首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of (13S,9Z,11E)-13-hydroxy-9,11-octadecadienoic acid (1a), one of the major peroxidation products of linoleic acid and an important physiological mediator, with the Fenton reagent (Fe(2+)/EDTA/H(2)O(2)) was investigated. In phosphate buffer, pH 7.4, the reaction proceeded with >80% substrate consumption after 4h to give a defined pattern of products, the major of which were isolated as methyl esters and were subjected to complete spectral characterization. The less polar product was identified as (9Z,11E)-13-oxo-9,11-octadecadienoate (2) methyl ester (40% yield). Based on 2D NMR analysis the other two major products were formulated as (11E)-9,10-epoxy-13-hydroxy-11-octadecenoate (3) methyl ester (15% yield) and (10E)-9-hydroxy-13-oxo-10-octadecenoate (4) methyl ester (10% yield). Mechanistic experiments, including deuterium labeling, were consistent with a free radical oxidation pathway involving as the primary event H-atom abstraction at C-13, as inferred from loss of the original S configuration in the reaction products. Overall, these results provide the first insight into the products formed by oxidation of 1a with the Fenton reagent, and hint at novel formation pathways of the hydroxyepoxide 3 and hydroxyketone 4 of potential (patho)physiological relevance in settings of oxidative stress.  相似文献   

2.
To study the metabolic fate of conjugated linoleic acid isomers, we synthesized, in seven steps, from 1-heptyne, (6Z,10E,12Z)-octadeca-6,10,12-trienoic acid, (8Z,12E,14Z)-eicosa-8,12,14-trienoic acid, and their [1-(14)C]-analogs. In the case of (6Z,10E,12Z)-octadecatrienoic acid, a series of palladium-catalyzed cross-coupling reactions between 1-heptyne and (E)-1,2-dichloro-ethene, a coupling reaction with a Grignard reagent and cleavage of the dioxolane gave (E)-dodec-4-en-6-ynal 3. Stereoselective Wittig reaction between aldehyde 3 and triphenyl-[5-(tetrahydro-pyran-2-yloxy)-pentyl]-phosphonium provided a dienyne. Stereocontrolled reduction of the triple bond and replacement of the tetrahydropyranyl group by a bromine gave (5Z,9E,11Z)-1-bromo-heptadeca-5,9,11-triene 10. Formation of the alkenyl lithium derivative and carbonation with CO(2) furnished (6Z,10E,12Z)-octadecatrienoic acid. (8Z,12E,14Z)-eicosa-8,12,14-trienoic acid was obtained by the same route but using triphenyl-[5-(tetrahydro-pyran-2-yloxy)-heptyl]-phosphonium iodide for the Wittig reaction. [1-(14)C]-analogs were obtained from the bromides by carbonation with (14)CO2. In all cases, chemical or radiochemical purities were found to be better than 95% after purification by flash chromatography on silica gel (>99% after additional purification by RP-HPLC). Metabolism studies in animals are in progress.  相似文献   

3.
The substrate and inhibitory properties of (R)- and (S)-4-amino-3-phenylbutanoic acid, (R)- and (S)-4-amino-3-(4-chlorophenyl)butanoic acid (baclofens), (E)-4-amino-3-phenylbut-2-enoic acid, and (E)-4-amino-3-(4-chlorophenyl)but-2-enoic acid are determined and compared with those of 4-aminobutanoic acid, 4-aminobut-2-enoic acid (4-aminocrotonic acid), and the racemic mixtures of 4-amino-3-arylbutanoic acids. All compounds in both series were found to be substrates, except for the R-isomers, which were identified as competitive inhibitors. These results are compared with known pharmacological data regarding the appropriate isomers.  相似文献   

