首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regulation of fatty acid synthesis, measured by 3H2O incorporation into fatty acids, was studied in hepatocytes from rats meal-fed a high carbohydrate diet. Ca2+ increased fatty acid synthesis, which became maximal at physiological concentrations of Ca2+. Ethanol markedly inhibited fatty acid synthesis. Maximum inhibition was reached at 4 mm ethanol. However, ethanol did not decrease lipogenesis in the presence of pyruvate. dl-3-Hydroxybutyrate increased fatty acid synthesis. Acetoacetate decreased lipogenesis when used alone and reversed the effect of dl-3-hydroxybutyrate when both were added. dl-3-Hydroxybutyrate moderately decreased flux through the pyruvate dehydrogenase system and markedly inhibited citric acid cycle flux. By measurement of glycolytic intermediates, two ethanol-induced crossover points were observed: one between fructose 6-phosphate and fructose 1,6-diphosphate and the other between glyceraldehyde 3-phosphate and 1,3-diphosphoglycerate. The concentrations of pyruvate and citrate were decreased by ethanol and increased by dl-3-hydroxybutyrate. Aminooxyacetate and l-cycloserine inhibited fatty acid synthesis and these effects were overcome by dl-3-hydroxybutyrate. Results indicate that in hepatocytes in a metabolic state favoring a high rate of lipogenesis, production of reducing equivalents in the cytosol via ethanol metabolism inhibits fatty acid synthesis from glucose by inhibition of both phosphofructokinase and glyceraldehyde 3-phosphate dehydrogenase and by promoting reduction of pyruvate to lactate. Production of reducing equivalents in the mitochondria via dl-3-hydroxybutyrate enhances fatty acid synthesis in liver cells by altering the partition of citrate between oxidation in the citric acid cycle and conversion to fatty acids in favor of the latter pathway. These interactions indicate the importance of the intracellular pyridine nucleotide redox states in the rate control of hepatic fatty acid synthesis.  相似文献   

2.
Diltiazem causes vasoconstriction in the liver when present at high concentrations, an action that is strictly Ca2+-dependent. Diltiazem is also active on energy metabolism. This toxic action could be partly a consequence of hemodynamic effects. In the absence of Ca2+, the hemodynamic effects are no longer present and, consequently, Ca2+-free experiments are useful for distinguishing between hemodynamics-dependent and hemodynamics-independent effects. The experimental system used was the hemoglobin-free perfused rat liver from fed and fasted rats. Diltiazem was infused at various concentrations in the presence and absence of Ca2+. Several metabolic parameters were measured: lactate and pyruvate production (glycolysis), glycogenolysis, oxygen uptake, gluconeogenesis, and the cellular levels of lactate, pyruvate, glucose, AMP, ADP, and ATP. The effects of diltiazem can be divided into three groups: (1) Effects that are strictly dependent on the Ca2+-mediated hemodynamic action. This group comprises inhibition of oxygen uptake at all concentrations (50–500 mol/L) inhibition of lactate, pyruvate, and glucose release at high concentrations; the decrease in cellular ATP; the increase in cellular AMP; and the cellular accumulation of glucose and lactate. (2) Effects that are independent of the hemodynamic action. The most relevant effect of this type is inhibition of gluconeogenesis. (3) Effects that are influenced by Ca2+ but are independent of the hemodynamic effects. This is the typical case of lactate and glucose release from endogenous glycogen, whose stimulation by low diltiazem concentrations is more pronounced in the presence of Ca2+ than in its absence.  相似文献   

