellum was compatible with the presence of a β2-adrenoceptor. In this tissue, isoprenaline evoked a cyclic AMP stimulation, and also potentiated cyclic GMP accumulations evoked in the presence of a nitric oxide donor, consistent with mediation via a β2-adrenoceptor. The [125I]ICYP binding profile in the cerebral cortex did not comply with those previously described for β-adrenoceptor subtypes, and isoprenaline failed to alter significantly cyclic AMP accumulation in the cerebral cortex, hippocampus, or neostriatum, even in the presence of forskolin or a phosphodiesterase inhibitor. Isoprenaline was also without effect on cyclic GMP accumulation or phosphoinositide turnover in the cerebral cortex. These results suggest that the guinea-pig cerebellum expresses a functional β2-adrenoceptor coupled to cyclic AMP generation, and potentiation of cyclic GMP accumulation. However, the guinea-pig cerebral cortex displays binding sites that exhibit β-adrenoceptor-like pharmacology but fail to show functional coupling to cyclic AMP, cyclic GMP, or phosphoinositide signalling systems.  相似文献   

8.
α-Conotoxins interact with nicotinic acetylcholine receptors (nAChRs) and acetylcholine-binding proteins (AChBPs) at the sites for agonists/competitive antagonists. α-Conotoxins blocking muscle-type or α7 nAChRs compete with α-bungarotoxin. However, α-conotoxin ImII, a close homolog of the α7 nAChR-targeting α-conotoxin ImI, blocked α7 and muscle nAChRs without displacing α-bungarotoxin ( Ellison et al. 2003, 2004 ), suggesting binding at a different site. We synthesized α-conotoxin ImII, its ribbon isomer (ImII iso ), 'mutant' ImII(W10Y) and found similar potencies in blocking human α7 and muscle nAChRs in Xenopus oocytes. Both isomers displaced [125I]-α-bungarotoxin from human α7 nAChRs in the cell line GH4C1 (IC50 17 and 23 μM, respectively) and from Lymnaea stagnalis and Aplysia californica AChBPs (IC50 2.0–9.0 μM). According to SPR measurements, both isomers bound to immobilized AChBPs and competed with AChBP for immobilized α-bungarotoxin ( K d and IC50 2.5–8.2 μM). On Torpedo nAChR, α-conotoxin [125I]-ImII(W10Y) revealed specific binding ( K d 1.5–6.1 μM) and could be displaced by α-conotoxin ImII, ImII iso and ImII(W10Y) with IC50 2.7, 2.2 and 3.1 μM, respectively. As α-cobratoxin and α-conotoxin ImI displaced [125I]-ImII(W10Y) only at higher concentrations (IC50≥ 90 μM), our results indicate that α-conotoxin ImII and its congeners have an additional binding site on Torpedo nAChR distinct from the site for agonists/competitive antagonists.  相似文献   

9.
Abstract: Using receptors expressed from mouse brain mRNA in Xenopus oocytes, we found that enhancement of type A γ-aminobutyric acid (GABAA) receptor-gated Cl channel response is a common action of structurally diverse anesthetics, suggesting that the GABAA receptor plays an important role in anesthesia. To determine if GABAA receptor subunit composition influences actions of anesthetics, we expressed subunit cRNAs in Xenopus oocytes and measured effects of enflurane on GABA-activated Cl currents. Potentiation of GABA-activated currents by enflurane was dependent on the composition of GABAA receptor protein subunits; the order of sensitivity was α1β1 > α1β1γ2s1β1γ2L > total mRNA. The results suggest that anesthetics with simple structures may act on the GABAA receptor protein complex to modulate the Cl channel activity and provide a molecular explanation for the synergistic clinical interactions between benzodiazepines and general anesthetics.  相似文献   

10.
The molecular pathogenesis of infections caused by group A Streptococcus (GAS) is not fully understood. We recently reported that a recombinant protein derived from the collagen-like surface protein, Scl1, bound to the human collagen receptor, integrin α2β1. Here, we investigate whether the same Scl1 variant expressed by GAS cells interacts with the integrin α2β1 and affects the biological outcome of host–pathogen interactions. We demonstrate that GAS adherence and internalization involve direct interactions between surface expressed Scl1 and the α2β1 integrin, because (i) both adherence and internalization of the scl1- inactivated mutant were significantly decreased, and were restored by in-trans complementation of Scl1 expression, (ii) GAS internalization was reduced by pre-treatment of HEp-2 cells with anti-α2 integrin-subunit antibody and type I collagen, (iii) recombinant α2-I domain bound the wild-type GAS cells and (iv) internalization of wild-type cells was significantly increased in C2C12 cells expressing the α2β1 integrin as the only collagen-binding integrin. Next, we determined that internalized GAS re-emerges from epithelial cells into the extracellular environment. Taken together, our data describe a new molecular mechanism used by GAS involving the direct interaction between Scl1 and integrins, which increases the overall capability of the pathogen to survive and re-emerge.  相似文献   

