首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of association of Escherichia coli 30S and 50S ribosomal subunits have been carried out as a function of temperature after a magnesium jump from 1.5 to 3 mM. Turbidimetric recordings combined with a stopped-flow apparatus were used to follow the kinetics. The data show that the rates of formation and dissociation of the 70S particles at 3 mM Mg2+ and +25 degrees C were, respectively: k2 = 10(5) M-1 s-1, k1 = 4,5 X 10(-3) s-1; lowering the temperature decreases the rate constants with activation energies equal to E2 = 7.5 kcal/mol, E1 = 26.5 kcal/mol and enhances the association equilibrium towards the 70S species with an enthalpy change (delta H degrees assoc = -19.9 kcal/mol) dominant over the entropy change (delta S degrees assoc = -33 cal/(deg mol)). These thermodynamic parameters were compared to those obtained from studies on the interactions of codon-anticodon in yeast phenylalanine transfer RNA as well as of ribooligonucleotides. The kinetic and thermodynamic data are shown to be consistent with 16S-23S RNA interaction.  相似文献   

2.
High hydrostatic pressure coupled with fluorescence polarization has been used to investigate protein subunit interactions and protein-operator association in lac repressor labeled with a long-lived fluorescent probe. On the basis of observation of a concentration-dependent sigmoidal decrease in the dansyl fluorescence polarization, we conclude that application of high hydrostatic pressure results in dissociation of the lac repressor tetramer. The 2-fold decrease in the rotational relaxation time and the high-pressure plateau are consistent with a tetramer to dimer transition. The volume change for tetramer dissociation to dimer is -82 +/- 5 mL/mol. The dissociation constant calculated from the data taken at 4.5 degrees C is 4.3 +/- 1.3 nM. The tetramer dissociation constant increases by a factor of 3 when the temperature is raised from 4.5 to 21 degrees C. A very small effect of inducer binding on the subunit dissociation is observed at 4.5 degrees C; the Kd increases from 4.5 to 7.1 nM. At 21 degrees C, however, inducer binding stabilizes the tetramer by approximately 0.8 kcal/mol. Pressure-induced monomer formation is indicated by the curves obtained upon raising the pH to 9.2. The addition of IPTG shifts the pressure transition to only slightly higher pressures at this pH, indicating that the stabilization of the tetramer by inducer is not as marked as that observed at pH 7.1. From the decrease in the polarization of the dansyl repressor-operator complexes, we also conclude that the application of pressure results their dissociation and that the volume change is large in absolute value (approximately 200 mL/mol). The lac repressor-operator complex is more readily dissociated upon the application of pressure than the tetramer alone, indicating that operator binding destabilizes the lac repressor tetramer.  相似文献   

3.
E P Lennette  B V Plapp 《Biochemistry》1979,18(18):3933-3938
The reaction of the imidazole group of histidine hydantoin with bromoacetate was studied as a model for carboxymethylation of histidine residues in proteins. pK values of 6.4 and 9.1 (25 degrees C) and apparent heats of ionization of 7.8 and 8.7 kcal/mol were determined for the imidazole and hydantoin rings, respectively. At pH values corresponding to the isoelectric points for histidine hydantoin, the rates of carboxymethylation at 12, 25, 37, and 50 degrees C were determined; the modified hydantoins were hydrolyzed to the corresponding histidine derivatives for quantitative amino acid analysis. At pH 7.72 and 25 degrees C, the imidazole tele-N was alkylated (k = 3.9 X 10(-5) M-1 s-1) twice as fast as the pros-N. The monocarboxymethyl derivatives were carboxymethylated at the same rate at the pros-N (k = 2.1 X 10(-5) M-1 s-1) but 3 times faster at the tele-N (k = 11 X 10(-5) M-1 s-1). The enthalpies of activation determined for carboxymethylation of the imidazole ring and its monocarboxymethyl derivatives were similar (15.9 +/- 0.7 kcal/mol). delta S for the four carboxymethylations was -25 +/- 2 eu. The electrostatic component of delta S (delta S es) was calculated from the influence of the dielectric constant on the reaction rate at 25 degrees C. delta S es was slightly negative (-4 +/- 1 eu) for mono- or dicarboxymethylations, indicating some charge separation in the transition state. The nonelectrostatic entropy of activation was -21 +/- 2 eu for all four carboxymethylations.  相似文献   