3.
In the presence of 0.5 mM extracellular Ca2+ concentration both 1–34 human parathyroid hormone fragment (0.5 μg/ml) as well as 0.1 mM dibutyryl cAMP stimulated gluconeogenesis from lactate in renal tubules isolated from fed rabbits. However, these two compounds did not affect glucose synthesis from pyruvate as substrate. When 2.5 mM Ca2+ was present the stimulatory effect of the hormone fragment on gluconeogenesis from lactate was not detected but dibutyryl cAMP increased markedly the rate of glucose formation from lactate, dihydroxyacetone and glutamate, and inhibited this process from pyruvate and malate. Moreover, dibutyryl cAMP was ineffective in the presence of either 2-oxoglutarate or fructose as substrate. Similar changes in glucose formation were caused by 0.1 mM cAMP. As concluded from the ‘crossover’ plot the stimulatory effect of dibutyryl cAMP on glucose formation from lactate may result from an acceleration of pyruvate carboxylation due to an increase of intramitochondrial acetyl-CoA, while an inhibition by this compound of gluconeogenesis from pyruvate is likely due to an elevation of mitochondrial NADH/NAD+ ratio, resulting in a decrease of generation of oxaloacetate, the substrate of phosphoenolpyruvate carboxykinase. Dibutyryl cAMP decreased the conversion of fracture 1,6-bisphosphate to fructose 6-phosphate in the presence of both substrates which may be secondary to an inhibition of fructose 1,6-bisphosphatase.  相似文献   

4.
Regulation of nitric oxide (NO) formation is critical to ensure maintenance of appropriate cellular concentrations of this labile, signaling molecule. This study investigated the role exogenous and endogenously produced NO have in feeding back to regulate NO synthesis in intact cells. Two NO donors inhibited activation of neuronal NO synthase (nNOS) in response to the muscarinic receptor agonist carbachol in Chinese hamster ovary (CHO) cells stably transfected with the M1 muscarinic receptor and nNOS. The presence of the NO scavenger [2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide · potassium salt] (C-PTIO) potentiated carbachol-induced activation of nNOS in transfected CHO cells. C-PTIO also potentiated nNOS activity in response to the Ca2+ ionophore ionomycin. In contrast, the NO scavenger oxyhemoglobin depressed carbachol- and ionomycin-induced NO formation. These discrepant results suggest that it is unlikely that endogenously produced NO induces feed back inhibition at the level of nNOS activation itself. Exogenous sources of NO inhibited carbachol-induced inositol phosphates formation. However, endogenously produced NO did not appear to feed back to regulate phosphoinositide hydrolysis as there was no difference in [3H]inositol phosphates formation between cells that do or do not express nNOS. There was also no change in carbachol-induced [3H]inositol phosphates formation in the presence or absence of a NOS inhibitor or the NO scavenger C-PTIO. A decrease in the carbachol-mediated transient Ca2+ peak was observed in cells that express nNOS as compared to cells lacking the enzyme, suggesting that endogenous NO might inhibit receptor mediated Ca2+ signaling. This conclusion, however, was not supported by the lack of ability of a NOS inhibitor to modulate carbachol-induced Ca2+ elevations. Taken together, these results highlight differences in the regulation of the nNOS activation cascade by endogenous vs. exogenous sources of NO.  相似文献   

5.
The rate of pyruvate kinase flux in the intact cell is estimated by a new procedure, involving trapping of 14C from NaH14CO3 in a large pyruvate + lactate pool, and calculation of the specific activity of phosphoenol pyruvate. With high concentrations of pyruvate as substrate for isolated rat liver cells, cyclic AMP (0.1 mM) depresses pyruvate kinase flux by about 45%, in addition to inhibiting both glucose and lactate formation. The inhibition of pyruvate kinase may cause an inhibition of hydrogen translocation from the mitochondria to the cytosol.  相似文献   

6.
A method of purification of pyruvate kinase (EC 2.7.1.40) from light-grown Euglena gracilis var. bacillaris was developed which yielded an enzyme preparation purified 115-fold over crude extracts. During organelle formation, levels of pyruvate kinase in extracts prepared from cells engaged in light-induced chloroplast development do not change significantly. The enzyme has a molecular weight of approximately 240,000 and a requirement for both K+ and Mg2+. Fructose 1,6-diphosphate activates the enzyme when the concentration of phosphoenol-pyruvate is limiting; it does not activate when the concentration of ADP is limiting. ATP, citrate, and Ca2+ are inhibitors of the enzyme and inhibit the fructose 1,6-diphosphate stimulation of the enzyme activity. ATP inhibition is only partially reversed by high concentrations of fructose 1,6-diphosphate. Further reversal of inhibition can be achieved by dialysis. Ca2+-dependent inhibition can be reversed by a chelating agent but not by increased concentrations of Mg2+.  相似文献   

