首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although up to 50% of African green monkeys (AGMs) are infected by simian immunodeficiency viruses (SIV) in their natural habitat, they remain asymptomatic carriers of these lentiviruses. They provide an attractive model to study not only the origin but also the link among genetic variation, host-virus adaptation, and pathogenicity of primate lentiviruses. SIVagm have been isolated from three species of AGM: the vervet (Cercopithecus pygerythrus), the grivet (Cercopithecus aethiops), and the sabaeus (Cercopithecus sabaeus) monkey. We studied four new SIVagm isolates from a fourth AGM species, the tantalus monkey (Cercopithecus tantalus), caught in the Central African Republic, and four new isolates from feral sabaeus monkeys from Senegal. Antigenic properties and partial env sequences were used to evaluate the diversity among these isolates. Alignment of env sequences in SIVagm isolated from tantalus and sabaeus monkeys permitted detailed mapping of the variable and conserved domains in the external glycoprotein. Genetic distances indicated that SIVagm isolates from tantalus monkeys are the most divergent among SIVagm in feral AGMs in Africa. The fact that AGMs are infected by four distinct lentiviruses, each specific for a single AGM species, supports the hypothesis of a coevolution of these viruses and their natural hosts and suggests that SIV transmission is a rare event among separated AGM species in the wild.  相似文献   

2.
The prevalence, natural history, and genetic characteristics of simian immunodeficiency virus (SIV) infections in most feral African monkey species are presently unknown, yet this information is essential to elucidate their origin and relationship to other simian and human immunodeficiency viruses. In this study, a combination of classical and molecular approaches were used to identify and characterize SIV isolates from West African green monkeys (Cercopithecus sabaeus) (SIVagm isolates). Four SIVagm viruses from wild-caught West African green monkeys were isolated and analyzed biologically and molecularly. Amplification, cloning, and sequencing of a 279-bp polymerase fragment directly from uncultured peripheral blood mononuclear cells was facilitated by the use of nested polymerase chain reaction. The results indicated that West African green monkeys are naturally infected with SIVs which are closely related to East African SIVagm isolates. However, structural, antigenic, and genetic differences were observed which strongly suggest that the West African green monkey viruses comprise a phylogenetically distinct subgroup of SIVagm. These findings support our previous hypothesis that SIVagm viruses may have evolved and diverged coincident with the evolution and divergence of their African green monkey host. In addition, this study describes a polymerase chain reaction-based approach that allows the identification and molecular analysis of divergent SIV strains directly from primary monkey tissue. This approach, which does not depend on virus isolation methods, should facilitate future studies aimed at elucidating the origins and natural history of SIVs in feral African green monkey populations.  相似文献   

3.
Recombination in AIDS viruses   总被引:13,自引:0,他引:13  
Recombination contributes to the generation of genetic diversity in human immunodeficiency viruses (HIV) but can only occur between viruses replicating within the same cell. Since individuals have not been found to be simultaneously coinfected with multiple divergent strains of HIV-1 or HIV-2, recombination events have been thought to be restricted to the rather closely related members of the quasispecies that evolves during the course of HIV infection. Here we describe examples of both HIV-1 and HIV-2 genomes that appear to be hybrids of genetically quite divergent viruses. Phylogenetic analyses were used to examine the evolutionary relationships among multiple HIV strains. Evolutionary trees derived from different genomic regions were consistent with respect to most of the viruses investigated. However, some strains of HIV-1 and HIV-2 exhibited significantly discordant branching orders indicative of genetic exchanges during their evolutionary histories. The crossover points of these putative recombination events were mapped by examining the distribution of phylogenetically informative sites supporting alternative tree topologies. A similar example of a recombinant simian immunodeficiency virus identified in West African green monkeys has also been described recently. These results indicate that coinfection with highly divergent viral strains can occur in HIV-infected humans and SIV-infected primates and could lead to the generation of hybrid genomes with significantly altered biological properties. Thus, future characterization of primate lentiviruses should include careful phylogenetic investigation of possible genomic mosaicism.Correspondence to: P.M. Sharp  相似文献   

