首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystallization of phosphatidylserine bilayers induced by lithium   总被引:1,自引:0,他引:1  
Utilizing differential scanning calorimetry and x-ray diffraction, 1,2-dimyristoyl-L-glycero-3-phospho-L-serine (DMPS) was shown to form hydrated bilayer membrane structures exhibiting a gel leads to liquid crystalline transition at 39 degrees C (delta H = 7.2 kcal/mol). Addition of up to molar concentrations of the alkali halides NaCl, KCl, Rl Cl, and CsCl produced relatively minor changes in DMPS bilayer structure or stability. For example, in the presence of 0.5 M NaCl, the transition temperature (Tc = 42 degrees C) and transition enthalpy (delta H = 7.0 kcal/mol) show only minor changes. In marked contrast, addition of LiCl results in "'crystallization" of the DMPS bilayer membrane structure. At 0.5 M LiCl, the crystalline DMPS exhibits a bilayer gel leads to liquid crystal transition at 89 degrees C accompanied by a high enthalpy change, delta H = 16.0 kcal/mol. Thus, Li+ induces an isothermal crystallization of DMPS bilayers, the hydrocarbon chains adopting a more ordered packing mode than the "hexagonal" arrangement of the gel state. In view of the widespread use of lithium in the treatment of manic-depressive illness, we also raise the possibility that interaction of Li+ with anionic membrane phospholipids could play a role in its pharmacological action.  相似文献   

2.
The thermotropic behavior of the mitochondrial enzyme cytochrome c oxidase (EC 1.9.3.1) reconstituted in dimyristoylphosphatidylcholine (DMPC) vesicles has been studied by using high-sensitivity differential scanning calorimetry and fluorescence spectroscopy. The incorporation of cytochrome c oxidase into the phospholipid bilayer perturbs the thermodynamic parameters associated with the lipid phase transition in a manner analogous to other integral membrane proteins: it reduces the enthalpy change, lowers the transition temperature, and reduces the cooperative behavior of the phospholipid molecules. Analysis of the dependence of the enthalpy change on the protein:lipid molar ratio indicates that cytochrome c oxidase prevents 99 +/- 5 lipid molecules from participating in the main gel-liquid-crystalline transition. These phospholipid molecules presumably remain in the same physical state below and above the transition temperature of the bulk lipid, thus providing a more or less constant microenvironment to the protein molecule. The effect of the phospholipid bilayer matrix on the thermodynamic stability of the cytochrome c oxidase complex was examined by high-sensitivity differential scanning calorimetry. Detergent (Tween 80)-solubilized cytochrome c oxidase undergoes a complex, irreversible thermal denaturation process centered at 56 degrees C and characterized by an enthalpy change of 550 +/- 50 kcal/mol of enzyme complex. Reconstitution of the cytochrome c oxidase complex into DMPC vesicles shifts the transition temperature upward to 63 degrees C, indicating that the phospholipid bilayer moiety stabilizes the native conformation of the enzyme. The lipid bilayer environment contributes approximately 10 kcal/mol to the free energy of stabilization of the enzyme complex. The thermal unfolding of cytochrome c oxidase is not a two-state process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Kleinschmidt JH  Tamm LK 《Biochemistry》1999,38(16):4996-5005
The mechanism of insertion and folding of an integral membrane protein has been investigated with the beta-barrel forming outer membrane protein A (OmpA) of Escherichia coli. This work describes a new approach to this problem by combining structural information obtained from tryptophan fluorescence quenching at different depths in the lipid bilayer with the kinetics of the refolding process. Experiments carried out over a temperature range between 2 and 40 degrees C allowed us to detect, trap, and characterize previously unidentified folding intermediates on the pathway of OmpA insertion and folding into lipid bilayers. Three membrane-bound intermediates were found in which the average distances of the Trps were 14-16, 10-11, and 0-5 A, respectively, from the bilayer center. The first folding intermediate is stable at 2 degrees C for at least 1 h. A second intermediate has been isolated at temperatures between 7 and 20 degrees C. The Trps move 4-5 A closer to the center of the bilayer at this stage. Subsequently, in an intermediate that is observable at 26-28 degrees C, the Trps move another 5-10 A closer to the center of the bilayer. The final (native) structure is observed at higher temperatures of refolding. In this structure, the Trps are located on average about 9-10 A from the bilayer center. Monitoring the evolution of Trp fluorescence quenching by a set of brominated lipids during refolding at various temperatures therefore allowed us to identify and characterize intermediate states in the folding process of an integral membrane protein.  相似文献   