7.
Cultured cerebellar granule cells were co-loaded with Ca2+-sensitive dye fura-2FF and rhodamine-123 sensitive to changes in the mitochondrial potential (????m). A 60-min incubation of cells in glucose-free solution containing 2-deoxy-D-glucose (DG) induced a slow developing mitochondrial depolarization (sMD) without appreciable changes in basal [Ca2+]i. This sMD was insensitive to a removal of external Ca2+ or to the NMDA channels blocker memantine but could be readily suppressed by oligomycin due to inhibition of the inward proton current through the Fo channel of mitochondrial ATP synthase. In resting cells glucose deprivation caused a progressive decrease in mitochondrial NADH content ([NADH]), which strikingly enhanced the ability of glutamate to induce a delayed Ca2+ deregulation (DCD) associated with a profound mitochondrial depolarization. In glucose-containing medium this DCD appeared in young cells (usually 6?C8 days in vitro) after a prolonged latent period (lag phase). Substitution of glucose by DG led to a dramatic shortening of this lag phase, associated with a critical decrease in [NADH] in most neurons. Addition of pyruvate or lactate to DG-containing solution prevented the sMD and [NADH] decrease in resting cells and greatly diminished the number of cells exhibiting glutamate-induced DCD in glucose-free medium. Measurement of intracellular ATP level ([ATP]) in experiments on sister cells showed that glucose deprivation decreased [ATP] in resting cells and considerably deepened the fall of [ATP] caused by glutamate. This decrease in [ATP] was only slightly attenuated by pyruvate and lactate, despite their ability to prevent the shortening of lag phase preceding the DCD appearance under these conditions. Simultaneous monitoring of cytosolic ATP concentration ([ATP]c) and ????m changes in individual CGC expressing fluorescent ATP sensor (AT1.03) revealed that inhibition of either mitochondrial respiration or glycolysis caused a relatively small decrease in [ATP]c and ????m. Complete blockade of ATP synthesis in resting CGC with oligomycin in glucose-free DG-containing buffer caused fast ATP depletion and mitochondrial repolarization, indicating that mitochondrial respiratory chain still possess a reserve fuel to support ????m despite inhibition of glycolysis. The data obtained suggest that the extraordinary enhancement of glutamate-induced deterioration in Ca2+ homeostasis caused by glucose deprivation in brain neurons is mainly determined by NADH depletion.  相似文献   

8.
Two novel procedures have been used to regulate, in vivo, the formation of phosphoenolpyruvate (PEP) from glycolysis in Streptococcus lactis ML3. In the first procedure, glucose metabolism was specifically inhibited by p-chloromercuribenzoate. Autoradiographic and enzymatic analyses showed that the cells contained glucose 6-phosphate, fructose 6-phosphate, fructose-1,6-diphosphate, and triose phosphates.Dithiothreitol reversed the p-chloromercuribenzoate inhibition, and these intermediates were rapidly and quantitatively transformed into 3- and 2-phosphoglycerates plus PEP. The three intermediates were not further metabolized and constituted the intracellular PEP potential. The second procedure simply involved starvation of the organisms. The starved cells were devoid of glucose 6-phosphate, fructose 6-phosphate, fructose- 1,6-diphosphate, and triose phosphates but contained high levels of 3- and 2-phosphoglycerates and PEP (ca. 40 mM in total). The capacity to regulate PEP formation in vivo permitted the characterization of glucose and lactose phosphotransferase systems in physiologically intact cells. Evidence has been obtained for "feed forward" activation of pyruvate kinase in vivo by phosphorylated intermediates formed before the glyceraldehyde-3-phosphate dehydrogenase reaction in the glycolytic sequence. The data suggest that pyruvate kinase (an allosteric enzyme) plays a key role in the regulation of glycolysis and phosphotransferase system functions in S. lactis ML3.  相似文献   