4.
The primate immunodeficiency virus Vif proteins are essential for replication in appropriate cultured cell systems and, presumably, for the establishment of productive infections in vivo. We describe experiments that define patterns of complementation between human and simian immunodeficiency virus (HIV and SIV) Vif proteins and address the determinants that underlie functional specificity. Using human cells as virus producers, it was found that the HIV-1 Vif protein could modulate the infectivity of HIV-1 itself, HIV-2 and SIV isolated from African green monkeys (SIVAGM). In contrast, the Vif proteins of SIVAGM and SIV isolated from Sykes' monkeys (SIVSYK) were inactive for all HIV and SIV substrates in human cells even though, at least for the SIVAGM protein, robust activity could be demonstrated in cognate African green monkey cells. These observations suggest that species-specific interactions between Vif and virus-producing cells, as opposed to between Vif and virus components, may govern the functional consequences of Vif expression in terms of inducing virion infectivity. The finding that the replication of murine leukemia virus could also be stimulated by HIV-1 Vif expression in human cells further supported this notion. We speculate that species restrictions to Vif function may have contributed to primate immunodeficiency virus zoonosis.  相似文献   

5.
We constructed ten mutants of simian immunodeficiency virus isolated from African green monkey (SIVAGM), and nine mutants of human immunodeficiency virus type 2 (HIV-2) in vitro. Their infectivity, cytopathogenicity, transactivation potential, virus RNA, and protein synthesis were examined by transfection and infection experiments. Mutations in three structural (gag, pol, env) and two regulator (tat, rev) genes abolished the infectivity of both viruses, but vpx, vpr (HIV-2), and nef were dispensable and mutant viruses were indistinguishable phenotypically from wild type virus. A vif mutant of HIV-2 showed poor infectivity in cell-free condition, whereas SIVAGM mutants grew equally well with wild type virus. In transient transfection assays, rev mutants derived from both viruses produced mainly small mRNA species and no detectable virus proteins and particles. Transactivation potential of tat mutants originated from both viruses was about three- to ten-fold less than that of respective wild type DNAs, generating small amounts of virus.  相似文献   

6.
Z Chen  P Telfier  A Gettie  P Reed  L Zhang  D D Ho    P A Marx 《Journal of virology》1996,70(6):3617-3627
It has been proposed that human immunodeficiency virus type 2 (HIV-2) originated from simian immunodeficiency viruses (SIVs) that are natural infections of sooty mangabeys (Cercocebus torquatus atys). To test this hypothesis, SIVs from eight sooty mangabeys, including six new viruses from West Africa, were genetically characterized. gag and env sequences showed that while the viruses of all eight sooty mangabeys belonged to the SIVsm/HIV-2 family, each was widely divergent from SIVs found earlier in captive monkeys at American primate centers. In two SIVs from sooty mangabeys discovered about 100 miles (ca. 161 Km) from each other in rural West Africa, the amino acids of a conserved gag p17-p26 region differed by 19.3%, a divergence greater than that in four of five clades of HIV-2 and in SIVs found in other African monkey species. Analysis of gag region sequences showed that feral mangabeys in one small troop harbored four distinct SIVs. Three of the newly found viruses were genetically divergent, showing as much genetic distance from each other as from the entire SIVsm/HIV-2 family. Sequencing and heteroduplex analysis of one feral animal-derived SIV showed a mosaic genome containing an env gene that was homologous with other feral SIVsm env genes in the troop but having a gag gene from another, distinct SIV. Surprisingly a gag phylogenetic tree based on nucleotide sequences showed that the African relatives closest to all three household-derived SIVs were HIV-2 subtypes D and E from humans in the same West African areas. In one case, the SIV/HIV-2 cluster was from the same village. The findings support the hypothesis that each HIV-2 subtype in West Africans originated from widely divergent SIVsm strains, transmitted by independent cross-species events in the same geographic locations.  相似文献   

