首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Summary In several genera of Uloborid spiders the median spinnerets are provided with a cluster of specialized spools. These spools are comparable in structure with those of the cribellum, but far fewer in number. We name the newly described formation of spools the paracribellum. The histological features of the associated glands are similar to those of the cribellar glands; histochemically they seem closer to the pseudoflagelliform glands. It is suggested that paracribellar fibers impart consistency to the fibrillar secretion of the cribellum.  相似文献   

2.
The spinnerets and epiandrous glands of spiders   总被引:1,自引:0,他引:1  
The spinnerets of spiders are carried on the fourth and fifth segments of the abdomen (opisthosoma). Primitively there are two pairs, anterior lateral ( al ) and anterior median ( am ) on the fourth segment, and two pairs, posterior lateral ( pl ) and posterior median ( pm ) on the fifth, am are present in Liphistius but are never functional. In mygalomorphs am are invariably absent, and usually al also. In araneomorphs am are either reduced to a function-less colulus, perhaps absent altogether, or represented by the cribellum, which is a specialized spinning organ.
It seems unlikely that the lateral and median spinnerets correspond to the exopodites and endopodites of a biramous limb, which limbs are characteristic of the Crustacea, a group having no close relationship to the Arachnida. From embryology it seems clear that the lateral spinnerets are the segmental appendages. Glands, here described as the epiandrous glands, very similar to spinning glands, occur on the second abdominal segment of most male spiders. It is suggested that these may be serially homologous with the median spinnerets, which would then not be appendicular in origin but would be modifications of ventral glandular structures.  相似文献   

3.
A group of five genera of spiders has in the past been placed in a special sub-order the Hypo-chilomorpha, lying between the Mygalomorpha and the Araneomorpha. In general they resemble the araneomorphs, but they share some primitive characters, notably the presence of two pairs of lungs. Four of them, Hypochilus, Ectatosticta, Hickmania and Austrochilus have a cribellum, while Gradungula does not. In attempting to determine their relationships, their internal anatomy is here compared with that of the members of the three main suborders, Liphis-tiomorpha, Mygalomorpha and Araneomorpha. The conclusion arrived at is that these genera belong to the Araneomorpha, and that there should not be a suborder Hypochilomorpha. Hypochilus and Ectatosticta are very similar and are placed in the family Hypochilidae, while the other three are placed in individual families. Within the Araneomorpha there seem to be two evolutionary lines. In one, the Cribellata, the anterior median spinnerets of the ancestor remained functional and became the cribellum. In the other, the Ecribellata, the anterior median spinnerets lost their function and became vestigial or absent. The most primitive cribel-late family is the Hypochilidae, while the Gradungulidae is the most primitive ecribellate one, at least with respect to its lungs and heart.  相似文献   

4.
The cribellum is an oval spinning field whose spigots produce silk fibrils that form the outer surfaces of the primitive prey capture threads found in aerial spider webs. A comparison of the cribella and cribellar capture threads of 13 species of spiders representing seven families (Amaurobiidae, Desidae, Dictynidae, Filistatidae, Neolanidae, Oecobiidae, and Uloboridae) confirms that the stickness of a cribellar thread is directly related to the number of spigots on a spider's cribellum. This comparison also demonstrates that the origin of orb-weaving spiders from ancestors that constructed less highly organized webs was associated with increases in both the weight-specific number of cribellum spigots and the weight-specific stickiness of cribellar prey capture threads. In contrast to other cribellate spiders, the number of cribellum spigots of orb-weaving species of the family Uloboridae scales to spider mass. Thus, the origin of orb-weaving spiders involved not only behavioural changes that stylized and restricted the placement of cribellar threads, but also included morphological changes that increased the stickiness of these capture threads by endowing them with more cribellar fibrils.  相似文献   

