首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
帕金森病(Parkinson’s disease,PD)主要症状是由中脑黑质致密部(substantia nigra compact,SNc)的多巴胺(dopamine,DA)神经元死亡引起。帕金森病发病过程中,路易小体病理(Lewy pathology,LP)和线粒体功能障碍最为突出,但SNc 多巴胺神经元为什么特别易遭受这两种病理损害尚不清楚。研究表明,与脑内其他神经元相比,SNc 多巴胺神经元具有特殊的解剖形态、生理和生化表型。SNc 多巴胺神经元具有高分支无髓鞘轴突和众多的突触终端,突触末梢物质和能量代谢的高要求需要大量的线粒体,巨大突触终端增加了突触蛋白质的表达、转运和降解的负担。SNc 多巴胺神经元具有独特的自主起搏电活动和缓慢钙振荡特性,Cav1-3钙通道活动及后续的级联反应增加了SNc 多巴胺神经元线粒体负担,增加了基础氧化应激、线粒体损伤和自噬,降低了处理错误折叠蛋白质的能力。SNc 多巴胺神经元特有的神经递质--多巴胺易被氧化成为反应性醌,具有潜在毒性,可破坏葡糖脑苷脂酶导致其活性降低,引起线粒体氧化应激和溶酶体功能障碍。总之,SNc 多巴胺神经元具有的这些内在因素综合起来,可能导致了其对线粒体功能障碍和路易小体病理损伤的易感性,并且SNc 多巴胺神经元所处的神经网络障碍也促使了帕金森病的进展。认识到这些特征会对研究帕金森病相关病理学机制和阻止疾病进展创造新的机会。  相似文献   

3.
Dopamine(DA), the most widely distributed in the nervous system and functionally important chemical signal, is synthesized in DA-ergic neurons from L-tyrosine by means of two enzymes, tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC). Apart from the enzymes, specific DA transporter is an attribute of DA-ergic neurons. In the mid eighties of the last century, in addition to DA-ergic neurons, those expressing only one enzyme, TH or AADC, have been discovered. These "monoenzymatic" neurons occurred to be more numerous and more widely distributed in the brain compared to DA-ergic neurons that manifests their wide involvement to the brain functioning. It has been demonstrated that the monoenzymatic neurons expressing complementary enzymes of DA synthesis produce this neurotransmitter in cooperation. In this case, L-tyrosine is transformed to L-DOPA in TH containing neurons that is followed by L-DOPA release and uptake from the intercellular space to AADC containing neurons for DA synthesis. Moreover, the L-DOPA uptake to DA-ergic or serotoninergic neurons results either in the increase or the onset of DA synthesis in addition to serotonin, respectively. The expression of the enzymes of DA synthesis in non-dopaminergic neurons is one of the adaptive reactions serving to compensate the functional insufficiency of DA-ergic neurons. For instance, hyperprolactinemia and the deficiency of DA, prolactin-inhibiting hormone, which is developed under degeneration of DA-ergic neurons of the arcuate nucleus, are compensated with time due to the increase of the number of monoenzymatic neurons and cooperative synthesis of DA in the nucleus. It is supposed that the same compensatory cooperative synthesis of DA is turned on under the degeneration of DA-ergic neurons of the nigrostriatal system that is manifested by the appearance of non-dopaminergic neurons expressing enzymes of DA synthesis in the deafferentated striatum. The expression of the enzymes of DA synthesis in non-dopaminergic neurons is under the control by intercellular signals, catecholamines, neurotrophic (growth) factors and, perhaps, hormones. Thus, non-dopaminergic monoenzymatic neurons expressing enzymes of DA synthesis produce this neurotransmitter in cooperation that is a compensatory reaction under functional insufficiency of DA-ergic neurons, in neurodegenerative diseases, hyperprolactinemia and Parkinson's disease, in particular.  相似文献   