7.
Recently, the authors determined the partial sequence of simian immunodeficiency virus (SIV) from the mandrill (SIVMND) and found SIVMND to be a new member of the HIV/SIV group, equidistant from other members, including SIVAGM. Experimentally, the African green monkey and cynomolgus monkey could be infected with SIVAGM and the cottontop tamarin with SIVMND. However, no clinical sign of an AIDS-like disease was observed in these monkeys.  相似文献   

8.
9.
Asymptomatic infection with simian lentiviruses (also called simian immunodeficiency viruses, or SIV) is common among feral African green monkeys. To characterize the range of SIV genetic diversity among infected African green monkeys, we have determined nucleotide sequences from complete or partial molecular clones of four distinct SIVagm isolates from Kenya and Ethiopia. The nucleotide and amino acid variability we observed among the SIVagm isolates was greater than the variability within any other group of primate lentiviruses. These data suggest that: a) African green monkeys have been infected with simian lentiviruses for many years; and b) novel and uncharacterized primate lentiviruses may exist in the feral African green monkey population in other parts of Africa.  相似文献   

10.
A spectrum of pathogenicity has been observed for primate lentiviruses in their natural hosts. For example, human immunodeficiency virus type 1 (HIV-1) is a potent etiologic agent for AIDS in man, whereas there is no evidence to date which indicates that simian immunodeficiency virus from African green monkeys (SIVAGM) causes immunodeficiency in AGM. We measured the relative rates of amino acid change, as the ratio of the number of nonsynonymous to synonymous (silent) nucleotide substitutions, for six primate lentiviruses evolving in their respective hosts. These rates for the external envelope glycoprotein (gp120) and gag coding sequences are 2–3 times higher for pathogenic HIV-1 and SIV..ac (macaque) than for minimally pathogenic SIVAGM and SIVsn,m (sooty mangabey), and intermediate for HIV-2. We speculate that the increased rates of nonsynonymous changes in gp120 and gag coding sequences are due to viral escape from immune surveillance and are indicative of higher immunogenicity of these proteins in their hosts. Based on these results and available experimental data, we conclude that there is a positive correlation between lentiviral pathogenicity and immunogenicity of the Env and Gag proteins in a given host. This hypothesis is consistent with recent data suggesting that immune system activation or autoimmunity induced by viral antigens may be important in the pathogenesis of AIDS.Correspondence to: E.G. Shpaer  相似文献   

11.
Sequencing of a fragment of mitochondrial DNA extracted from droppings of a green monkey inhabiting the Caribbean island of St. Kitts, and comparing the obtained sequence with sequences determined earlier for the four recognized subspecies of African green monkeys, showed that this monkey can be classified as Cercopithecus aethiops sabaeus, and thus originates from West Africa. As the ancestors of the monkeys reached the island by ships involved in the slave trade in the 17th to 18th centuries, determination of the monkey subspecies suggests that the animals were originally acquired nearby the West African ports from which the ships sailed, and were not brought from the central parts of Africa together with the slaves. © 1996 Wiley-Liss, Inc.  相似文献   

12.
The human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) appear to have originated by cross-species transmission of simian immunodeficiency virus (SIV) from asymptomatically infected African primates. Few of the SIVs characterized to date efficiently infect human primary lymphocytes. Interesting, two of the three identified to infect such cultures (SIVsm and SIVcpz) have appeared in human populations as genetically related HIVs. In the present study, we characterized a novel SIV isolate from an East African monkey of the Cercopithecus genus, the l’hoest monkey (C. l’hoesti), which we designated SIVlhoest. This SIV isolate efficiently infected both human and macaque lymphocytes and resulted in a persistent infection of macaques, characterized by high primary virus load and a progressive decline in circulating CD4 lymphocytes, consistent with progression to AIDS. Phylogenetic analyses showed that SIVlhoest is genetically distinct from other previously characterized primate lentiviruses but clusters in the same major lineage as SIV from mandrills (SIVmnd), a West African primate species. Given the geographic distance between the ranges of l’hoest monkeys and mandrills, this may indicate that SIVmnd arose through cross-species transmission from close relatives of l’hoest monkeys that are sympatric with mandrills. These observations lend support to the hypothesis that the primate lentiviruses originated and coevolved within monkeys of the Cercopithecus genus. Regarded in this light, lentivirus infections of primates not belonging to the Cercopithecus genus may have resulted from cross-species transmission in the not-too-distant past.  相似文献   