5.
Silk is the most recognizable trait of spiders, and silk use has changed throughout spider evolutionary history. While morphology of the adult silk spigot has been a useful character for systematics, few studies have examined the ontogeny of the spinning apparatus, and none of these included cribellate spiders. Here, we report the first published full ontogeny of the spinning apparatus of a cribellate spider, Tengella perfuga. We found the presence of expected spigots: major ampullate gland and piriform gland spigots on the anterior lateral spinneret, minor ampullate gland and aciniform gland spigots on the posterior median spinneret, and aciniform gland spigots on the posterior lateral spinneret. Females, but not males, possessed cylindrical gland spigots on both the posterior median and lateral spinnerets. Spiderlings did not possess a functioning cribellum until the third instar. The cribellum grew with increasing numbers of spigots, but functionality was lost in adult males. Most intriguingly, second instars possessed a distinct triad of pre‐spigots on the posterior lateral spinneret. From the third instar onward, these structures formed the modified spigot along with two flanking spigots (in females) or formed nubbins (in males). We suggest that the modified spigot serves as the source of axial lines in the cribellate silk produced in T. perfuga. We also compare spigot ontogeny from previous studies of ecribellate spiders. These comparisons warrant further exploration using the recent spider tree of life in a phylogenetic comparative analysis of spigot ontogeny datasets, which could yield evidence for homologous spigots across the Araneomorphae, notably the Araneoidea and the Retrolateral Tibial Apophysis (RTA) clades.  相似文献   

6.
Cribellar capture threads are comprised of thousands of fine silk fibrils that are produced by the spigots of a spider's cribellum spinning plate and are supported by larger interior axial fibers. This study examined factors that constrain the stickiness of cribellar threads spun by members of the orb-weaving family Uloboridae in the Deinopoidea clade and compared the material efficiency of these threads with that of viscous capture threads produced by members of their sister clade, the Araneoidea. An independent contrast analysis confirmed the direct relationship between cribellar spigot number and cribellar thread stickiness. A model based on this relationship showed that cribellar thread stickiness is achieved at a rapidly decreasing material efficiency, as measured in terms of stickiness per spigot. Another limitation of cribellar thread was documented when the threads of two uloborid species were measured with contact plates of four widths. Unlike that of viscous threads, the stickiness of cribellar threads did not increase as plate width increased, indicating that only narrow bands along the edges of thread contact contributed to their stickiness. As thread volume increased, the gross material efficiency of cribellar threads decreased much more rapidly than that of viscous threads. However, cribellar threads achieved their stickiness at a much greater gross material efficiency than did viscous threads, making it more challenging to explain the transition from deinopoid to araneoid orb-webs.  相似文献   

7.
Brent D. Opell 《Zoomorphology》1989,108(5):263-267
Summary Uloborid cribellar silk consists of torus-shaped puffs. In Miagrammopes animotus the width of these puffs is about 36% that of the cribellum of the spider and shows a 2.3-fold increase in surface area during development. The cribellar spigot number increase 5.7-fold during development, although, relative to spider mass, it decreases by 34%. Cribellum width is the best predictor of both cribellar silk puff width and length and is as good a predictor of puff surface area as is cribellum surface area. Relative to cribellum width, the length of the calamistrum comb responsible for drawing fibrils from the cribellum changes little during development. The attachment points of cribellar silk to a parallel frame thread become more widely spaced during development, although the number of puffs they delimit changes little.  相似文献   

8.
The surface of a cribellar prey capture thread is formed of thousands of fine, looped fibrils, each issuing from one of the spigots on an oval spinning plate termed the cribellum. This plesiomorphic capture thread is retained by members of the family Uloboridae, in which its stickiness differs among genera. An examination of five cribellar thread features in nine uloborid species shows that only the number of fibrils that form a thread explains these differences in thread stickiness. Neither the physical features of these fibrils, nor the manner in which they are combined to form threads differs among species. Threads produced by orb-weaving species contain fewer fibrils than those produced by species that build reduced webs. Relative to spider weight, the number of fibrils that form a cribellar thread is greatest in simple-web species of the genus Miagrammopes, less in triangle-web species of the genus Hyptiotes, and least in orb-weaving species representing five genera. A transformational analysis shows that change in the number of cribellum spigots is directly related to change in the stickiness of cribellar thread. This direct relationship between the material invested in a cribellar thread and its stickiness may have been a limiting factor that favored the switch from the dry cribellar threads of uloborids to the adhesive capture threads produced by other orb-weaving families. © 1994 Wiley-Liss, Inc.  相似文献   

