首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A circular trans-acting hepatitis delta virus ribozyme.   总被引:8,自引:3,他引:5       下载免费PDF全文
A circular trans-acting ribozyme designed to adopt the motif of the hepatitis delta virus (HDV) trans-acting ribozyme was produced. The circular form was generated in vitro by splicing a modified group I intron precursor RNA in which the relative order of the 5' and 3' splice sites, flanking the single HDV-like ribozyme sequence-containing exon, is reversed. Trans-cleavage activity of the circular HDV-like ribozyme was comparable to linear permutations of HDV ribozymes containing the same core sequence, and was shown not to be due to linear contaminants in the circular ribozyme preparation. In nuclear and cytoplasmic extracts from HeLa cells, the circular ribozyme had enhanced resistance to nuclease degradation relative to a linear form of the ribozyme, suggesting that circularization may be a viable alternative to chemical modification as a means of stabilizing ribozymes against nuclease degradation.  相似文献   

2.
In the realms of RNA, transposable elements created by self-inserting introns recombine novel combinations of exon sequences in the background of replicating molecules. Although intermolecular RNA recombination is a wide-spread phenomenon reported for a variety of RNA-containing viruses, direct evidence to support the theory that modern splicing systems, together with the exon-intron structure, have evolved from the ability of RNA to recombine, is lacking. Here, we used an in vitro deletion-complementation assay to demonstrate trans-activation of forward and reverse self-splicing of a fragmented derivative of the group II intron bI1 from yeast mitochondria. We provide direct evidence for the functional interchangeability of analogous but non-identical domain 1 RNA molecules of group II introns that result in trans-activation of intron transposition and RNA-based exon shuffling. The data extend theories on intron evolution and raise the intriguing possibility that naturally fragmented group III and spliceosomal introns themselves can create transposons, permitting rapid evolution of protein-coding sequences by splicing reactions.  相似文献   

3.
4.
Small RNAs capable of self-cleavage and ligation might have been the precursors for the much more complex self-splicing group I and II introns in an early RNA world. Here, we demonstrate the activity of engineered hairpin ribozyme variants, which as self-splicing introns are removed from their parent RNA. In the process, two cleavage reactions are supported at the two intron-exon junctions, followed by ligation of the two generated exon fragments. As a result, the hairpin ribozyme, here acting as the self-splicing intron, is cut out. Two self-splicing hairpin ribozyme variants were investigated, one designed by hand, the other by a computer-aided approach. Both variants perform self-splicing, generating a cut-out intron and ligated exons.  相似文献   

5.
The yeast mitochondrial group II intron bI1 is self-splicing in vitro. We have introduced a deletion of hairpin C1 within the structural domain 1 that abolishes catalytic activity of the intron in the normal splicing reaction in cis, but does less severely affect a reaction in trans, the reopening of ligated exons. Since exon reopening is supposed to correspond to a reverse 3' cleavage this suggests that the deletion specifically blocks the first reaction step. The intron regains its activity to self-splice in cis by intermolecular complementation with a small RNA harbouring sequences lacking in the mutant intron. These results demonstrate the feasibility to reconstitute a functionally active structure of the truncated intron by intermolecular complementation in vitro. Furthermore, the data support the hypothesis that group II introns are predecessors of nuclear pre-mRNA introns and that the small nuclear RNAs of the spliceosome arose by segregation from the original intron.  相似文献   

6.
7.
8.
Li CF  Costa M  Michel F 《The EMBO journal》2011,30(15):3040-3051
Like spliceosomal introns, the ribozyme-containing group II introns are excised as branched, lariat structures: a 2'-5' bond is created between the first nucleotide of the intron and an adenosine in domain VI, a component which is missing from available crystal structures of the ribozyme. Comparative sequence analysis, modelling and nucleotide substitutions point to the existence, and probable location, of a specific RNA receptor for the section of domain VI that lies just distal to the branchpoint adenosine. By designing oligonucleotides that tether domain VI to this novel binding site, we have been able to specifically activate lariat formation in an engineered, defective group II ribozyme. The location of the newly identified receptor implies that prior to exon ligation, the distal part of domain VI undergoes a major translocation, which can now be brought under control by the system of anchoring oligonucleotides we have developed. Interestingly, these oligonucleotides, which link the branchpoint helix and the binding site for intron nucleotides 3-4, may be viewed as counterparts of U2-U6 helix III in the spliceosome.  相似文献   