13.
Two of 25 healthy pet sooty mangabey (SM) monkeys (Cercocebus atys) living in West Africa were seropositive by immunoblot when surveyed for antibody to simian immunodeficiency virus of macaques (SIVmac). SIVsmLIB1 was isolated from one of the pet sooty mangabeys. Nucleotide sequence data showed that this isolate is a member of the SIVsm/human immunodeficiecy virus type 2 (HIV-2)/SIVmac group of primate lentiviruses. Furthermore, sequence comparisons revealed extensive genetic diversity among SIVsm isolates similar to that observed previously in SIV isolates from naturally infected African green monkeys. These observations provide additional evidence for monkey-human cross-species transmission of SIVsm as the source of HIV-2 infection of human.  相似文献   

14.
A seroprevalence survey was conducted for simian immunodeficiency virus (SIV) antibody in household pet monkeys in Gabon. Twenty-nine monkeys representing seven species were analyzed. By using human immunodeficiency virus type 2 (HIV-2)/SIVsm, SIVmnd, and SIVagm antigens, one red-capped mangabey (RCM) (Cercocebus torquatus torquatus) was identified as harboring SIV-cross-reactive antibodies. A virus isolate, termed SIVrcm, was subsequently established from this seropositive RCM by cocultivation of its peripheral blood mononuclear cells (PBMC) with PBMC from seronegative humans or RCMs. SIVrcm was also isolated by cocultivation of CD8-depleted RCM PBMC with Molt 4 clone 8 cells but not with CEMx174 cells. The lack of growth in CEMx174 cells distinguished this new SIV from all previously reported sooty mangabey-derived viruses (SIVsm), which grow well in this cell line. SIVrcm was also successfully transmitted (cell free) to human and rhesus PBMC as well as to Molt 4 clone 8 cells. To determine the evolutionary origins of this newly identified virus, subgenomic pol (475 bp) and gag (954 bp) gene fragments were amplified from infected cell culture DNA and sequenced. The position of SIVrcm relative to those of members of the other primate lentivirus lineages was then examined in evolutionary trees constructed from deduced protein sequences. This analysis revealed significantly discordant phylogenetic positions of SIVrcm in the two genomic regions. In trees derived from partial gag sequences, SIVrcm clustered independently from all other HIV and SIV strains, consistent with a new primate lentivirus lineage. However, in trees derived from pol sequences, SIVrcm grouped with the HIV-1/SIVcpz lineage. These findings suggest that the SIVrcm genome is mosaic and possibly is the result of a recombination event involving divergent lentiviruses in the distant past. Further analysis of this and other SIVrcm isolates may shed new light on the origin of HIV-1.  相似文献   

15.
16.
The drill monkey has been shown by serology and PCR to harbor a unique simian immunodeficiency virus (SIVdrl). A pol sequence, amplified from uncultured peripheral blood cells, is most closely related to the equivalent SIV sequences from the red-capped mangabey (SIVrcm), the sabaeus African green monkey (SIVagmSAB), and the chimpanzee (SIVcpz) and to the human immunodeficiency virus type 1 (HIV-1) sequence of humans. It is as yet unclear whether SIVdrl has a mosaic genome like SIVrcm and SIVagmSAB, is a member of the SIVcpz/HIV-1 lineage, or represents a novel primate lentivirus lineage.  相似文献   