4.
The self-assembled supramolecular structures of diacylphosphatidylcholine (diC(n)PC), diacylphosphatidylethanolamine (diC(n)PE), diacylphosphatidyglycerol (diC(n)PG), and diacylphosphatidylserine (diC(n)PS) were investigated by (31)P nuclear magnetic resonance (NMR) spectroscopy as a function of the hydrophobic acyl chain length. Short-chain homologs of these lipids formed micelles, and longer-chain homologs formed bilayers. The shortest acyl chain lengths that supported bilayer structures depended on the headgroup of the lipids. They increased in the order PE (C(6)) < PC (C(9)) < or = PS (C(9) or C(10)) < PG (C(11) or C(12)). This order correlated with the effective headgroup area, which is a function of the physical size, charge, hydration, and hydrogen-bonding capacity of the four headgroups. Electrostatic screening of the headgroup charge with NaCl reduced the effective headgroup area of PS and PG and thereby decreased the micelle-to-bilayer transition of these lipid classes to shorter chain lengths. The experimentally determined supramolecular structures were compared to the assembly states predicted by packing constraints that were calculated from the hydrocarbon-chain volume and effective headgroup area of each lipid. The model accurately predicted the chain-length threshold for bilayer formation if the relative displacement of the acyl chains of the phospholipid were taken into account. The model also predicted cylindrical rather than spherical micelles for all four diacylphospholipid classes and the (31)P-NMR spectra provided evidence for a tubular network that appeared as an intermediate phase at the micelle-to-bilayer transition. The free energy of micellization per methylene group was independent of the structure of the supramolecular assembly, but was -0.95 kJ/mol (-0.23 kcal/mol) for the PGs compared to -2.5 kJ/mol (-0.60 kcal/mol) for the PCs. The integral membrane protein OmpA did not change the bilayer structure of thin (diC(10)PC) bilayers.  相似文献   

5.
Differential scanning calorimetry (DSC) and x-ray diffraction have been used to study the effect of increasing chain-unsaturation on the structure and properties of the hydrated cerebrosides N-stearoyl, -oleoyl, and -linoleoyl galactosylsphingosine (NSGS, NOGS, and NLnGS, respectively). DSC of hydrated (70 wt% water) NSGS shows an endothermic transition at 85 degrees C (delta H = 18.0 kcal/mol NSGS) and a broad exothermic transition at 40-60 degrees C, the latter being dependent upon the previous cooling rate. X-Ray diffraction patterns recorded at 21, 61, and 86 degrees C provide evidence for interconversions between metastable and stable crystalline NSGS bilayer phases. The properties of the unsaturated-chain cerebrosides are more complex. Hydrated NOGS shows a single endothermic transition at 44.8 degrees C (delta H = 11.5 kcal/mol NOGS). However, incubation of NOGS at 49 degrees C for 24 h results in a second transition at 55.5 degrees C. By cycling NOGS between 0 and 49 degrees C complete conversion into this higher melting phase (delta H = 12.1 kcal/mol NOGS) is achieved. X-ray diffraction confirms a bilayer phase at all temperatures and delineates the conversions between a crystalline phase at 21 degrees C (bilayer period d = 56.5A), a second crystalline phase at 47 degrees C (d = 69.9A), and a liquid crystalline phase at 59 degrees C (d = 52.0A). The more unsaturated NLnGS shows two transitions, a sharp transition at 28 degrees C (delta H = 8.0 kcal/mol NLGS) and a broad, low-enthalpy transition at 42 degrees C (delta H = 0.4 kcal/mol NLGS). Again, incubation between the two transitions leads to a single transition at 44 degrees C (delta H = 9.3 kcal/mol NLGS). X-ray diffraction demonstrates conversions between two crystalline bilayer phases (d = 55.2A and d = 68.4A), and a liquid crystalline bilayer phase (d = 51.8A). Thus, increased unsaturation in the amide-linked fatty acyl chain of cerebrosides results in decreased chain-melting temperatures (NSGS greater than NOGS greater than NLnGS) and has marked effects on their structural properties.  相似文献   