9.
All spiders produce silk and use it for various functions throughout their lives, but not all spiders produce the same silks, or use them for the same functions. These functions may include building shelters, protecting eggs, and trapping prey. The "RTA clade" of spiders (grass spiders, jumping-spiders, wolf spiders, hackled-band weavers, etc.) is an extremely diverse group ( approximately 18,000 species, representing nearly half of all described species), with great variation in ecology and morphology, including variation in the cribellum, a specialized silk-producing organ. The loss of the cribellum, a structure that produces fibers contributing stickiness to prey snares and which is invariably associated with a set of accessory structures, has been studied in orb-web-weavers and shown to have been lost once during the evolutionary history of the group, but never regained. Relative to the orb-weavers, evolution of the structure remains less-thoroughly studied in the RTA clade. As the cribellum is one member of a suite of traits, the combined action of which is essential in prey-capture, its loss should have ecological correlates or physiological trade-offs of evolutionary interest. Using molecular data from nuclear genes (ribosomal DNAs 18S and 28S, and protein-coding Histone H3), as well as mitochondrial data (Cytochrome oxidase I) totaling approximately 3400 base pairs, we developed a phylogenetic hypothesis for three-clawed lineages in this group, focusing on families where taxonomy and previous cladistic analyses suggest multiple losses, or possibly loss and secondary gain, of the cribellum. Results of Bayesian and direct-optimization (POY) analyses agree on a well-resolved and robust agelenid clade that includes the putative subfamilies Ageleninae, Tegenariinae, Textricinae and Coelotinae, but excludes the cribellate New Zealand genus Neoramia. Optimizing the pattern of cribellum evolution onto these trees shows that the cribellate state is conserved in large clades and has undergone fewer shifts than current taxonomy implies. The dominant pattern is one of repeated loss of the cribellum, though loss and regain remains a possibility in some groups.  相似文献   

10.
Jinguji Y 《Zoological science》2003,20(11):1359-1366
Organizational relationships between endothelial stress fibers and fibronectin fibrils in the developing chick abdominal aorta, from 5th day embryos to 3rd day young chicks, were studied with immunofluorescence and electron microscopy. Stress fibers, axially aligned parallel to the longitudinal cell axis, were expressed in the largely elongated endothelial cells, in embryos older than 8th day of incubation. Fibronectin fibrils in the aortic basal lamina, changed its organizational pattern from the network-like form to the straight bundles arranged parallel to the vessel's longitudinal axis after 9th day of incubation. Such axial alignment was dominant in the matrix beneath the elongated cells containing stress fibers, suggesting the existence of stress fibers may possibly modify the fibronectin's organizational pattern. The vinculin-containing dense plaque, which shaped like as the adhesion plaque in the cultured cells, was located at the ends of or lateral associating sites of stress fibers in embryos older than 8th day stage. The expression of stress fibers, as well as the formation of stress fiber's end plaques, may closely relate to the alignment between the stress fiber and fibronectin fibrils in the extracellular matrix.  相似文献   

11.
12.
Histochemical and morphological characterization of reticular fibers   总被引:3,自引:0,他引:3  
The results presented in this paper show that collagen fibers can be clearly distinguished from reticular fibers using the picrosirius-polarization method. A morphologic and morphometric study of these two types of fibers with electron microscopy shows that reticular fibers are characterized by the smaller diameter of their fibrillar components and the higher content of interfibrillar material, resulting in a loose arrangement of the fibrils. The evidences presented suggest that the amorphous matrix in which fibrils are embedded is responsible for the silver impregnation of reticular fibers. Our results show that the matrix of reticular fibers is characteristically rich in heparitin sulfate, and that the glycosaminoglycans present show a high interaction with the fibrillar component of these fibers.  相似文献   

13.
Summary The results presented in this paper show that collagen fibers can be clearly distinguished from reticular fibers using the picrosirius-polarization method. A morphologic and morphometric study of these two types of fibers with electron microscopy shows that reticular fibers are characterized by the smaller diameter of their fibrillar components and the higher content of interfibrillar material, resulting in a loose arrangement of the fibrils. The evidences presented suggest that the amorphous matrix in which fibrils are embedded is responsible for the silver impregnation of reticular fibers. Our results show that the matrix of reticular fibers is characteristically rich in heparitin sulfate, and that the glycosaminoglycans present show a high interaction with the fibrillar component of these fibers.  相似文献   

