首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Dopamine Metabolism and Receptor Function After Acute and Chronic Ethanol   总被引:2,自引:2,他引:0  
Abstract: Acute ethanol treatment in rats elicits a selective increase in dihydroxyphenylacetic acid (DOPAC) content in striatum. In contrast, striatal DOPAC concentration does not differ from normal values after chronic ethanol treatment. Chronic administration of ethanol however causes a selective increase of specific [3H]spiroperidol binding and met-enkephalin content in the striatum. Kinetic analysis of [3H]spiroperidol binding data shows that after chronic ethanol treatment there is a significant increase in the affinity constant rather than in the number of binding sites for the ligand. Our results support the hypothesis that dopaminergic mechanisms at both pre- and postsynaptic level may be involved in the mediation of some of the central effects observed after ethanol consumption.  相似文献   

2.
Repeated amphetamine administration to rats under chronic ethanol intoxication resulted in the formation of 1,3-dimethyl-1,2,3,4-tetrahydroisoquinoline (1,3-DiMeTIQ), a novel metabolite of amphetamines. 1,3-DiMeTIQ was quantified with a sensitive, specific assay using gas chromatography-mass spectrometry. It was not found in the brains of rats given repeated amphetamine administration but no ethanol. The chronic ethanol-intoxicated rats subjected to repeated amphetamine administration exhibited behavioral abnormalities, such as repeated convulsions and curving of the back. 1,3-DiMeTIQ contents were markedly higher in the brain or plasma of rats manifesting abnormal behavior in comparison with those in rats behaving normally. Thus, the 1,3-DiMeTIQ content in the rat brain seems to have some relationship with behavioral abnormalities. This study also confirmed that 1,3-DiMeTIQ can cross the blood-brain barrier in the rat. Intraperitoneal 1,3-DiMeTIQ injections to rats caused behavioral symptoms similar to those observed in rats with chronic ethanol intoxication and repeated amphetamine administration. The effect of toxic doses of 1,3-DiMeTIQ on dopaminergic and serotonergic metabolism in the whole rat brain was also investigated.  相似文献   

3.
Adolescence is a developmental period which the risk of drug and alcohol abuse increases. Since mesolimbic dopaminergic system undergoes developmental changes during adolescence, and this system is involved in rewarding effects of drugs of abuse, we addressed the hypothesis that ethanol exposure during juvenile/adolescent period over-activates mesolimbic dopaminergic system inducing adaptations which can trigger long-term enduring behavioural effects of alcohol abuse. We treated juvenile/adolescent or adult rats with ethanol (3 g/kg) for two-consecutive days at 48-h intervals over 14-day period. Here we show that intermittent ethanol treatment during the juvenile/adolescence period alters subsequent ethanol intake. In vivo microdialysis demonstrates that ethanol elicits a similar prolonged dopamine response in the nucleus accumbens of both adolescent and adult animals pre-treated with multiple doses of ethanol, although the basal dopamine levels were higher in ethanol-treated adolescents than in adult-treated animals. Repeated ethanol administration also down-regulates the expression of DRD2 and NMDAR2B phosphorylation in prefrontal cortex of adolescent animals, but not of adult rats. Finally, ethanol treatment during adolescence changes the acetylation of histones H3 and H4 in frontal cortex, nucleus accumbens and striatum, suggesting chromatin remodelling changes. In summary, our findings demonstrate the sensitivity of adolescent brain to ethanol effects on dopaminergic and glutamatergic neurotransmission, and suggest that abnormal plasticity in reward-related processes and epigenetic mechanisms could contribute to the vulnerability of adolescents to alcohol addiction.  相似文献   