6.
Temperature dependence of D-glucose transport in reconstituted liposomes   总被引:1,自引:0,他引:1  
Sodium-dependent D-glucose uptake into proteoliposomes reconstituted from dimyristoylphosphatidylcholine (DMPC) and hog kidney brush border membrane extract is strongly affected by temperature and the physical state of the membranes. This dependence is defined by a nonlinear Arrhenius plot with a break point at 23 degrees C, a temperature not significantly different from the phase transition temperature of the pure lipid (24 degrees C). The transport process is characterized by different activation energies: 35.1 kcal/mol below and 5.5 kcal/mol above the transition temperature. The shift in the break point for the D-glucose transport activity from 15 degrees C, in the brush border membranes, to 23 degrees C in the reconstituted system leads us to conclude that the lipids surrounding the sodium/D-glucose cotransport system can exchange readily with the bulk lipid used for reconstitution. The results thus provide no evidence for the presence of an annulus of specific lipids surrounding the transport system.  相似文献   

7.
The mixing behavior of exchangeable, disulfide-based mimics of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cholesterol has been examined as a function of temperature in host membranes made from DPPC and cholesterol in the liquid-disordered phase (ld), in the liquid-ordered phase (lo), and in the liquid-disordered/liquid-ordered coexistence region (ld/lo). In the ld region, lipid mixing was found to be temperature insensitive, reflecting close to ideal behavior. In contrast, a significant temperature dependence was observed in the lo phase from 45 to 60 degrees C, when 35 or 40 mol % sterol was present. In this region, sterol-phospholipid association was characterized by DeltaHo = -2.06 +/- 0.14 kcal/mol of phospholipid and DeltaS degrees = -4.48 +/- 0.44 cal/K mol of phospholipid. From 60 to 65 degrees C, the mixing of these lipids was found to be insensitive to temperature, and sterol-phospholipid association was now entropy driven; that is, DeltaHo = -0.23 +/- 0.38 kcal/mol of phospholipid and DeltaS degrees = +1.68 +/- 1.12 cal/K mol of phospholipid. In the liquid-disordered/liquid-ordered coexistence region, changes in lipid mixing reflect changes in the phase composition of the membrane.  相似文献   

8.
The activation energies for binding of tritiated cytochalasin D to HEp-2 cells and isolated plasma membrane were determined by Arrhenius plots. The higher value for intact cells (24 kcal/mol) compared to the plasma membrane fraction (4 kcal/mol at greater than 11.5 degrees C, 18 kcal/mol at less than 11.5 degrees C) was taken as evidence that [3H]cytochalasin D must penetrate the plasma membrane in order to reach its binding sites. The data support the conclusion that binding sites for [3H]cytochalasin D are intracellular, on the cytoplasmic face of the plasma membrane (rather than within the lipid bilayer), and on microsomes (endomembranes).  相似文献   

9.
We investigate the role of anionic lipids in the binding to, and subsequent movement of charged protein groups in lipid membranes, to help understand the role of membrane composition in all membrane-active protein sequences. We demonstrate a small effect of phosphatidylglycerol (PG) lipids on the ability of an arginine (Arg) side chain to bind to, and cross a lipid membrane, despite possessing a neutralizing charge. We observe similar membrane deformations in lipid bilayers composed of phosphatidylcholine (PC) and PC/PG mixtures, with comparable numbers of water and lipid head groups pulled into the bilayer hydrocarbon core, and prohibitively large ~20 kcal/mol barriers for Arg transfer across each bilayer, dropping by just 2-3 kcal/mol due to the binding of PG lipids. We explore the causes of this small effect of introducing PG lipids and offer an explanation in terms of the limited membrane interaction for the choline groups of PC lipids bound to the translocating ion. Our calculations reveal a surprising lack of preference for Arg binding to PG lipids themselves, but a small increase in interfacial binding affinity for lipid bilayers containing PG lipids. These results help to explain the nature of competitive lipid binding to charged protein sequences, with implications for a wide range of membrane binding domains and cell perturbing peptides.  相似文献   