4.
6-Hydroxydopamine (6-OHDA) causes selective degeneration of dopaminergic neurons in the rat brain and has been used to produce an animal model of Parkinsonism. Recently, a clonal line of immortalized dopamine (DA) neurons (1RB3AN27), which expresses varying levels of tyrosine hydroxylase, dopamine transporter, neuron specific enolase, and nestin, was established. These DA neurons reduce behavioral deficits in 6-OHDA-lesioned rats. The relative sensitivity of fetal and adult neurons to potential neurotoxins is not well defined. The availability of immortalized DA neurons provides a unique opportunity to compare the relative neurotoxicity of 6-OHDA in differentiated and undifferentiated DA neurons in vitro and identify neuroprotective agents. Our results showed that 6-OHDA treatment for 24 hr decreased the viability of undifferentiated and differentiated immortalized DA neurons in vitro, as determined by the MTT assay, and increased the rate of apoptosis in differentiated DA neurons. The differentiated DA neurons (IC50 = 33 microM) were about 2-fold more sensitive to 6-OHDA than undifferentiated DA neurons (IC50 = 75 microM) in cell culture. Similarly, the differentiated DA neurons were more sensitive to another neurotoxin, 1-methyl-4-phenylpyridinium (MPP+), which is commonly used to induce Parkinsonism in animal models, than were the undifferentiated DA neurons in culture. Among growth factors tested, only glial cell line-derived neurotrophic factor (GDNF) partially protected differentiated DA neurons against 6-OHDA-induced toxicity. These results suggest that undifferentiated and differentiated immortalized DA neurons can be a useful experimental model to study relative sensitivity to neurotoxins and neuroprotective agents that could have relevance to fetal and adult neurons.  相似文献   

5.
Parkinson's disease (PD) involves the loss of dopamine (DA) neurons, making it the most expected neurodegenerative disease to be treated by cell replacement therapy. Stem cells are a promising source for cell replacement therapy due to their ability to self-renew and their pluripotency/multipotency that allows them to generate various types of cells. However, it is challenging to derive midbrain DA neurons from stem cells. Thus, in this review, I will discuss the molecular factors that are known to play critical roles in the generation and survival of DA neurons. The developmental process of DA neurons and functions of extrinsic soluble factors and homeodomain proteins, forkhead box proteins, proneural genes, Nurr1 and genes involved in epigenetic control are discussed. In addition, different types of stem cells that have potential for future cell replacement therapy are reviewed.  相似文献   

6.
帕金森病(Parkinson’s disease,PD)主要症状是由中脑黑质致密部(substantia nigra compact,SNc)的多巴胺(dopamine,DA)神经元死亡引起。帕金森病发病过程中,路易小体病理(Lewy pathology,LP)和线粒体功能障碍最为突出,但SNc 多巴胺神经元为什么特别易遭受这两种病理损害尚不清楚。研究表明,与脑内其他神经元相比,SNc 多巴胺神经元具有特殊的解剖形态、生理和生化表型。SNc 多巴胺神经元具有高分支无髓鞘轴突和众多的突触终端,突触末梢物质和能量代谢的高要求需要大量的线粒体,巨大突触终端增加了突触蛋白质的表达、转运和降解的负担。SNc 多巴胺神经元具有独特的自主起搏电活动和缓慢钙振荡特性,Cav1-3钙通道活动及后续的级联反应增加了SNc 多巴胺神经元线粒体负担,增加了基础氧化应激、线粒体损伤和自噬,降低了处理错误折叠蛋白质的能力。SNc 多巴胺神经元特有的神经递质——多巴胺易被氧化成为反应性醌,具有潜在毒性,可破坏葡糖脑苷脂酶导致其活性降低,引起线粒体氧化应激和溶酶体功能障碍。总之,SNc 多巴胺神经元具有的这些内在因素综合起来,可能导致了其对线粒体功能障碍和路易小体病理损伤的易感性,并且SNc 多巴胺神经元所处的神经网络障碍也促使了帕金森病的进展。认识到这些特征会对研究帕金森病相关病理学机制和阻止疾病进展创造新的机会。  相似文献   