4.
Li YK  Chir J  Tanaka S  Chen FY 《Biochemistry》2002,41(8):2751-2759
beta-Glucosidase from Flavobacterium meningosepticum (Fbgl) (also known as Chryseobacterium meningosepticum) has been classified as a member of the family 3 glycohydrolases. It is a retaining enzyme involving a two-step, double-displacement mechanism. D247 was shown to function as the nucleophile of the enzymatic reaction [Li, Y.-K., Chir, J., and Chen, F.-Y. (2001) Biochem. J. 355, 835-840]. However, the general acid/base catalyst of this enzyme and of all other family 3 glycohydrolases has not yet been identified. On the basis of amino acid sequence alignment of 15 family 3 enzymes, 11 residues (D71, R129, E132, E136, D137, K168, H169, E177, D247, D458, and E473) are highly conserved. All of these residues are studied by site-directed mutagenesis and kinetic investigation. Analyzing the catalytic power of all mutants reveals E473 residue is the best candidate of the acid/base catalyst. Detailed studies supporting this suggestion are summarized as follows. (1) The k(cat) and K(m) values for the hydrolysis of 2,4-dinitrophenyl beta-D-glucopyranoside (2,4-DNPG) by E473G are reduced 3300- and 900-fold, respectively, compared with those of the wild type (WT). (2) The k(cat) values of E473G-catalyzed hydrolysis are virtually invariant with pH over the range of 5.0-9.0. (3) The activity of E473G with 2,4-DNPG is enhanced by the addition of azide, and beta-glucosyl azide is formed. (4) The k(cat) of the reaction of 2-carboxyphenyl beta-glucoside catalyzed by E473G is comparable to that for hydrolysis by wild-type Fbgl and is 100- and 320-fold better than the k(cat) values for the E473G-catalyzed hydrolysis of 4-carboxyphenyl beta-glucoside and the corresponding methyl ester, respectively. (5) The accumulated glucosyl-enzyme intermediate was directly observed by mass analysis in the reaction of 2,4-DNPG with E473G. All of these results confirm that E473 is the general acid/base catalyst of Fbgl.  相似文献   

5.
1. Comparisons of the activity and kinetics of the branched-chain 2-oxo acid dehydrogenase in cultured skin fibroblasts from normal and classical maple-syrup-urine-disease (MSUD) subjects provide a kinetic explanation for the enzyme defect. 2. In the intact cell assays, normal fibroblasts demonstrated hyperbolic kinetics with 3-methyl-2-oxo[1-14C]butyrate as a substrate. Intact fibroblasts from four classical MSUD patients showed no decarboxylation over a substrate concentration range of 0.25 to 5.0 mM, and thiamin (4 mM) was without effect. 3. The overall reaction of the multienzyme complex was efficiently reconstituted by using a disrupted-cell system. Normals again showed typical hyperbolic kinetics at the 2-oxo acid concentrations of 0.1 to 5 mM. The Vmax. and apparent Km values were 0.10 +/- 0.02 m-unit/mg of protein and 0.05-0.1 mM respectively, with 3-methyl-2-oxobutyrate. In contrast, classical MSUD patients exhibited sigmoidal kinetics (Hill coefficient, 2.5) with activity approaching 40-60% of the normal value at 5 mM substrate. The K0.5 values from the Hill plots for MSUD patients were 4-7 mM. 4. The E1 (branched-chain 2-oxo acid decarboxylase) component of the multienzyme complex was measured in disrupted-particulate preparations. Normals again showed hyperbolic kinetics with the 2-oxo acid, whereas MSUD preparations exhibited sigmoidal kinetics with the activity of E1 strictly dependent on substrate concentration. Apparent Km or K0.5 were 0.1 and 1.0 mM for normal and MSUD subjects respectively. 5. Measurements of E2 (dihydrolipoyl transacylase) and E3 (dihydrolipoyl dehydrogenase) in MSUD preparations showed them to be in the normal range. 6. The above data suggest a defect in the E1 step of branched-chain 2-oxo acid dehydrogenase in classical MSUD patients.  相似文献   