9.
The effect of inhibited bioenergetics and ATP depletion on membrane composition and fluidity was examined in cultured neuroblastoma-glioma hybrid NG108-15 cells. Sodium cyanide (CN) and 2-deoxyglucose (2-DG) were used to block oxidative phosphorylation and anaerobic glycolysis, respectively. Endoplasmic reticulum (ER) Ca2+-pump activity measured by45Ca2+ uptake was >92% inhibited in intact cells incubated with CN (1 mM) and 2-DG (20 mM) for 30 min. In addition, exposure of cells to CN and 2-DG caused a 134% increased release of isotopically labeled arachidonic acid (3H-AA) or arachidonate-derived metabolites from membranes. Removal of Ca2+ from the incubation medium ablated the CN/2-DG induced release of3H-AA or its metabolites. Membrane fluidity of intact cells was measured by electron spin resonance spectroscopy using the spin label 12-doxyl stearic acid. The mean rotational correlation time (c) of the spin label increased 49% in CN/2-DG exposed cells compared to controls, indicating a decrease in membrane fluidity. These results show that depletion of cellular ATP results in inhibition of the ER Ca2+-pump, loss of AA from membranes, and decreased membrane fluidity. We propose that impaired bioenergetics can increase intracellular Ca2+ as a result of Ca2+-pump inhibition and thereby activate Ca2+-dependent phospholipases causing membrane effects. Since neurons derive energy predominantly from oxidative metabolism, ATP depletion during brain hypoxia may initiate a similar cytotoxic mechanism.  相似文献   

10.
Xenopus laevis oocytes and embryos are glycogenic cells, metabolizing sugar phosphates into glycogen. These cells have very low pyruvate kinase activity in vivo and, consequently, make little pyruvate and lactate through glycolysis. Nevertheless, oocytes and embryos do contain significant pyruvate and lactate levels. To determine the source of carbon for sugar phosphates and pyruvate, 14C-labeled intermediary metabolites were injected into fertilized eggs and their metabolism examined by thin-layer chromatography. Alanine, pyruvate, and lactate form a pool of carbon that fluxes into sugar phosphates. Cytosolic (nonmitochondrial) aspartate, oxaloacetate, and malate form a pool of carbon which is largely blocked in the short-term from entering the smaller alanine/pyruvate/lactate pool. The data indicate that the major source of carbon for sugar phosphates in fertilized eggs and rapidly cleaving embryos is the alanine/pyruvate/lactate pool. Pyruvate from this pool is converted in the mitochondria to phosphoenolpyruvate, which in turn is metabolized outside the mitochondria to sugar phosphates. A key enzyme in regulating flux from amino acid carbon to pyruvate is malic enzyme. Three malic enzyme isozymes, one soluble and two mitochondrial, were partially isolated and kinetically characterized from total ovarian tissue. Full-grown oocytes and eggs, however, have very low soluble malic enzyme activity, which results in the separation of the cytosolic aspartate/oxaloacetate/malate and alanine/pyruvate/lactate pools.  相似文献   