10.
The first direct experimental evidence that gramicidin A (gA), a transmembrane peptide, facilitates the translocation of unlabeled lipids in a phospholipid bilayer was obtained with sum-frequency vibrational spectroscopy (SFVS). SFVS was used to investigate the effect of gA on lipid flip-flop in a planar 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) lipid bilayer. The kinetics of lipid translocation were determined by an analysis of the SFVS intensity versus time at different temperatures in the presence of 2 mol % gA. The rate constants of DSPC flip-flop increase from 2 to 10 times relative to the pure DSPC system. The results indicate that facial lipid exchange can be induced by a hydrophobic transmembrane helix. The increase in lipid flip-flop rates is correlated to an increase in the gauche content of the lipid tails. The results suggest that membrane defects induced by the presence of integral membrane proteins may play a large role in modulating the rate of lipid flip-flop.  相似文献   

11.
The first direct experimental evidence that gramicidin A (gA), a transmembrane peptide, facilitates the translocation of unlabeled lipids in a phospholipid bilayer was obtained with sum-frequency vibrational spectroscopy (SFVS). SFVS was used to investigate the effect of gA on lipid flip-flop in a planar 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) lipid bilayer. The kinetics of lipid translocation were determined by an analysis of the SFVS intensity versus time at different temperatures in the presence of 2 mol % gA. The rate constants of DSPC flip-flop increase from 2 to 10 times relative to the pure DSPC system. The results indicate that facial lipid exchange can be induced by a hydrophobic transmembrane helix. The increase in lipid flip-flop rates is correlated to an increase in the gauche content of the lipid tails. The results suggest that membrane defects induced by the presence of integral membrane proteins may play a large role in modulating the rate of lipid flip-flop.  相似文献   

12.
Chromaffin cell membranes from the bovine adrenal medulla were labelled with the hydrophobic fluorescent probe 1,6-diphenyl-1,3,5-hexatriene, and the fluorescence polarization (P) of the membrane suspensions was measured as a function of temperature. The P versus t profiles, between 20 and 37 degrees C, showed two linear regions separated by a break in the vicinity of 30 degrees C, reflecting a change in the phase behaviour of the constitutent lipids. Decreases in P values at higher temperature indicated progressive fluidization of the lipid bilayer. Previous incubation with either acetylcholine (0.5 mM) or nicotine (50 microM) produced further fluidization, the extent of which depended on the presence of added Ca2+ (2.2 mM). Thus, the flow activation energy, delta E, between approx. 30 and 37 degrees C was 9.1 kcal/mol for acetylcholine and 8.8 kcal/mol for acetylcholine plus Ca2+, as compared to 7.9 kcal/mol in the absence of acetylcholine and Ca2+. In the presence of nicotine, delta E was 11.4 kcal/mol when Ca2+ was absent and 9.5 kcal/mol when it was present. The cholinergic blocker, hexamethonium (0.5 mM), abolished the acetylcholine- or nicotine-induced changes. 65 mM K+ produced a similar fluidization, which was reversed by addition of Ca2+. An additive effect was observed when the membranes were incubated with both nicotine and K+, with delta E = 16.6 kcal/mol in the presence of Cas2+. These results indicate a receptor-mediated modulation of the lipid distribution between rigid and fluid regions in the membrane, which could be of importance for stimulated catecholamine secretion in the intact cell.  相似文献   