14.
THE FINE STRUCTURE OF ELASTIC FIBERS   总被引:23,自引:8,他引:15       下载免费PDF全文
The fine structure of developing elastic fibers in bovine ligamentum nuchae and rat flexor digital tendon was examined. Elastic fibers were found to contain two distinct morphologic components in sections stained with uranyl acetate and lead. These components are 100 A fibrils and a central, almost amorphous nonstaining area. During development, the first identifiable elastic fibers are composed of aggregates of fine fibrils approximately 100 A in diameter. With advancing age, somewhat amorphous regions appear surrounded by these fibrils. These regions increase in prominence until in mature elastic fibers they are the predominant structure surrounded by a mantle of 100 A fibrils. Specific staining characteristics for each of the two components of the elastic fiber as well as for the collagen fibrils in these tissues can be demonstrated after staining with lead, uranyl acetate, or phosphotungstic acid. The 100 A fibrils stain with both uranyl acetate and lead, whereas the central regions of the elastic fibers stain only with phosphotungstic acid. Collagen fibrils stain with uranyl acetate or phosphotungstic acid, but not with lead. These staining reactions imply either a chemical or an organizational difference in these structures. The significance and possible nature of the two morphologic components of the elastic fiber remain to be elucidated.  相似文献   

15.
Lyriform slits sense organs (LSSO) are a precise assembly of stress detecting cuticular slit sensilla found on the appendages of arachnids. While these structures on the legs of the wandering spiderCupennius salei are well studied in terms of morphology, function and contribution to behaviour, their distribution on pedipalps and spinnerets of spiders is not well explored. A study was therefore carried out to observe the distribution of LSSO on pedipalps and spinnerets of some spider species. Haplogyne spiders belonging to familyPholcidae have a simple complement of LSSOs represented by one or two LSSOs on their femur. The entelegyne spiders possess a complex assembly of LSSOs on the distal segments of their pedipalps. Various types of LSSOs are found on the pedipalps indicating a capacity for analysis of complex cuticular stress. It is suggested that the complexity of LSSOs on pedipalps of entelegyne spiders relates to courtship and spermatophore transfer and may help in reproductive isolation. Lack of LSSOs on the distal segments of pedipalps leads us to infer that unlike legs, pedipalps are less likely to receive vibratory input through their distal segments. Spinnerets have a relatively simple complement of LSSOs. One LSSO is found only on anterior spinnerets and it is a common feature observed among spiders, irrespective of the variations in web building behaviour. The orb-weaving araneidArgiope pulchella, however, has two LSSOs on the anterior spinneret. As non-web builders and orb weavers do not differ markedly in terms of LSSOs on the spinnerets and LSSOs are simple in nature (type A), it is likely that spinning and weaving are not largely regulated by sensory input from LSSOs on the spinnerets.  相似文献   

16.
《The Journal of cell biology》1983,97(6):1668-1676
Lamellipodia have been induced to form within the reticulopodial networks of Allogromia laticollaris by being plated on positively charged substrata. Video-enhanced, polarized light, and differential interference contrast microscopy have demonstrated the presence of positively birefringent fibrils within these lamellipodia. The fibrils correspond to the microtubules and bundles of microtubules observed in whole-mount transmission electron micrographs of lamellipodia. Microtubular fibrils exhibit two types of movements within the lamellipodia: lateral and axial translocations. Lateral movements are often accompanied by reversible lateral associations between adjacent fibrils within a lamellipodium. This lateral association-dissociation of adjacent fibrils has been termed 'zipping' and 'unzipping'. Axial translocations are bidirectional. The axial movements of the microtubular fibrils can result in the extension of filopodia by pushing against the plasma membrane of the lamellipodia. Shortening, or complete withdrawal, of such filopodia is accomplished by the reversal of the direction of the axial movement. The bidirectional streaming characteristic of the reticulopodial networks also occurs within the lamellipodia. In these flattened regions the streaming is clearly seen to occur exclusively in association with the intracellular fibrils. Transport of both organelles and bulk hyaline cytoplasm occurs bidirectionally along the fibrils.  相似文献   