4.
Increased homocysteine (Hcy) level has been implicated as an independent risk factor for various neurological disorders, including Parkinson’s disease (PD). Hcy has been reported to cause dopaminergic neuronal loss in rodents and causes the behavioral abnormalities. This study is an attempt to investigate molecular mechanisms underlying Hcy-induced dopaminergic neurotoxicity after its chronic systemic administration. Male Swiss albino mice were injected with different doses of Hcy (100 and 250 mg/kg; intraperitoneal) for 60 days. Animals subjected to higher doses of Hcy, but not the lower dose, produces motor behavioral abnormalities with significant dopamine depletion in the striatum. Significant inhibition of mitochondrial complex-I activity in nigra with enhanced activity of antioxidant enzymes in the nigrostriatum have highlighted the involvement of Hcy-induced oxidative stress. While, chronic exposure to Hcy neither significantly alters the nigrostriatal glutathione level nor it causes any visible change in tyrosine hydroxylase-immunoreactivity of dopaminergic neurons. The finding set us to hypothesize that the mild oxidative stress due to prolonged Hcy exposure to mice is conducive to striatal dopamine depletion leading to behavioral abnormalities similar to that observed in PD.  相似文献   

5.
Corticotropin-releasing factor is a neuropeptide associated with the integration of physiological and behavioural responses to stress and also in the modulation of affective state and drug reward. The selective, centrally acting corticotropin-releasing factor type 1 receptor antagonist, antalarmin, is a potent anxiolytic and reduces volitional ethanol consumption in Fawn-Hooded rats. The efficacy of antalarmin to reduce ethanol consumption increased with time, suggestive of adaptation to reinforcement processes and goal-directed behaviour. The aim of the present study was to examine the effects of chronic antalarmin treatment on reward-related regions of Fawn-Hooded rat brain. Bi-daily antalarmin treatment (20 mg/kg, i.p.) for 10 days increased tyrosine hydroxylase messenger RNA expression throughout the ventral mesencephalon. Following chronic antalarmin the density of dopaminergic terminals within the basal ganglia and amygdaloid complex were reduced, as was dopamine transporter binding within the striatum. Receptor autoradiography indicated an up-regulation of dopamine D2, but no change in D1, binding in striatum, and Golgi-Cox analysis of striatal medium spiny neurones indicated that chronic antalarmin treatment increased spine density. Thus, chronic antalarmin treatment modulates dopaminergic pathways and implies that chronic treatment with drugs of this class may ultimately alter postsynaptic signaling mechanisms within the basal ganglia.  相似文献   

6.
An attempt to reduce a radiation-induced conditioned taste aversion (CTA) was undertaken by rendering animals tolerant to ethanol. Ethanol tolerance, developed over 5 days, was sufficient to block a radiation-induced taste aversion, as well as an ethanol-induced CTA. Several intermittent doses of ethanol, which did not induce tolerance but removed the novelty of the conditioning stimulus, blocked an ethanol-induced CTA but not the radiation-induced CTA. A CTA induced by doses of radiation up to 500 rads was attenuated. These data suggest that radioprotection developing in association with ethanol tolerance is a result of a physiological response to the chronic presence of ethanol not to the ethanol itself.  相似文献   

7.
Both in men and rats, most of the ethanol ingested at a low dose is metabolized before it reaches the systemic circulation. Oxidation of ethanol (mainly in the stomach) accounts for the bulk of this effect. This "first pass" metabolism (FPM) may be viewed as a barrier which protects against the systemic toxicity of ethanol. This barrier can be overcome by large doses of ethanol. Its efficiency is also reduced by a decrease in gastric alcohol dehydrogenase (ADH) activity secondary to chronic alcohol consumption.  相似文献   

8.
Ethanol consumption produces characteristic behavioral states in animals that include sedation, disorientation, and disruption of motor function. Using individual honey bees, we assessed the effects of ethanol ingestion on motor function via continuous observations of their behavior. Consumption of 1 M sucrose solutions containing a range of ethanol doses led to hemolymph ethanol levels of approximately 40-100 mM. Using ethanol doses in this range, we observed time and dose-dependent effects of ethanol on the percent of time our subjects spent walking, stopped, or upside down, and on the duration and frequency of bouts of behavior. The effects on grooming and flying behavior were more complex. Behavioral recovery from ethanol treatment was both time and ethanol dose dependent, occurring between 12 and 24 h post-ingestion for low doses and at 24-48 h for higher doses. Furthermore, the amount of ethanol measured in honey bee hemolymph appeared to correlate with recovery. We predict that the honey bee will prove to be an excellent model system for studying the influence of ethanol on the neural mechanisms underlying behavior.  相似文献   