9.
Some group II introns can undergo a protein-independent splicing reaction with the basic reaction pathway similar to nuclear pre-mRNA splicing and the catalytic functions of some of the structural components have been determined. To identify further functional domains, we have generated an ensemble of partial and complete deletions of domains I, II, III and IV of the self-splicing group II intron bI1 from yeast mitochondria and studied their effects on the splicing reaction in vitro. Our results indicate that domains II and IV, which vary considerably in length and structure among group II introns, do not play a direct role in catalysis but mainly help to ensure the proper interaction between upstream and downstream catalytically active structural elements. Deletions of sub-domains of domain I and domain III indicate that these elements are involved in 5' cleavage by hydrolysis and in a reaction in trans (exon reopening), and that this function can be inhibited without affecting the normal 5' cleavage by transesterification. Yet, we infer that the helical structures affected by the mutational alterations might not contribute to this reaction mode per se but that changes within local secondary structures perturb the internal conformation of the ribozyme. Furthermore, we have designed an abbreviated version of intron bI1, with a length of 542 nucleotides, which is still catalytically active.  相似文献   

10.
The mechanism by which group II introns cleave the correct phosphodiester linkage was investigated by studying the reaction of mutant substrates with a ribozyme derived from intron ai5gamma. While fidelity was found to be quite high in most cases, a single mutation on the substrate (+1C) resulted in a dramatic loss of fidelity. When this mutation was combined with a second mutation that induces a bulge in the exon binding site 1/intron binding site 1 (EBS1/IBS1) duplex, the base-pairing register of the EBS1/IBS1 duplex was shifted and the cleavage site moved to a downstream position on the substrate. Conversely, when mismatches were incorporated at the EBS1/IBS1 terminus, the duplex was effectively truncated and cleavage occurred at an upstream site. Taken together, these data demonstrate that the cleavage site of a group II intron ribozyme can be tuned at will by manipulating the thermodynamic stability and structure of the EBS1/IBS1 pairing. The results are consistent with a model in which the cleavage site is not designated through recognition of specific nucleotides (such as the 5'-terminal residue of EBS1). Instead, the ribozyme detects a structure at the junction between single and double-stranded residues on the bound substrate. This finding explains the puzzling lack of phylogenetic conservation in ribozyme and substrate sequences near group II intron target sites.  相似文献   

11.
We have reconstructed the group II intron from Pylaiella littoralis (PL) into a hydrolytic ribozyme, comprising domains 1-3 (D123) connected in cis plus domain 5 (D5) supplied in trans that efficiently cleaves spliced exon substrates. Using a novel gel-based fluorescence assay and nuclear magnetic resonance (NMR) spectroscopy, we monitored the direct binding of D5 to D123, characterized the kinetics of the spliced exon hydrolysis reaction (which is mechanistically analogous to the reverse of the second catalytic step of splicing), and identified the binding surface of D123 on D5. This PL ribozyme acts as an RNA endonuclease even at low monovalent (100 mM KCl) and divalent ion concentrations (1-10 mM MgCl(2)). This is in contrast to other group II intron ribozyme systems that require high levels of salt, making NMR analysis problematic. D5 binds tightly to D123 with a K(d) of 650 +/- 250 nM, a K(m) of approximately 300 nM, and a K(cat) of 0.02 min(-1) under single turnover conditions. Within the approximately 160-kDa D123-D5 binary complex, site-specific binding to D123 leads to dramatic chemical shift perturbation of residues localized to the tetraloop and internal bulge within D5, suggesting a structural switch model for D5-assisted splicing. This minimal ribozyme thus recapitulates the essential features of the reverse of the second catalytic step and represents a well-behaved system for ongoing high-resolution structural work to complement folding and catalytic functional studies.  相似文献   