17.
In the present study, we describe a new simian immunodeficiency virus (SIV), designated SIVgsn, naturally infecting greater spot-nosed monkeys (Cercopithecus nictitans) in Cameroon. Together with SIVsyk, SIVgsn represents the second virus isolated from a monkey belonging to the Cercopithecus mitis group of the Cercopithecus genus. Full-length genome sequence analysis of two SIVgsn strains, SIVgsn-99CM71 and SIVgsn-99CM166, revealed that despite the close phylogenetic relationship of their hosts, SIVgsn was highly divergent from SIVsyk. First of all, they differ in their genomic organization. SIVgsn codes for a vpu homologue, so far a unique feature of the members of the SIVcpz/human immunodeficiency virus type 1 (HIV-1) lineage, and detailed phylogenetic analyses of various regions of the viral genome indicated that SIVgsn might be a mosaic of sequences with different evolutionary histories. SIVgsn was related to SIVsyk in Gag and part of Pol and related to SIVcpz in Env, and the middle part of the genome did not cluster significantly with any of the known SIV lineages. When comparing the two SIVgsn Env sequences with that of SIVcpz, a remarkable conservation was seen in the V3 loop, indicating a possible common origin for the envelopes of these two viruses. The habitats of the two subspecies of chimpanzees infected by SIVcpz overlap the geographic ranges of greater spot-nosed monkeys and other monkey species, allowing cross-species transmission and recombination between coinfecting viruses. The complex genomic structure of SIVgsn, the presence of a vpu gene, and its relatedness to SIVcpz in the envelope suggest a link between SIVgsn and SIVcpz and provide new insights about the origin of SIVcpz in chimpanzees.  相似文献   

18.
The TRIM5alpha proteins of humans and some Old World monkeys have been shown to block infection of particular retroviruses following virus entry into the host cell. Infection of most New World monkey cells by the simian immunodeficiency virus of macaques (SIVmac) is restricted at a similar point. Here we examine the antiretroviral activity of TRIM5alpha orthologs from humans, apes, Old World monkeys, and New World monkeys. Chimpanzee and orangutan TRIM5alpha proteins functionally resembled human TRIM5alpha, potently restricting infection by N-tropic murine leukemia virus (N-MLV) and moderately restricting human immunodeficiency virus type 1 (HIV-1) infection. Notably, TRIM5alpha proteins from several New World monkey species restricted infection by SIVmac and the SIV of African green monkeys, SIVagm. Spider monkey TRIM5alpha, which has an expanded B30.2 domain v3 region due to a tandem triplication, potently blocked infection by a range of retroviruses, including SIVmac, SIVagm, HIV-1, and N-MLV. Tandem duplications in the TRIM5alpha B30.2 domain v1 region of African green monkeys are also associated with broader antiretroviral activity. Thus, variation in TRIM5alpha proteins among primate species accounts for the observed patterns of postentry restrictions in cells from these animals. The TRIM5alpha proteins of some monkey species exhibit dramatic lengthening of particular B30.2 variable regions and an expanded range of susceptible retroviruses.  相似文献   

19.
The full-length sequence of simian foamy virus serotype 2 (SFVmcy-2), isolated from a Taiwanese macaque, was determined. SFVmcy-2 was highly related to SFV serotype 1 (SFVmcy-1), an isolate from the same species, except in the putative receptor binding domain (RBD) in env, which contained novel sequences related to SFV serotype 3 (SFVagm-3), isolated from an African green monkey. The results identify a potential region of neutralization in SFVs and demonstrate recombination between genetically divergent foamy viruses.  相似文献   

20.
African green monkeys are asymptomatic carriers of simian immunodeficiency viruses (SIV), commonly called SIVagm. As many as 50% of African green monkeys in the wild may be SIV seropositive. This high seroprevalence rate and the potential for genetic variation of lentiviruses suggested to us that African green monkeys may harbor widely differing genotypes of SIVagm. To investigate this hypothesis, we determined the entire nucleotide sequence of an infectious proviral molecular clone of SIVagm (155-4) and partial sequences (long terminal repeat and Gag) of three other distinct SIVagm isolates (90, gri-1, and ver-1). Comparisons among the SIVagm isolates revealed extreme diversity at the nucleotide and amino acid levels. Long terminal repeat nucleotide sequences varied up to 35% and Gag protein sequences varied up to 30%. The variability among SIVagm isolates exceeded the variability among any other group of primate lentiviruses. Our data suggest that SIVagm has been in the African green monkey population for a long time and may be the oldest primate lentivirus group in existence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号