9.
Central and gonadal function can be affected by chronic consumption of high and moderate doses of ethanol. Few studies have been conducted to determine the effect of ethanol intake at ovarian and gamete level. Previously, we showed that fertilization rates of low chronic ethanol treated female mice were diminished. Also, our recent results indicated that moderate chronic intake of ethanol by immature females could alter the ovulatory quantity and produce morphological alterations in the superovulated oocytes. Furthermore, PGE production by oocyte cumulus complexes (OCCs) was reduced in the females treated with 10% (w/v) ethanol. In the present investigation, we studied the effects of 5% ethanol treatment given to immature mice for 30 days on the quality and quantity of oocytes superovulated at 16 h posthuman chronic gonadotrophin. Treated females had impaired ovulation rates (P ⪢ 0.05) as compared to the controls. The percentage of activated and morphologically abnormal oocytes was elevated in the ethanol-treated females (P⪢ 0.05). PGE synthesis by the OCCs was higher than in the controls (P⪢ 0.01). In summary, the administration of long-term ethanol at a relatively low dose to immature females produces decreased ovulation rates, abnormal oocyte morphology with high spontaneous activation and altered levels of PGE production by the oocytes' cumulus complexes. The relationship between the oocyte quality and abnormal synthesis of PGE is discussed.  相似文献   

10.
After ethanol withdrawal dependent mice exhibited head twitching. The frequency of head-twitches was decreased by LSD and mescaline in a dose-dependent manner and increased by small doses of haloperidol and physostigmine. LSD antagonized the potentiating effects of haloperidol and physostigmine. The incidence of head-twitches after intracerebral injections of 5-HT in naive mice was lessened by LSD. The involvement of dopaminergic, serotoninergic, and cholinergic transmission systems in the action of psychotomimetics is discussed.  相似文献   

11.
In the rat liver at a chronic alcoholic intoxication produced with various doses of ethanol, a double phased picture of informational characteristics has been revealed in the cellular nuclei under a linear increase of the dose. An analysis of corresponding distribution of the hepatocytic nuclei has been performed according to their size and informational characteristics. On this base, the limiting dose of ethanol is estimated for development of the hepatic alcoholic lesion.  相似文献   

12.
Chronic ethanol consumption induces an increase in striatal 3H-Spiroperidol and 3H(?) Sulpiride specific binding by enhancing the affinity between the different dopaminergic recognition sites and the labelled ligands. Dopamine (DA) receptor supersensitivity is also suggested by the enhanced effect of neuroleptics in inducing hypomotility in rats treated with ethanol. The results, obtained by means of the administration of neuroleptics in comparison to ethanol treated rats, indicate a lack of cross tolerance between ethanol and other drugs acting on the dopaminergic recognition sites. These data suggest that ethanol effects on the dopaminergic system are mediated by events involving other neurotransmitter systems.  相似文献   

13.
Drosophila melanogaster has proven to be a useful model system for the genetic analysis of ethanol-associated behaviors. However, past studies have focused on the response of the adult fly to large, and often sedating, doses of ethanol. The pharmacological effects of low and moderate quantities of ethanol have remained understudied. In this study, we tested the acute effects of low doses of ethanol (~7 mM internal concentration) on Drosophila larvae. While ethanol did not affect locomotion or the response to an odorant, we observed that ethanol impaired associative olfactory learning when the heat shock unconditioned stimulus (US) intensity was low but not when the heat shock US intensity was high. We determined that the reduction in learning at low US intensity was not a result of ethanol anesthesia since ethanol-treated larvae responded to the heat shock in the same manner as untreated animals. Instead, low doses of ethanol likely impair the neuronal plasticity that underlies olfactory associative learning. This impairment in learning was reversible indicating that exposure to low doses of ethanol does not leave any long lasting behavioral or physiological effects.  相似文献   