6.
A number of laboratory strains and clinical isolates of Escherichia coli utilized several aromatic acids as sole sources of carbon for growth. E. coli K-12 used separate reactions to convert 3-phenylpropionic and 3-(3-hydroxyphenyl)propionic acids into 3-(2,3-dihydroxyphenyl)propionic acid which, after meta-fission of the benzene nucleus, gave succinate, pyruvate, and acetaldehyde as products. Enzyme assays and respirometry showed that all enzymes of this branched pathway were inducible and that syntheses of enzymes required to convert the two initial growth substrates into 3-(2,3-dihydroxyphenyl)propionate are under separate control. E. coli K-12 also grew with 3-hydroxycinnamic acid as sole source of carbon; the ability of cells to oxidize cinnamic and 3-phenylpropionic acids, and hydroxylated derivatives, was investigated. The lactone of 4-hydroxy-2-ketovaleric acid was isolated from enzymatic reaction mixtures and its properties, including optical activity, were recorded.  相似文献   

7.
A novel class of inhibitors for the branched-chain 2-oxo acid dehydrogenase (BCOAD) complex has been synthesized and studied. The sodium salts of arylidenepyruvates: e.g., furfurylidenepyruvate (compound I), 4-(3-thienyl)-2-oxo-3-butenoate (compound II), cinnamalpyruvate (compound III) and 4-(2-thienyl)-2-oxo-3-butenoate (compound IV) inhibit the overall and kinase reactions of the BCOAD complex from bovine liver. Inhibitions of the overall reaction occur at the decarboxylase (E1) step as determined by a spectrophotometric assay with 2,6-dichlorophenolindophenol as an electron acceptor. Inhibition of the E1 reaction by compound I (Ki = 0.5 microM) is competitive, whereas inhibitions by compounds II (Ki = 150 microM) and III (Ki = 500 microM) are non-competitive with respect to the substrate 2-oxoisovalerate. The Km value for 2-oxoisovalerate is 6.7 microM as measured by the E1 assay. Inhibition of the E1 step by compounds I, II and III are reversible at low inhibitor concentrations based on the Michaelis-Menten kinetics observed. By comparison, compound I does not significantly inhibit pyruvate and 2-oxoglutarate dehydrogenase complexes. The arylidenepyruvates (compounds I, II and IV) inhibit the BCOAD kinase reaction in a manner similar to the substrate 2-oxo acids. The inhibition of the kinase reaction by compound I is non-competitive with respect to ATP, with an apparent Ki value of 4.5 mM. The results suggest that arylidenepyruvates may be useful probes for elucidating the reaction mechanisms of the BCOAD complex and its kinase.  相似文献   

8.
Evidence for an enamine mechanism of inactivation of pig brain gamma-aminobutyric acid (GABA) aminotransferase by (S,E)-4-amino-5-fluoropent-2-enoic acid is presented. apo-GABA aminotransferase reconstituted with [3H]pyridoxal 5'-phosphate is inactivated by (S,E)-4-amino-5-fluoropent-2-enoic acid and the pH is raised to 12. All of the radioactivity is released from the enzyme as an adduct of the cofactor; no [3H]pyridoxamine 5'-phosphate is generated.  相似文献   

9.
Porphobilinogen synthase (PBGS) catalyzes the condensation of two molecules of 5-aminolevulinic acid (ALA), an essential step in tetrapyrrole biosynthesis. 4-Oxosebacic acid (4-OSA) and 4,7-dioxosebacic acid (4,7-DOSA) are bisubstrate reaction intermediate analogs for PBGS. We show that 4-OSA is an active site-directed irreversible inhibitor for Escherichia coli PBGS, whereas human, pea, Pseudomonas aeruginosa, and Bradyrhizobium japonicum PBGS are insensitive to inhibition by 4-OSA. Some variants of human PBGS (engineered to resemble E. coli PBGS) have increased sensitivity to inactivation by 4-OSA, suggesting a structural basis for the specificity. The specificity of 4-OSA as a PBGS inhibitor is significantly narrower than that of 4,7-DOSA. Comparison of the crystal structures for E. coli PBGS inactivated by 4-OSA versus 4,7-DOSA shows significant variation in the half of the inhibitor that mimics the second substrate molecule (A-side ALA). Compensatory changes occur in the structure of the active site lid, which suggests that similar changes normally occur to accommodate numerous hybridization changes that must occur at C3 of A-side ALA during the PBGS-catalyzed reaction. A comparison of these with other PBGS structures identifies highly conserved active site water molecules, which are isolated from bulk solvent and implicated as proton acceptors in the PBGS-catalyzed reaction.  相似文献   