13.
Signals from different cellular networks are integrated at the mitochondria in the regulation of apoptosis. This integration is controlled by the Bcl-2 proteins, many of which change localization from the cytosol to the mitochondrial outer membrane in this regulation. For Bcl-xL, this change in localization reflects the ability to undergo a conformational change from a solution to integral membrane conformation. To characterize this conformational change, structural and thermodynamic measurements were performed in the absence and presence of lipid vesicles with Bcl-xL. A pH-dependent model is proposed for the solution to membrane conformational change that consists of three stable conformations: a solution conformation, a conformation similar to the solution conformation but anchored to the membrane by its C-terminal transmembrane domain, and a membrane conformation that is fully associated with the membrane. This model predicts that the solution to membrane conformational change is independent of the C-terminal transmembrane domain, which is experimentally demonstrated. The conformational change is associated with changes in secondary and, especially, tertiary structure of the protein, as measured by far and near-UV circular dichroism spectroscopy, respectively. Membrane insertion was distinguished from peripheral association with the membrane by quenching of intrinsic tryptophan fluorescence by acrylamide and brominated lipids. For the cytosolic domain, the free energy of insertion (DeltaG degrees x) into lipid vesicles was determined to be -6.5 kcal mol(-1) at pH 4.9 by vesicle binding experiments. To test whether electrostatic interactions were significant to this process, the salt dependence of this conformational change was measured and analyzed in terms of Gouy-Chapman theory to estimate an electrostatic contribution of DeltaG degrees el approximately -2.5 kcal mol(-1) and a non-electrostatic contribution of DeltaG degrees nel approximately -4.0 kcal mol(-1) to the free energy of insertion, DeltaG degrees x. Calcium, which blocks ion channel activity of Bcl-xL, did not affect the solution to membrane conformational change more than predicted by these electrostatic considerations. The lipid cardiolipin, that is enriched at mitochondrial contact sites and reported to be important for the localization of Bcl-2 proteins, did not affect the solution to membrane conformational change of the cytosolic domain, suggesting that this lipid is not involved in the localization of Bcl-xL in vivo. Collectively, these data suggest the solution to membrane conformational change is controlled by an electrostatic mechanism. Given the distinct biological activities of these conformations, the possibility that this conformational change might be a regulatory checkpoint for apoptosis is discussed.  相似文献   

14.
The water permeability of the lipid bilayer can be used as a probe of membrane structure. A simple model of the bilayer, the liquid hydrocarbon model, views the membrane as a thin slice of bulk hydrocarbon liquid. A previous study (Petersen, D. (1980) Biochim. Biophys. Acta 600, 666–677) showed that this model does not accurately predict the water permeability of the monoolein/n-hexadecane bilayer: the measured activation energy for water permeation is 50% above the predicted value. From this it was inferred that the hydrocarbon chains in the lipid bilayer are more ordered than in the bulk hydrocarbon liquid. The present study tests the liquid hydrocarbon model for the monoolein/triolein bilayer, which has been shown to contain very little triolein in the plane of the membrane (Waldbillig, R.C. and Szabo, G. (1979) Biochim. Biophys. Acta 557, 295–305). Measurements of the water permeability coefficient of the bilayer are compared with predictions of the liquid hydrocarbon model based on measurements of the water permeability coefficient of bulk 8-heptadecene. The predicted and measured values agree quite closely over the temperature range studied (15–35°C): the predicted activation energy is 11.1±0.2 kcal/mol, whereas the measured activation energy for the bilayer is 9.8±0.7 kcal/mol. This close agreement is in contrast with the monoolein/n-hexadecane results and suggests that, insofar as water permeation is concerned, the liquid hydrocarbon model quite closely represents the monoolein/triolein bilayer.  相似文献   

15.
N L Gershfeld 《Biochemistry》1989,28(10):4229-4232
Thermodynamic properties of bilayer assembly have been obtained from measurements of the solubility of the sodium salt of dimyristoylphosphatidylglycerol (DMPG) in water. The standard free energy of bilayer assembly delta G degree a is shown to be RT 1n Xs + zF psi 0 where Xs is the mole fraction of dissolved lipid, F is the Faraday constant, z is the valence of the counterion (Na+), and psi 0 is the electrical double-layer potential of the ionized bilayer. The function d 1n Xs/dT was found to be discontinuous at 24 degrees C, the gel-liquid-crystal transition temperature (Tm) for DMPG. This function was unaffected when solubilities were measured in 0.001 M NaCl solutions; thus, psi 0 is constant in the experimental temperature interval (4-40 degrees C). Using a value of psi 0 = -180 mV [Eisenberg et al. (1979) Biochemistry 18, 5213-5223], and the temperature dependence of delta G degrees a, values for delta H degrees a and delta S degree a at 24 degrees C were calculated for the gel and liquid-crystal states of DMPG. For the gel, delta H degrees a and T delta S a are -26.2 and 12.7 kcal/mol, respectively; for the liquid-crystal, delta H degrees a and T delta S degrees a are -19.2 and -5.7 kcal/mol, respectively. The calculated value for the latent heat of the gel-liquid-crystal transition is 7 kcal/mol, in agreement with calorimetric measurements.  相似文献   