14.
To investigate the effect of chronic ethanol exposure on the embryonic chick heart, chick embryos were exposed daily to one of seven graded doses of ethanol or to saline only (shams) from 0 to 96 hr of incubation. One hour before and after exposure at 72 hr, and 1 hr before and after exposure at 96 hr, embryos were analyzed for changes in heart function, embryo tissue ethanol content, occurrence of anomalies, and embryo weights. At both 71 and 73 hr of incubation (during cardiogenesis), when compared to shams, heart rate (HR) in embryos receiving ethanol doses greater than 0.0375 ml increased significantly (P less than .05) with commensurate increases in injected ethanol. Additionally, at 73 hr, depressed cardiac contractility, measured as shortening fraction, was noted at doses greater than or equal to .0375 when compared to shams. While slight increases in shortening fraction (SF) across dose were noted at 95 and 97 hr, only random doses were statistically significant from shams, with no specific trend in either HR or SF at this postcardiogenesis stage. Within each time group, gas chromatography analysis of embryo tissue ethanol content demonstrated a linear relationship between dose injected and tissue ethanol content retrieved. With increasing dose and stage, viability decreased. Weights of ethanol-injected embryos were not significantly different from shams within each time group. Our studies of the response of the embryonic chick heart to ethanol indicate both dose and stage susceptibility, with greater susceptibility to ethanol injury during active cardiogenesis.  相似文献   

15.
The influence of acute and chronic ethanol treatment and withdrawal on regulation of dopamine synthesis in striatal and mesolimbic areas of mouse brain was evaluated. Tyrosine hydroxylase activity was estimated by measuring in vivo DOPA accumulation after inhibition of aromatic amino acid decarboxylase. Eight hours after a single (3 g/kg) dose of ethanol, DOPA synthesis was increased and pimozide, a dopamine receptor antagonist, stimulated DOPA synthesis to the same degree in ethanol-treated and control animals. On the other hand, 8 h after withdrawal of animals from chronic ethanol treatment, endogenous dopamine synthesis was the same in ethanol-withdrawn and control animals, but the stimulation of dopamine synthesis produced by low doses of pimozide or haloperidol was significantly less in the animals that had consumed ethanol. This effect was even more apparent at 24h after withdrawal; by 3 days after withdrawal the decreased response of ethanol-withdrawn animals to the administration of dopamine receptor blockers was no longer statistically significant. At all time points tested, high doses of pimozide or haloperidol stimulated DOPA synthesis equally in control and ethanol-withdrawn animals. Chronic ethanol treatment and withdrawal may alter the coupling between dopamine receptors which regulate dopamine synthesis and tyrosine hydroxylase.  相似文献   

16.
1. 2,4-Dinitrophenol (0.1mm) increases by 100-160% the rate of ethanol metabolism by rat liver slices incubated in a medium saturated with a gas mixture containing O(2)+CO(2)+N(2) (18:5:77). Similar effects are produced by relatively low concentrations of arsenate (10mm). At higher concentrations (37.5 and 50mm) arsenate inhibits the rate of ethanol metabolism. 2. When liver slices are incubated under an atmosphere containing O(2)+CO(2) (95:5) the metabolism of ethanol increases by about 100% over that obtained with O(2)+CO(2)+N(2) (18:5:77). However, under these conditions the activating effect of dinitrophenol is no longer observed. 3. Chronic administration of ethanol to rats for 3-4 weeks, in doses from 3 to 8g/kg per day, increases by 70-90% the ability of the liver to metabolize ethanol. In the liver slices of these rats, although an O(2)+CO(2)+N(2) (18:5:77) mixture was used, dinitrophenol does not further increase the metabolism of ethanol. If the chronic administration of ethanol is discontinued for two weeks, the rate of ethanol metabolism is lowered to control values and the activating effect of dinitrophenol is recovered. 4. No change in alcohol dehydrogenase activity was found in the liver of the rats in which the metabolism of ethanol had been increased as a result of the chronic ethanol treatment; a 40% increase in the activity of succinate dehydrogenase was observed.  相似文献   