10.
Comamonas testosteroni TA441 utilizes testosterone via aromatization of the A ring followed by meta-cleavage of the ring. The product of the meta-cleavage reaction, 4,5-9,10-diseco-3-hydroxy-5,9,17-trioxoandrosta-1(10),2-dien-4-oic acid, is degraded by a hydrolase, TesD. We directly isolated and identified two products of TesD as 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid and (2Z,4Z)-2-hydroxyhexa-2,4-dienoic acid. The latter was a pure 4Z isomer. 2-Hydroxyhexa-2,4-dienoic acid was converted by a hydratase, TesE, and the product isolated from the reaction solution was identified as 2-hydroxy-4-hex-2-enolactone, indicating the direct product of TesE to be 4-hydroxy-2-oxohexanoic acid.  相似文献   

11.
 A recombinant strain of Pseudomonas putida GPp104 (pHP1014::E146), which expressed the polyhydroxyalkanoic acid (PHA) synthase of Thiocapsa pfennigii exhibiting an unusual substrate specificity at a high level was incubated in two-stage batch or fed-batch accumulation experiments with 5-hydroxyhexanoic acid (5HHx) as carbon source in the second cultivation phase, copolyesters of 3-hydroxybutyric acid (3HB) plus 5HHx, or of 3HB, 3-hydroxyhexanoic acid (3HHx) plus 5HHx were accumulated as revealed by gas-chromatographic and 13C-NMR spectroscopic analysis. When the recombinant P. putida GPp104 was incubated with 4-hydroxyheptanoic acid (4HHp) as carbon source in the second cultivation phase, a copolyester consisting of 3HB, 3-hydroxyvaleric acid and 3- and 4-hydroxyheptanoic acid accumulated. Providing 4-hydroxyoctanoic acid as carbon source in the second cultivation phase led to the accumulation of a polyester that contained 1–2 mol% 4-hydroxyoctanoic acid besides 3-hydroxyoctanoic acid, 3HHx, 3-hydroxyvaleric acid and 3HB. In addition to PHA containing these new constituents, PHA with 4-hydroxyvaleric acid was accumulated from laevulinic acid. Eleven strains from five genera have been also analysed for their ability to utilize different carbon sources for colony growth, which might serve as potential precursors for the biosynthesis of PHA with unusual constituents. Although most of the carbon sources were utilized by some strains for colony growth, accumulation experiments gave no evidence for the accumulation of new PHA by these wild-type strains. Received: 22 April/Received revision: 23 May 1996/Accepted: 2 June 1996  相似文献   

12.
Potato tuber lipoxygenase was shown to convert 17(S)-hydro(pero)xydocasahexaenoic acid in 10,17(S)-dihydro(pero)xydocosahexa-4Z,7Z,11E,13Z,15E,19Z-enoic acid [10,17(S)-diHDHA] which was formed apparently through a double lipoxygenation mechanism. No traces of 10,17(S)-dihydro(pero)xydocosahexa-4Z,7Z,11E,13E,15Z,19Z-enoic acid were found among the reaction products. It is very likely that a described earlier "neuroprotectin D1" [or "10,17(S)docosatriene"], a novel and potent anti-inflammatory compound derived from docosahexaenoic acid, was, in fact, 10,17(S)-dihydroxydocosahexa-4Z,7Z,11E,13Z,15E,19Z-enoic acid formed through a double lipoxygenation mechanism instead of a previously thought epoxidation/isomerization mechanism.  相似文献   