16.
SNARE trans complexes between membranes likely promote membrane fusion. For the t-SNARE syntaxin 1A involved in synaptic transmission, the secondary structure and bending stiffness of the five-residue juxtamembrane linker is assumed to determine the required mechanical energy transfer from the cytosolic core complex to the membrane. These properties have here been studied by molecular dynamics and annealing simulations for the wild-type and a C-terminal-prolongated mutant within a neutral and an acidic bilayer, suggesting linker stiffnesses above 1.7 but below 50 x 10(-3) kcal mol(-1) deg(-2). The transmembrane helix was found to be tilted by 15 degrees and tightly anchored within the membrane with a stiffness of 4-5 kcal mol(-1) A(-2). The linker turned out to be marginally helical and strongly influenced by its lipid environment. Charged lipids increased the helicity and H3 helix tilt stiffness. For the wild type, the linker was seen embedded deeply within the polar region of the bilayer, whereas the prolongation shifted the linker outward. This reduced its helicity and increased its average tilt, thereby presumably reducing fusion efficiency. Our results suggest that partially unstructured linkers provide considerable mechanical coupling; the energy transduced cooperatively by the linkers in a native fusion event is thus estimated to be 3-8 kcal/mol, implying a two-to-five orders of magnitude fusion rate increase.  相似文献   

17.
Machaidze G  Ziegler A  Seelig J 《Biochemistry》2002,41(6):1965-1971
Ro 09-0198 (cinnamycin) is a tetracyclic peptide antibiotic that is used to monitor the transbilayer movement of phosphatidylethanolamine (PE) in biological membranes during cell division and apoptosis. The molecule is one of the very rare examples where a small peptide binds specifically to a particular lipid. In model membranes and biological membranes containing phosphatidylethanolamine, Ro 09-0198 forms a 1:1 complex with this lipid. We have measured the thermodynamic parameters of complex formation with high sensitivity isothermal titration calorimetry and have investigated the structural consequences with deuterium and phosphorus solid-state NMR. Complex formation is characterized by a large binding constant, K0, of 10(7) to 10(8) M(-1), depending on the experimental conditions. The reaction enthalpy, DeltaHdegrees, varies between zero at 10 degrees C to strongly exothermic -10 kcal/mol at 50 degrees C. For large vesicles with a diameter of approximately 100 nm, DeltaHdegrees decreases linearly with temperature and the molar heat capacity of complex formation can be evaluated as = -245 cal/mol, indicating a hydrophobic binding mechanism. The free energy of binding is DeltaGdegrees = -10.5 kcal/mol and shows only little temperature dependence. The constancy of DeltaGdegrees together with the distinct temperature-dependence of DeltaHdegrees provide evidence for an entropy-enthalpy compensation mechanism: at 10 degrees C, complex formation is completely entropy-driven, at 50 degrees C it is enthalpy-driven. Varying the PE fatty acid chain-length between 6 and 18 carbon atoms produces similar binding constants and DeltaHdegrees values. Addition of Ro 09-0198 to PE containing bilayers eliminates the typical bilayer structure and produces 2H- and 31P-NMR spectra characteristic of slow isotropic tumbling. This reorganization of the lipid matrix is not limited to PE but also includes other lipids.  相似文献   