17.
Insights into molecular mechanisms of collagen assembly are important for understanding countless biological processes and at the same time a prerequisite for many biotechnological and medical applications. In this work, the self-assembly of collagen type I molecules into fibrils could be directly observed using time-lapse atomic force microscopy (AFM). The smallest isolated fibrillar structures initiating fibril growth showed a thickness of approximately 1.5 nm corresponding to that of a single collagen molecule. Fibrils assembled in vitro established an axial D-periodicity of approximately 67 nm such as typically observed for in vivo assembled collagen fibrils from tendon. At given collagen concentrations of the buffer solution the fibrils showed constant lateral and longitudinal growth rates. Single fibrils continuously grew and fused with each other until the supporting surface was completely covered by a nanoscopically well-defined collagen matrix. Their thickness of approximately 3 nm suggests that the fibrils were build from laterally assembled collagen microfibrils. Laterally the fibrils grew in steps of approximately 4 nm, indicating microfibril formation and incorporation. Thus, we suggest collagen fibrils assembling in a two-step process. In a first step, collagen molecules assemble with each other. In the second step, these molecules then rearrange into microfibrils which form the building blocks of collagen fibrils. High-resolution AFM topographs revealed substructural details of the D-band architecture of the fibrils forming the collagen matrix. These substructures correlated well with those revealed from positively stained collagen fibers imaged by transmission electron microscopy.  相似文献   

18.
Collagen fibrils from sea cucumber (class Holothuroidea) dermis were previously found to grow by coordinated monomer addition at both centers and ends. This analysis of sea urchin (class Echinoidea) collagen fibrils was undertaken to compare the growth characteristics of fibrils from two classes of echinoderms, and to determine whether a single growth model could account for the main features of fibrils from these two taxa. Native collagen fibrils (37-431 micrometer long) from the spine ligaments of the sea urchin Eucidaris tribuloides were studied by scanning transmission electron microscopy and image analysis. The analyses revealed the mass per unit length, and hence the number of molecules in cross-section, along the entire length of each fibril. The fibrils were symmetrically spindle shaped. The maximum mass per unit length occurred in the center of each fibril, where the fibril contains anti-parallel molecules in equal numbers. The two pointed tips of each fibril showed similar linear axial mass distributions, indicating that the two tips retain shape and size similarity throughout growth. The linear axial mass distributions showed that the tips were paraboloidal, similar to those of vertebrate and sea cucumber fibrils. The computed maximum diameters of the fibrils increased linearly with fibril length. The overall shapes of the fibrils showed that they retain geometric similarity throughout growth. Computer modeling showed that the simplest self-assembly mechanism that can account for the features of these fibrils, and of the sea cucumber fibrils that have been described, is one in which the fibril tips produce independent axial growth, while lateral growth takes place through a surface nucleation and propagation mechanism. This mechanism produces coordinated growth in length and diameter as well as geometric similarity, characteristic features of echinoderm collagen fibrils.  相似文献   

19.
M Locke  P Huie 《Tissue & cell》1972,4(4):601-612
Connective tissue around the nerve cord and heart have been studied in Calpodes ethlius. Four components at, distinguishable by selective staining and electron microscopy: matrix, collagen fine fibrils less than 60 Å in diameter and broad fibers about 400 Å in diameter after glutaraldehyde only the broad fibers react selectively for peroxidase and stain with phosphotungstic acid. These fibers are most abundant in connective tissue which is elastic. The fine fibrils are arranged parallel to and between the peroxidase reaciive fibers. It is suggested that the peroxidase activity of the fibers may be related to their stabilization. The collagen fibers have the narrow fibrillar form characteristic of Lepidoptera and Coleoptera and have a macroperiod of about 660 Å and a banding pattern matching that found in other insects.  相似文献   

20.
An electron microscope study of collagen fibrils from fixed tail tendons of rats has revealed that from some time shortly after birth until maturity, the fibril diameters have a bimodal distribution. The “two” types of fibril are indistinguishable in both transverse and longitudinal section. Unfixed specimens of eight-week-old-tail tendon showed a similar bimodal distribution of diameters though the positions of the peak values compared to fixed specimens of an eight-week-old-tail tendon were shifted upwards by about 30%. It has also been shown quantitatively that the polar collagen fibrils are directed randomly “up” and “down” with respect to their neighbors. Whilst it has been suggested by others that anastomosis is a feature of collagen structure, the results presented here do not support this hypothesis. Fibrillar units ~ 140 Å in diameter have been observed and the possibilities that these are elastic fibers or the breakdown products of collagen fibrils have been considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号