13.
The attachment of polyuridylic acid to reticulocyte ribosomes   总被引:1,自引:1,他引:0       下载免费PDF全文
The attachment of polyuridylic acid to reticulocyte ribosomes was studied by using polyadenylic acid, which inhibits the attachment reaction only, while permitting translation of polyuridylic acid bound to ribosomes. After addition of polyadenylic acid the amount of polyphenylalanine synthesized under standard conditions was taken as a measure of the bound polyuridylic acid. In this way certain parameters of the attachment reaction and the subsequent translation of attached polyuridylic acid were defined: (1) polyuridylic acid-ribosome interaction at 37 degrees requires only Mg(2+) at an optimum concentration of 8mm; (2) K(+) (required for translation) is a non-competitive inhibitor of the attachment reaction; (3) optimum polyphenylalanine synthesis directed by attached polyuridylic acid occurs at 5mm-Mg(2+) concentration; (4) from kinetic studies single ribosomes appear to participate in the attachment reaction.  相似文献   

14.
The four pyruvate dehydrogenase kinase (PDK) and two pyruvate dehydrogenase phosphatase (PDP) isoenzymes that are present in mammalian tissues regulate activity of the pyruvate dehydrogenase complex (PDC) by phosphorylation/dephosphorylation of its pyruvate dehydrogenase (E1) component. The effect of lipoic acids on the activity of PDKs and PDPs was investigated in purified proteins system. R-lipoic acid, S-lipoic acid and R-dihydrolipoic acid did not significantly affect activities of PDPs and at the same time inhibited PDKs to different extents (PDK1>PDK4 approximately PDK2>PDK3 for R-LA). Since lipoic acids inhibited PDKs activity both when reconstituted in PDC and in the presence of E1 alone, dissociation of PDK from the lipoyl domains of dihydrolipoamide acetyltransferase in the presence of lipoic acids is not a likely explanation for inhibition. The activity of PDK1 towards phosphorylation sites 1, 2 and 3 of E1 was decreased to the same extent in the presence of R-lipoic acid, thus excluding protection of the E1 active site by lipoic acid from phosphorylation. R-lipoic acid inhibited autophosphorylation of PDK2 indicating that it exerted its effect on PDKs directly. Inhibition of PDK1 by R-lipoic acid was not altered by ADP but was decreased in the presence of pyruvate which itself inhibits PDKs. An inhibitory effect of lipoic acid on PDKs would result in less phosphorylation of E1 and hence increased PDC activity. This finding provides a possible mechanism for a glucose (and lactate) lowering effect of R-lipoic acid in diabetic subjects.  相似文献   