17.
The effect of endogenous 3α‐hydroxy‐5α‐pregnan‐20‐one (3α,5α‐TH PROG) on the modulation of mesocortical dopamine extracellular concentration by ethanol was investigated by microdialysis in rats. Intraperitoneal injection of progesterone (5 mg/kg, once a day for 5 days) increased the cortical content of 3α,5α‐TH PROG and potentiated the biphasic effect of acute intraperitoneal administration of ethanol on dopamine content. A dose of ethanol (0.25 g/kg) that was ineffective in naïve rats induced a 55% increase in dopamine extracellular concentration in rats pretreated with progesterone. This increase was similar to that induced by a higher dose (0.5 g/kg) of ethanol in naïve rats. Administration of ethanol at 0.5 g/kg to progesterone‐pretreated rats inhibited dopamine content by an extent similar to that observed with an even higher dose (1 g/kg) in naïve rats. The administration of the 5α‐reductase inhibitor finasteride (25 mg/kg, subcutaneous), together with progesterone, prevented the effects of the latter, both on the cortical concentration of 3α,5α‐TH PROG and on the modulation by ethanol of dopamine content. These data suggest that 3α,5α‐TH PROG contributes to the action of ethanol on the mesocortical dopaminergic system. They also suggest that physiological fluctuations in the brain concentrations of neuroactive steroids associated with the oestrous cycle, menopause, pregnancy and stress may alter the response of mesocortical dopaminergic neurons to ethanol.  相似文献   

18.
4-Methylpyrazole in a dose producing an inhibition of alcohol dehydrogenase of about 60% was given alone or in combination with ethanol (10%) as sole drinking fluid to growing rats in periods up to 38 weeks. No effects were observed on the weight curves. Hematologic analyses showed normal values for blood and bone marrow. Studies of liver function with transaminase, bilirubin and albumin did not reveal any functional changes. Kidney function was normal as judged by creatinine and normal electrolytes. Electronmicroscopy of liver, kidney, and heart did not reveal any changes related to treatment. Combined treatment of ethanol and 4-methylpyrazole caused an increase of the microsomal drug-metabolizing activity. Chronic administration of ethanol and 4-methylpyrazole indicated that there is a mutual interaction in the metabolism of ethanol and 4-methylpyrazole, leading to a higher concentration of both ethanol and 4-methylpyrazole in the blood. Acute experiments, where alcohol dehydrogenase is saturated with ethanol, indicated a much slower elimination of 4-methylpyrazole. Administration of ethanol and 4-methylpyrazole in acute experiments showed a lower concentration of 4-hydroxymethylpyrazole in the blood indicating that ethanol interferes with the 4-methylpyrazole- and/or 4-hydroxymethyl-pyrazole-metabolizing enzymes. The present investigation has shown that the acute and chronic toxicity of 4-methylpyrazole alone or in combination with ethanol is minimal at doses that are effective in blocking ethanol metabolism in the rat. Because of its low toxicity and powerful inhibitory capacity, 4-methylpyrazole should be a potential tool for experimental clinical investigation of alcohol metabolism and its effects. 4-Methylpyrazole is also a potential therapeutic agent in methanol or ethylene glycol poisoning.  相似文献   

19.
The effect of estradiol on anterior pituitary dopaminergic receptor content was studied in vivo and in vitro, in relation with the serum PRL secretion. A progressive and significant decrease in the number of these receptors was observed, a few hours before the serum release of PRL induced in ovariectomized females by a sequential treatment with different doses of estradiol benzoate. This decrease in the number of dopaminergic membrane receptors can be obtained as well in vitro, when anterior pituitaries, from ovariectomized rats, are incubated with 17 beta-estradiol. These results suggest that the stimulatory effect of estradiol on PRL secretion may be due, at least in part, to the direct "desensitization" to DA of anterior pituitary cells, which is produced by the decrease of dopaminergic receptor level.  相似文献   

20.
Rotation in rats was employed as an assay of the central dopaminergic activity of 3,4-methylenedioxymethamphetamine (MDMA). This agent was observed to possess predominantly amphetamine-like actions at low doses. However, at higher doses it also appears to stimulate the dopamine receptor directly. Following a third dose of MDMA, a significant decrease in rotation was evident to this drug and to amphetamine, suggesting a neurotoxic or long-term suppressive action of MDMA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号