11.
Abstract: We found that the binding of [3H]prazosin, a selective ligand for α1-adrenergic recognition sites, is significantly lower in the frontal cortex of the genetically epilepsy-prone rats (GEPRs), as compared with normal Sprague-Dawley rats. Scatchard analysis reveals a decrease in the B max of [3H]prazosin binding with no change in the apparent K D, suggesting that there are fewer α1-adrenergic recognition sites in the frontal cortex of the GEPR. This abnormality is associated with a reduced capacity of norepinephrine (NE) to stimulate [3H]inositol monophosphate ([3H]IP1) formation in frontal cortex slices prelabeled with [3H]inositol. No significant differences in [3H]prazosin binding as well as NE-stimulated [3H]IP1 formation have been observed in other brain regions including hippocampus, corpus striatum, and inferior colliculus. These results indicate that a deficit in the α1-adrenergic receptor system in the frontal cortex may play a role in the seizure process in the GEPR.  相似文献   

12.
13.
Abstract: Progesterone and its A-ring reduced metabolites are allosteric activators of GABAA receptors. The studies reported here examined the effects of these steroids on brain nicotinic receptors using an 86Rb+ efflux assay that likely measures the function of α4β2-type nicotinic receptors and [3H]dopamine release, which may be modulated by an α3-containing nicotinic receptor. Both of the A-ring reduced metabolites of progesterone were noncompetitive inhibitors of both assays, whereas progesterone inhibited only the 86Rb+ efflux assay. The 86Rb+ efflux assay was slightly more sensitive than was the dopamine release assay to steroid inhibition. Inhibition developed slowly for both assays ( t 1/2 = 0.4 min) and was reversed even more slowly ( t 1/2 = 10–15 min). Steroid addition did not alter either the rate of association of [3H]nicotine binding to brain membranes, nor was equilibrium binding changed. These findings argue that neurosteroids are allosteric inhibitors of brain nicotinic receptors.  相似文献   

14.
The effects of the endogenous cannabinoid anandamide [arachidonylethanolamide (AEA)] on the function of nicotinic acetylcholine receptor (nAChR) were investigated using the 86Rb+ efflux assay in thalamic synaptosomes. AEA reversibly inhibited 86Rb+ efflux induced by 300 μM ACh with an IC50 value of 0.9 ± 2 μM. Pre-treatment with the cannabinoid (CB1) receptor antagonist SR141716A (1 μM), the CB2 receptor antagonist SR144528 (1 μM), or pertussis toxin (0.2 mg/mL) did not alter the inhibitory effects of AEA, suggesting that known CB receptors are not involved in AEA inhibition of nAChRs. AEA inhibition of 86Rb+ efflux was not reversed by increasing acetylcholine (ACh) concentrations. In radioligand binding studies, the specific binding of [3H]-nicotine was not altered in the presence of AEA, indicating that AEA inhibits the function of nAChR in a non-competitive manner. Neither the amidohydrolase inhibitor phenylmethylsulfonyl fluoride (0.2 mM) nor the cyclooxygenase inhibitor, indomethacin, (5 μM) affected AEA inhibition of nAChRs, suggesting that the effect of AEA is not mediated by its metabolic products. Importantly, the extent of AEA inhibition of 86Rb+ efflux was significantly attenuated by the absence of 1% fatty acid free bovine serum albumin pre-treatment, supporting previous findings that fatty acid-like compounds modulate the activity of nAChRs. Collectively, the results indicate that AEA inhibits the function of nAChRs in thalamic synaptosomes via a CB-independent mechanism and that the background activity of these receptors is affected by fatty acids and AEA.  相似文献   