15.
N P Botting  M A Cohen  M Akhtar  D Gani 《Biochemistry》1988,27(8):2956-2959
3-Methylaspartate ammonia-lyase catalyzes the deamination of (2S)-aspartic acid 137 times more slowly than the deamination of (2S,3S)-3-methylaspartic acid but catalyzes the amination of fumaric acid 1.8 times faster than the amination of mesaconic acid [Botting, N.P., Akhtar, M., Cohen, M. A., & Gani, D. (1988) Biochemistry (preceding paper in this issue)]. In order to understand the mechanistic basis for these observations, the deamination reaction was examined kinetically with (2S)-aspartic acid, (2S,3S)-3-methylaspartic acid, (2S,3S)-3-ethylaspartic acid, and the corresponding C-3-deuteriated isotopomers. Comparison of the double-reciprocal plots of the initial reaction velocities for each of the three pairs of substrates revealed that the magnitude of the primary isotope effect on both Vmax and V/K varied with the substituent at C-3 of the substrate. 3-Methylaspartic acid showed the largest isotope effect (1.7 on Vmax and V/K), 3-ethylaspartic acid showed a smaller isotope effect (1.2 on Vmax and V/K), and aspartic acid showed no primary isotope effect at all. These results, which are inconsistent with earlier reports that there is no primary isotope effect for 3-methylaspartic acid [Bright, H. J. (1964) J. Biol. Chem. 239, 2307], suggest that for both 3-methylaspartic acid and 3-ethylaspartic acid elimination occurs via a predominantly concerted mechanism whereas for aspartic acid an E1cb mechanism prevails.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Diferulate esters strengthen and cross-link primary plant cell walls and help to defend the plant from invading microbes. Phenolics also limit the degradation of plant cell walls by saprophytic microbes and by anaerobic microorganisms in the rumen. We show that incubation of wheat and barley cell walls with ferulic acid esterase from Aspergillus niger (FAE-III) or Pseudomonas fluorescens (Xy1D), together with either xylanase I from Aspergillus niger, Trichoderma viride xylanase, or xylanase from Pseudomonas fluorescens (XylA), leads to release of the ferulate dimer 5-5' diFA [(E,E)-4,4'-dihydroxy-5,5'-dimethoxy-3,3'-bicinnamic acid]. Direct saponification of the cell walls without enzyme treatment released the following five identifiable ferulate dimers (in order of abundance): (Z)-beta-(4-[(E)-2-carboxyvinyl]-2-methoxyphenoxy)-4-hydroxy-3-methoxycinnamic acid, trans-5-[(E)-2-carboxyvinyl]-2-(4-hydroxy-3-methoxy-phenyl) -7-methoxy-2, 3-dihydrobenzofuran-3-carboxylic acid, 5-5' diFA, (E,E)-4, 4'-dihydroxy-3, 5'-dimethoxy-beta, 3'-bicinnamic acid, and trans-7-hydroxy-1-(4-hydroxy-3-methoxyphenyl) -6-methoxy-1, 2-dihydronaphthalene-2, 3-dicarboxylic acid. Incubation of the wheat or barley cell walls with xylanase, followed by saponification of the solubilized fraction, yielded 5-5'diFA and, in some cases, certain of the above dimers, depending on the xylanase used. These experiments demonstrate that FAE-III and XYLD specifically release only esters of 5-5'diFA from either xylanase-treated or insoluble fractions of cell walls, even though other esterified dimers were solubilized by preincubation with xylanase. It is also concluded that the esterified dimer content of the xylanase-solubilized fraction depends on the source of the xylanase.  相似文献   

17.
The white-rot fungus Pycnoporous cinnabarinus (DMS-1184) was submerged cultured for 22 days under controlled conditions in a bioreactor. After 6, 9, and 15 days of culture the growth medium was supplemented with [5-2H]-labelled ferulic acid (I). The major phenolic compounds identified labelled were four lignans, the methyl esters of ferulic (I) and vanillic acid (VIII), (E)-coniferyl aldehyde (II), (E)-coniferyl alcohol (III), vanillic acid (VIII), vanillin (IX) and vanillyl alcohol (X). The detection of considerable amounts of labelled 4-hydroxy-3-methoxyacetophenone (VII) in the late growth phase suggested the increasing formation and decarboxylation of free 4-hydroxy-3-methoxybenzoylacetic acid (VI) and, thus, a beta-oxidation-like degradation of ferulic acid (I) or its methyl ester to vanillic acid (VIII). 4-Hydroxy-3-methoxybenzoylacetic acid methyl ester (VI) and 3-hydroxy-(4-hydroxy-3-methoxyphenyl)-propanoic acid methyl ester (V) were synthesised and then identified as metabolites in the culture medium. The fungal degradation of the phenyl propenoic side chain of ferulic acid (I), a principal key step of lignin decomposition, appeared to proceed analogous to fatty acids.  相似文献   