18.
The ATP-generated proton pumping across tonoplast vesicles from chilling-sensitive Boro rice (Oryza sativa L. var. Boro) cultured cells was markedly decreased by chilling at 5 degrees C for 3 d. The membrane fluidity of core hydrophobic and surface hydrophilic regions of the lipid bilayer was measured by steady-state fluorescence depolarization of 1,6-diphenyl-1,3,5-hexatriene and trimethylammonium 1,6-diphenyl-1,3,5-hexatriene and by electron spin resonance spectroscopy of 16- and 5-doxyl stearic acid, respectively. The fluidity of the surface region of the lipid bilayer of the tonoplast vesicles decreased by chilling. The fluidity of the surface region of the liposomes and the proton pumping across the reconstituted proteoliposomes with tonoplast H+-ATPase decreased with increasing content of the glycolipids. The proton pumping across chimera proteoliposomes was reduced by chilling only when it was reconstituted in the presence of tonoplast glycolipids from chilled Boro cells. These data suggest that the reduction in ATP-generated proton pumping across the tonoplast by chilling is due to the decrease in the fluidity of the surface region of the lipid bilayer of the tonoplast, which is caused by the changes in glycolipids.  相似文献   

19.
The partitioning of native cytochrome b5 and a mutant form, where Trp-108 and Trp-112 were both replaced by Leu, into small unilamellar lipid vesicles was examined. The vesicles were made from phosphatidylcholines containing mono- and di-unsaturated acyl chains. As these amphipathic proteins self-associate in aqueous solution, the binding was not monitored by a simple lipid titration experiment but by an exchange assay using fluorescence quenching by brominated lipids. Each protein had a greater affinity for lipids containing mono-unsaturated chains than for vesicles containing di-unsaturated chains, and the affinities of both proteins increased in buffers of higher ionic strength. The native protein had a higher affinity than the mutant protein for all vesicles; the ratio of the affinities was relatively constant at approximately 30. This corresponds to a difference in the free energy of partitioning of 2 kcal mol(-)(1). The fluorescence quantum yields of both proteins were much lower in lipids with di-unsaturated chains whereas a similar lowering was not seen with a simple Trp compound. These data suggest that the decreased membrane hydrophobicity seen by the proteins in di-unsaturated membranes is not an inherent property of the bilayer but is induced by the insertion of the protein. Further, the similar behavior of the two proteins suggests this modulation is not sensitive to the amino acid side chains of the inserted domain.  相似文献   

20.
The partition equilibria of sodium dodecyl sulfate (SDS) and lithium dodecyl sulfate between water and bilayer membranes were investigated with isothermal titration calorimetry and spectroscopic methods (light scattering, (31)P-nuclear magnetic resonance) in the temperature range of 28 degrees C to 56 degrees C. The partitioning of the dodecyl sulfate anion (DS(-)) into the bilayer membrane is energetically favored by an exothermic partition enthalpy of Delta H(O)(D) = -6.0 kcal/mol at 28 degrees C. This is in contrast to nonionic detergents where Delta H(O)(D) is usually positive. The partition enthalpy decreases linearly with increasing temperature and the molar heat capacity is Delta C(O)(P) = -50 +/- 3 cal mol(-1) K(-1). The partition isotherm is nonlinear if the bound detergent is plotted versus the free detergent concentration in bulk solution. This is caused by the electrostatic repulsion between the DS(-) ions inserted into the membrane and those free in solution near the membrane surface. The surface concentration of DS(-) immediately above the plane of binding was hence calculated with the Gouy-Chapman theory, and a strictly linear relationship was obtained between the surface concentration and the extent of DS(-) partitioning. The surface partition constant K describes the chemical equilibrium in the absence of electrostatic effects. For the SDS-membrane equilibrium K was found to be 1.2 x 10(4) M(-1) to 6 x 10(4) M(-1) for the various systems and conditions investigated, very similar to data available for nonionic detergents of the same chain length. The membrane-micelle phase diagram was also studied. Complete membrane solubilization requires a ratio of 2.2 mol SDS bound per mole of total lipid at 56 degrees C. The corresponding equilibrium concentration of SDS free in solution is C (sat)(D,F) approximately 1.7 mM and is slightly below the critical micelles concentration (CMC) = 2.1 mM (at 56 degrees C and 0.11 M buffer). Membrane saturation occurs at approximately 0.3 mol SDS per mol lipid and the equilibrium SDS concentration is C (sat)(D,F)approximately equal 2.2 mM +/- 0.6 mM. SDS translocation across the bilayer is slow at ambient temperature but increases at high temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号