11.
1. 1. Incubation of isolated hepatocytes with glucagon (10−6 M) or dibutyryl cyclic AMP (0.1 mM) causes a decrease in pyruvate kinase activity of 50%, measured at suboptimal substrate (phosphoenolpyruvate) concentrations and 1 mM Mgfree2+. The magnitude of the decrease in activity is not influenced by the applied extracellular concentrations of lactate (1 and 5 mM), glucose (5 and 30 mM) or fructose (10 and 25 mM). With all three substrates comparable inhibition percentages are induced by glucagon or dibutyryl cyclic AMP.
2. 2. The extent of inhibition of pyruvate kinase induced by incubation of hepatocytes with glucagon or dibutytyl cyclic AMP is not influenced by the extracellular Ca2+ concentration nor by the presence of 2 mM EGTA. The reactivation of pyruvate kinase seems to be inhibited by a high concentration of extracellular Ca2+ (2.6 mM) as compared to a low concentration of extracellular Ca2+ (0.26 mM).
3. 3. Incubation of hepatocytes in a Na+-free, high K+-concentration medium does not influence the magnitude of the pyruvate kinase inhibition induced by dibutyryl cyclic AMP. However, the reactivation reaction is stimulated under these incubation conditions.
4. 4. Incubation of hepatocytes with dibutyryl cyclic GMP (0.1 mM) leads to a 25% decrease in pyruvate kinase activity. The magnitude of the inhibition by dibutyryl cyclic (GMP) is not influenced by the presence of pyruvate (1 mM) or glucose (5 mM and 30 mM).
5. 5. The relative insensitivity of the pyruvate kinase inhibition induced by glucagon, dibutyryl cyclic AMP and dibutyryl cyclic GMP to the extracellular environment leads to the conclusion that the hormonal regulation of pyruvate kinase is not the only site of hormonal regulation of glycolysis and gluconeogenesis. It is concluded that hormonal regulation of pyruvate kinase activity is exerted by changes in the degree of (de)phosphorylation of the enzyme reflecting acute hormonal control as well as by changes in the concentration of the allosteric activator fructose 1,6-diphosphate. The latter depends at least in part on the hormonal control of the phosphofructokinase-fructose-1,6-phosphatase cycle.
Abbreviations: Bt2-cAMP, dibutyryl cyclic AMP; Bt2-cGMP, dibutyryl cyclic GMP  相似文献   

12.
Activation of protein kinase C has been shown to reduce the Ca2+ responses of a variety of cell types. In most cases, the reduction is due to inhibition of Ca2+ influx, but acceleration of Ca2+ efflux and inhibition of Ca2+ store depletion by protein kinase C activation have also been described. For adherent RBL-2H3 mucosal mast cells, results from whole-cell patch clamp experiments suggest that protein kinase C activation reduces Ca2+ influx, while experiments with intact, fura-2-loaded cells suggest that Ca2+ influx is not affected. Here we present single-cell data from Ca2+ imaging experiments with adherent RBL-2H3 cells, showing that antigen-stimulated Ca2+ responses of phorbol 12-myristate 13-acetate (PMA)-treated cells are more transient than those of control cells. PMA also reduced the response to antigen in the absence of extracellular Ca2+, indicating that depletion of intracellular Ca2+ stores is inhibited. If PMA was added after stores had been depleted by thapsigargin, a small decrease in [Ca2+]i was observed, consistent with a slight inhibition of Ca2+ influx. However, the major effect of PMA on the antigen-stimulated Ca2+ response is to inhibit depletion of intracellular Ca2+ stores. We also show that inhibition of protein kinase C did not enhance the Ca2+ response to antigen, suggesting that inhibition of the Ca2+ response by activation of protein kinase C does not contribute to the physiological response to antigen. J. Cell. Physiol. 181:113–123, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