18.
Sinapic acid (SA), 3,5-dimethoxy,4-hydroxy cinnamic acid, was incubated with a crude polyphenol oxidase from the fungus Trametes versicolor. Some products of this transformation were isolated and their structures identified using mass spectrometry, nuclear magnetic resonance and Fourier transform infrared spectroscopy, and X-ray crystallography. It was found that the enzymatic oxidation of SA includes two distinct phases. In the initial phase SA is enzymatically transformed to r-1H-2c,6c-bis-(4'-hydroxy-3', 5'-dimethoxyphenyl)-3,7-dioxabicyclo-[3,3,0]-octane-4,8-dione, dehydrodisinapic acid dilactone. The mechanism of this reaction may involve coupling of two phenoxy radicals by the beta-beta mode and subsequent intramolecular nucleophilic attack. In the second phase dehydrodisinapic acid dilactone is transformed by polyphenol oxidase into several intermediate products, including 4-(4-(3, 5-dimethoxy-4-oxo-2,5-cyclohexadienyliden)-1, 4-dihydroxy-(E)-2-butenylidene)-2,6-dimethoxy-2, 5-cyclohexadien-1-one. The final product of the overall transformation of SA is 2,6-dimethoxy-p-benzoquinone. The obtained results were used to propose a part of the transformation pathway for the enzymatic oxidation of SA by polyphenol oxidase.  相似文献   

19.
1. Quercetin (3.3',4',5,7-pentahydroxy flavone) at the concentration of 10(-4) M, as well as 2-10(-2) M theophylline and 1.5 - 10(-4) M prostaglandin E2 caused maximal rise of cyclic AMP in Ehrlich ascites tumor cells. 2. No additional increase of cyclic AMP level in these cells was found when both quercetin (10(-4) M) and theophylline (2-10(-2) M) were present in the incubation medium, while combination of quercetin (10(-4) M) and prostaglandin E2 (1.5 - 10(-4) M) has a synergistic effect on the level of cyclic AMP. 3. Degradation of cyclic AMP by homogenate of Ehrlich ascites tumor cells was inhibited by both quercetin and theophylline. 4. Quercetin, and to a smaller but significant extent theophylline, inhibited the lactic acid production in Ehrlich ascites tumor cells while prostaglandin E2 did not change the glycolytic rate in these cells. No synergistic inhibitory effect on lactic acid production was found when combinations of quercetin and prostaglandin E2, quercetin and theophylline or prostaglandin E2 and theophylline were tested. 5. Treatment of Ehrlich ascites tumor cells with dextran sulfate abolished the inhibitory effect of quercetin on lactic acid production, while the effect of the bioflavonoid on cyclic AMP levels was not altered.  相似文献   

20.
Endoproteinase activity was analyzed in chloroplasts isolated from barley leaf segments incubated in the dark with various hormonal senescence effectors. As a control, the endoproteinase activity of the supernatant fraction obtained during chloroplast preparation was also analyzed. Measured against azocaseine as substrate, the endoproteinase activity in chloroplasts increased 18 fold during the induction of senescence. This rise in activity was inhibited by kinetin (the activity increased only 10 fold) and very strongly stimulated by abscisic acid (ABA) (117 fold) and methyl jasmonate (Me-JA) (57 fold). Although less so, the endoproteinase activity of the supernatant fraction, mainly vacuolar and with acid pH optimum, was affected in the same way by all three effectors. Among the five endoproteinases (EC) found in chloroplasts, EC2 and EC4 were induced after incubation in water. ABA increased the levels of EC2 and EC4 (5 fold), and induced the development of EC3 and EC5, while Me-JA totally inhibited EC2 and EC4, and induced the development of EC1. At least one of the endoproteinases, EC2, is synthesized in chloroplasts. Among the six endoproteinases found in the supernatant fraction (E), E1, E2, E3 and E5, which are very probably extrachloroplastic endoproteinases, are stimulated by ABA to varying degrees. However, Me-JA stimulates E1 to a greater extent and totally inhibits E3. The differential effects of ABA and Me-JA on chloroplast and supernatant fraction endoproteinases suggest different action mechanisms for both senescence promotors.Abbreviations ABA abscisic acid - DTT dithiothreitol - E supernatant fraction endoproteinase - EC chloroplast endoproteinase - Me-JA methyl jasmonate - PNP p-nitrophenol - SDS-PAGE polyacrylamide gel electrophoresis containing sodium dodecyl sulphate - TCA trichloroacetic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号