15.
Abstract: A synthetic peptide (25 amino acids) corresponding to a specific portion of the third intracytoplasmic loop of the rat serotonin 5-HT1B/1Dβ receptor was coupled to keyhole limpet hemocyanin and injected monthly into rabbits. Anti-peptide antibodies were detected by enzyme-linked immunosorbent assay and characterized by immunoprecipitation of the 5-HT1B/1Dβ receptor in CHAPS-solubilized extracts from rat striatal membranes. Up to 60% of solubilized striatal serotonin- O -carboxymethylglycyl[125I]iodotyrosinamide ([125I]GTI; a selective 5-HT1B/1D radioligand) binding sites were immunoprecipitated and subsequently pharmacologically identified as 5-HT1B receptors. The remaining 40% of [125I]GTI binding sites were shown to be 5-HT1D receptors. In addition, these antibodies were successfully used in immunofluorescence experiments to detect the 5-HT1B/1Dβ, but not the 5-HT1D/1Dα, receptor in transiently transfected LLC-PK1 cells. Immunoautoradiographic experiments performed with brain sections from the rat, mouse, and guinea pig showed that the substantia nigra and globus pallidus contained the highest densities of 5-HT1Dβ receptor-like immunoreactivity. Comparison of the regional distribution of immunolabeling with that of the specific binding of [125I]GTI in the brain of these species further confirmed that the anti-peptide antibodies selectively recognized only the 5-HT1Dβ component of [125I]GTI specific receptor binding sites.  相似文献   

16.
The existence of pre-synaptic auto- and hetero receptors which modulate neurotransmitter release is well documented. Emerging evidence show that in some cases these pre-synaptic receptors may also cross-talk with each other. The aim of the present work was to investigate whether acetylcholine receptors (nAChRs) and dopamine (DA) autoreceptors, which are both able to modulate DA release, functionally interact on the same nerve endings. We used rat and mouse nucleus accumbens synaptosomes pre-labeled with [3H]DA and exposed to nicotinic and dopaminergic receptor ligands. Both nicotinic agonists and 4-aminopyridine (4-AP) provoked [3H]DA release which was inhibited by quinpirole and blocked by sulpiride and raclopride. Both the inhibitory effect of quinpirole and the stimulatory effect of (−)nicotine did not change when the nAChRs or the DA receptors were desensitized. (−)Nicotine and 4-AP were able to stimulate [3H]DA overflow also in mouse synaptosomes and this overflow was partially inhibited by quinpirole. In the β2 knockout mice quinpirole was still able to inhibit the [3H]DA overflow elicited by 4-AP. To conclude: in rat and mouse the (−)nicotine evoked-release can be modulated by D2/D3 autoreceptors present on the DA terminals and nAChRs function is independent from D2/D3 autoreceptors which themselves may function independently from the activation of nAChRs.  相似文献   

17.
Abstract: Hypoxia is known to disturb neuronal signal transmission at the synapse. Presynaptically, hypoxia is reported to suppress the release of neurotransmitters, but its postsynaptic effects, especially on the function of neurotransmitter receptors, have not yet been elucidated. To clarify the postsynaptic effects, we used cultured bovine adrenal chromaffin cells as a model of postsynaptic neurons and examined specific binding of l -[3H]nicotine (an agonist for nicotinic acetylcholine receptors: nAChRs) and 22Na+ flux under control and hypoxic conditions. Experiments were performed in media preequilibrated with a gas mixture of either 21% O2/79% N2 (control) or 100% N2 (hypoxia). Scatchard analysis of the specific binding to the cells revealed that the KD under hypoxic conditions was twice as large as that under control conditions, whereas the B max was unchanged. When the specific [3H]nicotine binding was kinetically analyzed, the association constant ( k 1) but not the dissociation constant ( k −1) was decreased to 40% of the control value by hypoxia. When the binding assay was performed using the membrane fraction, these changes were not observed. Nicotine-evoked 22Na+ flux into the cells was suppressed by hypoxia. In contrast, specific [3H]quinuclidinyl benzilate binding to the intact cells was unaffected by hypoxia. These results demonstrate that hypoxia specifically suppresses the function of nAChRs (and hence, neuronal signal transmission through nAChRs), primarily by acting intracellularly.  相似文献   