13.
The evolutionarily conserved soluble adenylyl cyclase (sAC, ADCY10) mediates cAMP signaling exclusively in intracellular compartments. Because sAC activity is sensitive to local concentrations of ATP, bicarbonate, and free Ca2+, sAC is potentially an important metabolic sensor. Nonetheless, little is known about how sAC regulates energy metabolism in intact cells. In this study, we demonstrated that both pharmacological and genetic suppression of sAC resulted in increased lactate secretion and decreased pyruvate secretion in multiple cell lines and primary cultures of mouse hepatocytes and cholangiocytes. The increased extracellular lactate-to-pyruvate ratio upon sAC suppression reflected an increased cytosolic free [NADH]/[NAD+] ratio, which was corroborated by using the NADH/NAD+ redox biosensor Peredox-mCherry. Mechanistic studies in permeabilized HepG2 cells showed that sAC inhibition specifically suppressed complex I of the mitochondrial respiratory chain. A survey of cAMP effectors revealed that only selective inhibition of exchange protein activated by cAMP 1 (Epac1), but not protein kinase A (PKA) or Epac2, suppressed complex I-dependent respiration and significantly increased the cytosolic NADH/NAD+ redox state. Analysis of the ATP production rate and the adenylate energy charge showed that inhibiting sAC reciprocally affects ATP production by glycolysis and oxidative phosphorylation while maintaining cellular energy homeostasis. In conclusion, our study shows that, via the regulation of complex I-dependent mitochondrial respiration, sAC-Epac1 signaling regulates the cytosolic NADH/NAD+ redox state, and coordinates oxidative phosphorylation and glycolysis to maintain cellular energy homeostasis. As such, sAC is effectively a bioenergetic switch between aerobic glycolysis and oxidative phosphorylation at the post-translational level.  相似文献   

14.
The plant hormone cytokinin stimulates nuclear migration followed by an asymmetric cell division in target cells of the protonema of the moss Funaria hygrometrica, leading to bud formation. The role of calcium in this developmental event was investigated by examining the effects of various calcium antagonists on the cytokinin-induced division. Calcium-free medium (buffered with EGTA), the extracellular Ca2+ antagonist La3+ (lanthanum), and the Ca2+ channel inhibitors D 600 and verapamil all block bud formation. These inhibitions are partially reversed by washing the cells or by raising the extracellular [Ca2+]. The Ca2+ ionophore A23187 partially reversed the effects of D 600 and verapamil. Bud formation is also inhibited by the intracellular Ca2+ antagonist TMB-8 (8-diethylamino)ocytl 3,4,5-trimethoxybenzoate HCl), and this inhibition is partially reversed by washing or raising the extracellular [Ca2+]. The cross walls of both the filaments and bud initial cells formed during TMB-8 exposure exhibit a distorted morphology. High concentrations of TMB-8 block nuclear migration. The calmodulin inhibitor trifluoperazine stops cytokinin-induced budding more effectively than the related compound chlorpromazine. Low concentrations of these two compounds do not affect nuclear migration; however, the target cell does not enter mitosis. These results support the hypothesis that a rise in intracellular calcium mediates cytokinin-induced bud formation in Funaria. It is concluded that the proposed cytokinin-induced rise in intracellular calcium may be effected in part by the activation of calmodulin. The essential source of Ca2+ appears to be extracellular, because blocking Ca2+ uptake with Ca2+ transport inhibitors can block both nuclear migration and subsequent division.  相似文献   

15.
Cell membrane transport of K+ stimulates the rate of glycolysis in Ehrlich ascites tumor cells. A study of the characteristics of this relationship indicates that the stimulation occurs under anaerobic as well as under aerobic conditions. The data suggest that glycolysis is stimulated by a K+ transport mechanism that is coupled to Na+ transport because the effect is blunted or abolished when the principal intracellular ion is lithium or choline. This stimulus to glycolysis is blocked by ouabain and ethacrynic acid, agents that have been shown to inhibit monovalent cation transport in erythrocytes. In contrast to the action of ouabain, glycolysis is inhibited by ethacrynic acid in Ehrlich ascites tumor cells in the absence of cell membrane K+ transport. In studies with ghost-free hemolysates of human erythrocytes and with cytosol prepared from Ehrlich ascites tumor cells, ethacrynic acid significantly blocks lactate formation from fructose diphosphate demonstrating the direct inhibitory effect of this agent on one or more enzymes of the Embden-Meyerhof pathway. Since ethacrynic acid has no influence on lactate formation in intact erythrocytes utilizing an endogenous substrate, the presumptive site of inhibition is proximal to the 3-phosphoglycerate level.  相似文献   