7.
8.
9.
Oxidative stress and down-regulated trophic factors are involved in the pathogenesis of nigrostriatal dopamine(DA)rgic neurodegeneration in Parkinson's disease. Fibroblast growth factor 9 (FGF9) is a survival factor for various cell types; however, the effect of FGF9 on DA neurons has not been studied. The antioxidant melatonin protects DA neurons against neurotoxicity. We used MPP+ to induce neuron death in vivo and in vitro and investigated the involvement of FGF9 in MPP+ intoxication and melatonin protection. We found that MPP+ in a dose- and time-dependent manner inhibited FGF9 mRNA and protein expression, and caused death in primary cortical neurons. Treating neurons in the substantia nigra and mesencephalic cell cultures with FGF9 protein inhibited the MPP+-induced cell death of DA neurons. Melatonin co-treatment attenuated MPP+-induced FGF9 down-regulation and DA neuronal apoptosis in vivo and in vitro . Co-treating DA neurons with melatonin and FGF9-neutralizing antibody prevented the protective effect of melatonin. In the absence of MPP+, the treatment of FGF9-neutralizing antibody-induced DA neuronal apoptosis whereas FGF9 protein reduced it indicating that endogenous FGF9 is a survival factor for DA neurons. We conclude that MPP+ down-regulates FGF9 expression to cause DA neuron death and that the prevention of FGF9 down-regulation is involved in melatonin-provided neuroprotection.  相似文献   

10.
Neurotransmitters have been shown to control CNS neurogenesis, and GABA-mediated signaling is thought to be involved in the regulation of nearly all key developmental stages. Generation of dopaminergic (DA) neurons from stem/precursor cells for cell therapy in Parkinson's disease has become a major focus of research. However, the possible effects of GABA on generation of DA neurons from proliferating neurospheres of mesencephalic precursors have not been studied. In the present study, GABA(A), and GABA(B) receptors were found to be located in DA cells. Treatment of cultures with GABA did not cause significant changes in generation of DA cells from precursors. However, treatment with the GABA(A) receptor antagonist bicuculline (10(-5) M) led to a significant increase in the number DA cells, and treatment with the GABA(B) receptor antagonist CGP 55845 (10(-5) M) to a significant decrease. Simultaneous treatment with bicuculline and CGP 55845 did not induce significant changes. Apoptotic cell death studies and bromodeoxyuridine immunohistochemistry indicated that the aforementioned differences in generation of DA neurons are not due to changes in survival or proliferation of DA cells, but rather to increased or decreased differentiation of mesencephalic precursors towards the DA phenotype. The results suggest that these effects are exerted via GABA receptors located on DA precursors, and are not an indirect consequence of effects on the serotonergic or glial cell population. Administration of GABA(A) receptor antagonists in the differentiation medium may help to obtain higher rates of DA neurons for potential use in cell therapy for Parkinson's disease.  相似文献   

11.
12.
The etiology of sporadic Parkinson’s disease (PD) is unknown, although mitochondrial dysfunction and oxidative stress have been implicated in the mechanisms associated with PD pathogenesis. Dopamine (DA) neurons of the substantia nigra pars compacta have been shown to degenerate to a greater extent in PD than other neurons suggesting the possibility that DA itself may be contributing to the neurodegenerative process. This review discusses our work on the effects of DA oxidation and reactive DA quinones on mitochondrial function and protein modification and the potential for exacerbating toxicity associated with mitochondrial dysfunction in PD.  相似文献   