18.
Dopaminergic nerve endings in the corpus striatum possess nicotinic (nAChRs) and muscarinic cholinergic receptors (mAChRs) mediating release of dopamine (DA). Whether nAChRs and mAChRs co-exist and interact on the same nerve endings is unknown. We here investigate on these possibilities using rat nucleus accumbens synaptosomes pre-labeled with [3H]DA and exposed in superfusion to cholinergic receptor ligands. The mixed nAChR–mAChR agonists acetylcholine (ACh) and carbachol provoked [3H]DA release partially sensitive to the mAChR antagonist atropine but totally blocked by the nAChR antagonist mecamylamine. Addition of the mAChR agonist oxotremorine at the minimally effective concentration of 30 μmol/L, together with 3, 10, or 100 μmol/L (−)nicotine provoked synergistic effect on [3H]DA overflow. The [3H]DA overflow elicited by 100 μmol/L (−)nicotine plus 30 μmol/L oxotremorine was reduced by atropine down to the release produced by (−)nicotine alone and it was abolished by mecamylamine. The ryanodine receptor blockers dantrolene or 8-bromo-cADP-ribose, but not the inositol 1,4,5-trisphosphate receptor blocker xestospongin C inhibited the (−)nicotine/oxotremorine evoked [3H]DA overflow similarly to atropine. This overflow was partly sensitive to 100 nmol/L methyllycaconitine which did not prevent the synergistic effect of (−)nicotine/oxotremorine. Similarly to (−)nicotine, the selective α4β2 nAChR agonist RJR2403 exhibited synergism when added together with oxotremorine. To conclude, in rat nucleus accumbens, α4β2 nAChRs exert a permissive role on the releasing function of reportedly M5 mAChRs co-existing on the same dopaminergic nerve endings.  相似文献   

19.
We evaluated the effect of haloperidol (HP) and its metabolites on [3H](+)-pentazocine binding to σ1 receptors in SH-SY5Y human neuroblastoma cells and guinea pig brain P1, P2 and P3 subcellular fractions. Three days after a single i.p. injection in guinea pigs of HP (but not of other σ1 antagonists or (−)-sulpiride), [3H](+)-pentazocine binding to brain membranes was markedly decreased. Recovery of σ1 receptor density to steady state after HP-induced inactivation required more than 30 days. HP-metabolite II (reduced HP, 4-(4-chlorophenyl)-α-(4-fluorophenyl)-4-hydroxy-1-piperidinebutanol), but not HP-metabolite I (4-(4-chlorophenyl)-4-hydroxypiperidine), irreversibly blocked σ1 receptors in guinea pig brain homogenate and P2 fraction in vitro . We found similar results in SH-SY5Y cells, which suggests that this process may also take place in humans. HP irreversibly inactivated σ1 receptors when it was incubated with brain homogenate and SH-SY5Y cells, but not when incubated with P2 fraction membranes, which suggests that HP is metabolized to inactivate σ1 receptors. Menadione, an inhibitor of the ketone reductase activity that leads to the production of HP-metabolite II, completely prevented HP-induced inactivation of σ1 receptors in brain homogenates. These results suggest that HP may irreversibly inactivate σ1 receptors in guinea pig and human cells, probably after metabolism to reduced HP.  相似文献   

20.
Abstract— [125I]Diiodo α-bungarotoxin ([125I]2BuTx) and [3H]quinuclidinylbenzilate ([3H]QNB) binding sites were measured in post-nuclear membrane fractions prepared from whole brains or brain regions of several species. Species studied included Drosophila melanogaster (fruit fly), Torpedo californiea (electric ray), Carassius auratus (goldfish), Ram pipiens (grass frog), Kana cutesheiana (bullfrog), Rattus norvegicus (rat, Sprague-Dawley), Mus muscalus (mouse, Swiss random, C58/J, LG/J), Oryctolagus cuniculus (rabbit, New Zealand Whitc), and Bos (cow). Acetyl-CoA: choline O -acetyltransferase (EC 2.3.1.6) levels were also determined in the post nuclear supernatants and correlated with the number of binding sites.
All species and regions except Drosophila had 16–150 fold more [3H]QNB binding sites than [125I]2BuTx binding sites. Brain regions with the highest levels of [125I]2BuTx binding were Drosophila heads (300 fmol/mg), goldfish optic tectum (80fmol/mg), and rat and mouse hippocampus (3040 fmol/mg). The highest levels of [3H]QNB binding were seen in rat and mouse caudate (1.3–1.6 pmol/mg). Lowest levels of [3H]QNB and [125I]2BuTx binding were seen in cerebellum. The utility of [125I]2BuTx and [3H]QNB binding as quantitative measures of nicotinic and muscarinic acetylcholine receptors in CNS is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号