16.
Cellular pyruvate is an essential metabolite at the crossroads of glycolysis and oxidative phosphorylation, capable of supporting fermentative glycolysis by reduction to lactate mediated by lactate dehydrogenase (LDH) among other functions. Several inherited diseases of mitochondrial metabolism impact extracellular (plasma) pyruvate concentrations, and [1-13C]pyruvate infusion is used in isotope-labeled metabolic tracing studies, including hyperpolarized magnetic resonance spectroscopic imaging. However, how these extracellular pyruvate sources impact intracellular metabolism is not clear. Herein, we examined the effects of excess exogenous pyruvate on intracellular LDH activity, extracellular acidification rates (ECARs) as a measure of lactate production, and hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion rates across a panel of tumor and normal cells. Combined LDH activity and LDHB/LDHA expression analysis intimated various heterotetrameric isoforms comprising LDHA and LDHB in tumor cells, not only canonical LDHA. Millimolar concentrations of exogenous pyruvate induced substrate inhibition of LDH activity in both enzymatic assays ex vivo and in live cells, abrogated glycolytic ECAR, and inhibited hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion rates in cellulo. Of importance, the extent of exogenous pyruvate-induced inhibition of LDH and glycolytic ECAR in live cells was highly dependent on pyruvate influx, functionally mediated by monocarboxylate transporter-1 localized to the plasma membrane. These data provided evidence that highly concentrated bolus injections of pyruvate in vivo may transiently inhibit LDH activity in a tissue type- and monocarboxylate transporter-1–dependent manner. Maintaining plasma pyruvate at submillimolar concentrations could potentially minimize transient metabolic perturbations, improve pyruvate therapy, and enhance quantification of metabolic studies, including hyperpolarized [1-13C]pyruvate magnetic resonance spectroscopic imaging and stable isotope tracer experiments.  相似文献   

17.
The effect of citrinin on Ca2+ transport was studied in isolated kidney cortex and liver mitochondria, and baby hamster kidney cultured cells. The mycotoxin significantly inhibited the activity of 2-oxoglutarate and pyruvate dehydrogenases in both kidney cortex and liver mitochondria. Citrinin promoted a decrease in the velocity and in the total capacity of Ca2+ uptake, in both mitochondria. Apparently, citrinin acts by a mechanism similar to ruthenium red. In intact cultured cells, citrinin also had a preferential effect on mitochondrial Ca2+ fluxes. Citrinin promoted a marked decrease in the Ca2+ level in the mitochondrial matrix, whereas that of the extramitochondiral fraction became less affected. All the observed effects were dependent on the citrinin concentration.  相似文献   

18.
The effects of variations of the NAD+/NADH quotient on the uptake of 86Rb by human red cells loaded by non-disruptive means with the chelator Benz2 and different amounts of 45Ca has been examined. The NAD+/NADH quotient was modified by the addition of pyruvate and/or lactate or xylitol. It was found that the uptake of 86Rb at a given intracellular Ca2+ concentration was faster in the reduced state (lactate or xylitol added). Metabolic changes were associated with variations of the redox state. However, glycolitic intermediates did not significantly modify the apparent affinity for Ca2+ of the Ca2+-dependent K+ channel in one-step inside-out vesicles prepared from the erythrocyte membrane. Taken together, these results suggest that modifications of the cytoplasmic redox potential could modulate the sensitivity to Ca2+ of the Ca2+-dependent K+ channel in the human red cells under physiological conditions. This conclusion is consistent with previous findings in inside-out vesicles of human erythrocytes using artificial electron donors.  相似文献   