13.
Striatal transplantation of dopaminergic (DA) neurons or neural stem cells (NSCs) has been reported to improve the symptoms of Parkinson’s disease (PD), but the low rate of cell survival, differentiation, and integration in the host brain limits the therapeutic efficacy. We investigated the therapeutic effects of intracranial co-transplantation of mesencephalic NSCs stably overexpressing human glial-derived neurotrophic factor (GDNF-mNSCs) together with fetal DA neurons in the 6-OHDA rat model of PD. Striatal injection of mNSCs labeled by the contrast enhancer superparamagnetic iron oxide (SPIO) resulted in a hypointense signal in the striatum on T2-weighted magnetic resonance images that lasted for at least 8 weeks post-injection, confirming the long-term survival of injected stem cells in vivo. Co-transplantation of GDNF-mNSCs with fetal DA neurons significantly reduced apomorphine-induced rotation, a behavioral endophenotype of PD, compared to sham-treated controls, rats injected with mNSCs expressing empty vector (control mNSCs) plus fetal DA neurons, or rats injected separately with either control mNSCs, GDNF-mNSCs, or fetal DA neurons. In addition, survival and differentiation of mNSCs into DA neurons was significantly greater following co-transplantation of GDNF-mNSCs plus fetal DA neurons compared to the other treatment groups as indicated by the greater number of cell expressing both the mNSCs lineage tracer enhanced green fluorescent protein (eGFP) and the DA neuron marker tyrosine hydroxylase. The success of cell-based therapies for PD may be greatly improved by co-transplantation of fetal DA neurons with mNSCs genetically modified to overexpress trophic factors such as GDNF that support differentiation into DA cells and their survival in vivo.  相似文献   

14.
Exercise has been demonstrated to potently protect substantia nigra pars compacta (SN) dopaminergic neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. One mechanism proposed to account for this neuroprotection is the upregulation of neurotrophic factors. Several neurotrophic factors, including Brain Derived Neurotrophic Factor (BDNF), have been shown to upregulate in response to exercise. In order to determine if exercise-induced neuroprotection is dependent upon BDNF, we compared the neuroprotective effects of voluntary exercise in mice heterozygous for the BDNF gene (BDNF+/-) with strain-matched wild-type (WT) mice. Stereological estimates of SNpc DA neurons from WT mice allowed 90 days exercise via unrestricted running demonstrated complete protection against the MPTP-induced neurotoxicity. However, BDNF+/- mice allowed 90 days of unrestricted exercise were not protected from MPTP-induced SNpc DA neuron loss. Proteomic analysis comparing SN and striatum from 90 day exercised WT and BDNF+/- mice showed differential expression of proteins related to energy regulation, intracellular signaling and trafficking. These results suggest that a full genetic complement of BDNF is critical for the exercise-induced neuroprotection of SNpc DA neurons.  相似文献   

15.
16.
17.
The loss of nigral dopaminergic (DA) neurons is the disease-defining pathological change responsible for progressive motor dysfunction in Parkinson’s disease. In this study, we sought to establish a culture method for adult rat tyrosine hydroxylase (TH)-immunoreactive DA neurons. In this context, we investigated the role of fibroblast growth factor 2 (FGF2), brain-derived neurotrophic factor (BDNF), transforming growth factor-β3 (TGF-β3), glial-derived neurotrophic factor (GDNF) and dibutyryl-cyclic AMP (dbcAMP) in these cultures. Culturing in the presence of FGF2, BDNF and GDNF enhanced the survival of DA neurons by 15-fold and promoted neurite growth. In contrast, dbcAMP promoted neurite growth in all neurons but did not enhance DA cell survival. This study demonstrates that long-term cultures of DA neurons can be established from the mature rat brain and that survival and regeneration of DA neurons can be manipulated by epigenetic factors such as growth factors and intracellular cAMP pathways.  相似文献   

18.
19.
Presynaptic regulation of dopaminergic transmission in the striatum   总被引:1,自引:0,他引:1  
1. In vitro studies have indicated that several transmitters present in the striatum can regulate presynaptically the release of dopamine (DA) from nerve terminals of the nigrostriatal DA neurons. 2. The receptors involved in these local regulatory processes are located or not located on DA nerve terminals. 3. Recent in vivo investigations have demonstrated that the corticostriatal glutamatergic neurons facilitate presynaptically the release of DA and have allowed the analysis of the respective roles of presynaptic events and nerve activity in the control of DA transmission.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号