12.
13.
Group II introns are catalytic RNAs that are excised from their precursors in a protein-dependent manner in vivo. Certain group II introns can also react in a protein-independent manner under nonphysiological conditions in vitro. The efficiency and fidelity of the splicing reaction is crucial, to guarantee the correct formation and expression of the protein-coding mRNA. RmInt1 is an efficient mobile intron found within the ISRm2011-2 insertion sequence in the symbiotic bacterium Sinorhizobium meliloti. The RmInt1 intron self-splices in vitro, but this reaction generates side products due to a predicted cryptic IBS1* sequence within the 3′ exon. We engineered an RmInt1 intron lacking the cryptic IBS1* sequence, which improved the fidelity of the splicing reaction. However, atypical circular forms of similar electrophoretic mobility to the lariat intron were nevertheless observed. We analyzed a run of four cytidine residues at the 3′ splice site potentially responsible for a lack of fidelity at this site leading to the formation of circular intron forms. We showed that mutations of residues base-pairing in the tertiary EBS3–IBS3 interaction increased the efficiency and fidelity of the splicing reaction. Our results indicate that RmInt1 has developed strategies for decreasing its splicing efficiency and fidelity. RmInt1 makes use of unproductive splicing reactions to limit the transposition of the insertion sequence into which it inserts itself in its natural context, thereby preventing potentially harmful dispersion of ISRm2011-2 throughout the genome of its host.  相似文献   

14.
15.
We have previously shown, using phosphorothioate substitutions at splice site, that both transesterification steps of group II intron self-splicing proceed, by stereochemical inversion, with an Sp but not an Rp phosphorothioate. Under alternative reaction conditions or with various intron fragments, group II introns can splice following hydrolysis at the 5' splice site and can also hydrolyze the bond between spliced exons (the spliced-exon reopening reaction). In this study, we have determined the stereochemical specificities of all of the major model hydrolytic reactions carried out by the aI5 gamma intron from Saccharomyces cerevisiae mitochondria. For all substrates containing exon 1 and most of the intron, the stereospecificity of hydrolysis is the same as for the step 1 transesterification reaction. In contrast, the spliced-exon reopening reaction proceeds with an Rp but not an Sp phosphorothioate at the scissile bond, as does true reverse splicing. Thus, by stereochemistry, this reaction appears to be related to the reverse of step 2 of self-splicing. Finally, a substrate RNA that contains the first exon and nine nucleotides of the intron, when reacted with the intron ribozyme, releases the first exon regardless of the configuration of the phosphorothioate at the 5' splice site, suggesting that this substrate can be cleaved by either the step 1 or the step 2 reaction site. Our findings clarify the relationships of these model reactions to the transesterification reactions of the intact self-splicing system and permit new studies to be interpreted more rigorously.  相似文献   

16.
17.
Construction of a novel artificial-ribozyme-releasing plasmid   总被引:5,自引:0,他引:5  
  相似文献   

18.
It has been previously suggested that self-splicing of group II introns starts with a nucleophilic attack of the 2' OH group from the branchpoint adenosine on the 5' splice junction. To investigate the sequences governing the specificity of this attack, a series of Bal31 nuclease deletion mutants was constructed in which progressively larger amounts of 5' exon have been removed starting from its 5' end. The ability of mutant RNAs to carry out self-splicing in vitro was studied. Involvement of 5' exon sequences in self-splicing activity is indicated by the fact that a mutant in which as many as 18 nucleotides of 5' exon remain is seriously disturbed in splicing, while larger deletions eliminate splicing entirely. Mutants containing a truncated 5' exon form aberrant RNAs. One of these is a 425-nucleotide RNA containing the 5' exon as well as sequences of the 5' part of the intron. Its 3' end maps at position 374 of the 887-nucleotide intron. The other is a less abundant lariat RNA probably originating from the remainder of the intron linked to the 3' exon. We interpret this large dependence of reactivity of the intron on 5' exon and adjoining intron sequences as evidence for base-pairing interactions between the exon and parts of the intron, leading to an RNA folding necessary for splicing. Possible folding models are discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号