19.
In the presence of Li+, glucose, 2-ketoisocaproate and carbamylcholine induced the rapid formation of 3H-inositol phosphates in rat pancreatic islets prelabelled with 3H-inositol. The production of labelled inositol phosphates continued up to 20 min of incubation. Glibenclamide and ionophore A23187 had no significant effect on labelled inositol phosphate production. The effects of carbamylcholine and to a lesser extent, glucose were found to persist in the absence of added Ca2+, but both were strongly inhibited by excess EGTA. In general, the rise in 3H-inositol phosphate production was associated with a fall in lipid bound radioactivity, although the latter was found to occur more slowly, and was of a smaller magnitude than labelled inositol phosphate formation. The results suggest that nutrient secretagogues and cholinergic agonists stimulate hydrolysis of phosphoinositides in pancreatic islets by a phospholipase C mechanism. This effect is Ca2+-dependent, but probably not triggered by increased Ca2+ uptake into the islet.  相似文献   

20.
Effectors of fatty acid synthesis in hepatoma tissue culture cells   总被引:1,自引:0,他引:1  
An investigation was undertaken to better understand the process of fatty acid synthesis in hepatoma tissue culture (HTC) cells. By comparing the findings to the normal liver some of the differences between normal and cancer tissue were defined. Incubation of the HTC cells in a buffered salt-defatted albumin medium showed that fatty acid synthesis was dependent upon the addition of substrate. The order of stimulation was glucose + pyruvate ~- glucose + alanine ~- glucose + lactate ~- pyruvate > glucose > alanine ? no additions. Fatty acid synthesis in HTC cells was decreased by oleate. In these respects HTC cells are similar to the liver; however, in contrast to the normal liver, N6, O2-dibutyryl cyclic adenosine 3′,5′-monophosphate (dibutyryl-cAMP) did not inhibit glycolysis or fatty acid synthesis. The cytoplasmic redox potential, as reflected by the lactate to pyruvate ratio, was found to be elevated compared to normal liver but unchanged by the addition of dibutyryl cAMP. Since higher rates of fatty acid synthesis are associated with lower lactate-to-pyruvate ratios in normal liver, it was expected that by decreasing the lactate-to-pyruvate ratio in HTC cells the rate of fatty acid synthesis would increase. One way to lower the lactate to pyruvate ratio is to increase the activity of the malate-aspartate shuttle. Stimulators of the hepatic malate-aspartate shuttle in normal liver (ammonium ion, glutamine, and lysine) had mixed effects on the redox state and fatty acid synthesis in HTC cells. Both ammonium ion and glutamine decreased the redox potential and increased the rate of fatty acid synthesis. Lysine was without effect on either process. Since NH4Cl and glutamine stimulate the movement of reducing equivalents into the mitochondria and decrease the redox potential, then the stimulation of fatty acid synthesis by NH4Cl and glutamine may be due to an increase in the movement of reducing equivalents into the mitochondria. However, if the shuttle were rate determining for fatty acid synthesis the rate from added lactate would be the same as from glucose alone but would be lower than from pyruvate which does not require the movement of reducing equivalents. This was not the case. Lactate and pyruvate gave comparable rates which were higher than glucose alone. Other possible sites of stimulation were investigated. The possibility that NH4+ and glutamine stimulated fatty acid synthesis by activating pyruvate dehydrogenase was excluded by finding that dichloroacetate, an activator of pyruvate dehydrogenase, did not stimulate fatty acid synthesis when glucose was added. Stimulation by NH4+ and glutamine at steps beyond pyruvate dehydrogenase was ruled out by the observation that NH4+ caused no stimulation from added pyruvate. NH4+ and glutamine did not alter the pentose phosphate pathway as determined by 14CO2 production from [1-14C]- or [6-14C]glucose. Ammonium ion and glutamine increased glucose consumption and increased lactate and pyruvate accumulation. The increased glycolysis in HTC cells appears to be the explanation for the stimulation of fatty acid synthesis by NH4+ and glutamine, even though glycolysis is much more rapid than fatty acid synthesis in these cells. The following observations support this conclusion. First, the percentage increase in glycolysis caused by NH4+ or glutamine is closely matched by the percentage increase in fatty acid synthesis. Second, the malate-aspartate shuttle, the pentose phosphate pathway, and the steps past pyruvate are not limiting in the absence of NH4+ or glutamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号