4.
The thermodynamics of interactions between phloretin and a phosphatidylcholine (PC) vesicle membrane are characterized using equilibrium spectrophotometric titration, stopped-flow, and temperature- jump techniques. Binding of phloretin to a PC vesicle membrane is diffusion limited, with an association rate constant greater than 10(8) M-1s-1, and an interfacial activation free energy of less than 2 kcal/mol. Equilibrium binding of phloretin to a vesicle membrane is characterized by a single class of high-affinity (8 micro M), noninteracting sites. Binding is enthalpy driven (delta H = -4.9 kcal/mol) at 23 degrees C. Analysis of amplitudes of kinetic processes shows that 66 +/- 3% of total phloretin binding sites are exposed at the external vesicle surface. The rate of phloretin movement between binding sites located near the external and internal interfaces is proportional to the concentration of un-ionized phloretin, with a rate constant of 5.7 X 10(4) M-1s-1 at 23 degrees C. The rate of this process is limited by a large enthalpic (9 kcal/mol) and entropic (-31 entropy units) barrier. An analysis of the concentration dependence of the rate of transmembrane movement suggests the presence of multiple intramembrane potential barriers. Permeation of phloretin through a lipid bilayer is modeled quantitatively in terms of discrete steps: binding to a membrane surface, translocation across a series of intramembrane barriers, and dissociation from the opposite membrane surface. The permeability coefficient for phloretin is calculated as 1.9 X 10(-3) cm/s on the basis of the model presented. Structure- function relationships are examined for a number of phloretin analogues.  相似文献   

5.
6.
Association of the thallous ion with gramicidin in 2,2,2-trifluoroethanol has been investigated by thallium-205 NMR spectroscopy. The data obtained suggest that the gramicidin dimer has two strong binding sites and one or more weak binding sites. Association constants for the strong binding sites were found to have the same value. From the temperature dependence of the strong binding site association constants, values for the association enthalpy and entropy of -2.13 +/- 0.12 kcal/mol and +5.45 +/- 0.04 eu, respectively, were obtained.  相似文献   

7.
The thermodynamics of zinc hematoporphyrin (ZnHP) dimerization and ZnHP-membrane binding were studied. The dimerization equilibrium was determined over the temperature range 19-40 degrees C, using fluorometric techniques. The dimerization constant obtained at 37 degrees C (neutral pH in phosphate-buffered saline) is 4.6 (+/- 0.6) X 10(4) M-1. The dimerization was found to decrease with temperature over the range 19-36 degrees C, the data allowing the extraction of the following thermodynamic parameters for the temperature range 19-31 degrees C: delta G0 = -9.3 kcal/mol, delta H0 = -7.4 kcal/mol, delta S0 = -6.4 eu. For temperatures above 36 degrees C the dimerization was found to be temperature independent, giving the following parameters: delta G0 = -6.6 kcal/mol, delta H0 = 0 kcal/mol, delta S0 = 21.2 eu. On the basis of the data the case is made for the existence of two types of ZnHP dimers, differing in the location of the fifth Zn2+ ligand and in the nature of the contribution of the solvent to the dimerization. For the membrane binding, large unilamellar liposomes served to model biological membranes. The binding of ZnHP to the liposomes was found to be similar, quantitatively, to the corresponding metal-free molecule, namely, fitting a case of one type of site and giving a binding constant of 1600 +/- 160 M (neutral pH and 37 degrees C) which is independent of the length of the porphyrin-liposome.  相似文献   

8.
M A Luther  G Z Cai  J C Lee 《Biochemistry》1986,25(24):7931-7937
The self-association of rabbit muscle phosphofructokinase (PFK) was monitored as a function of temperature, pH, and ionic strength in order to understand the thermodynamics of this aggregation process. Thermodynamic parameters obtained from the temperature study show that the dimerization of PFK is characterized by negative entropy and enthalpy changes of -270 +/- 5 eu and -87 +/- 1 kcal/mol, respectively, with no observable change in heat capacity. This is in contrast to the formation of the tetramer, which is governed by positive entropy and enthalpy changes and a positive heat capacity change of 5000 +/- 2000 cal/mol. Low ionic strength also favors the formation of the dimer without a significant influence on the tetramerization, which is enhanced by increasing the pH from 6.00 to 8.55. Furthermore, Wyman linkage analysis [Wyman, J. (1964) Adv. Protein Chem. 19, 224-285] reveals that the formation of the tetramer from the monomer between pH 6.00 and pH 8.55 involves the loss of 3.3 protons. Further analysis shows that ionization of residues with an apparent pKa of 6.9 is linked to the formation of PFK tetramers. The conclusion of this study indicates that the major noncovalent forces governing the formation of the dimer are different from those for the association of the tetramer.  相似文献   

9.
The binding characteristics of the inhibitor of anion transport in human red cells, 4,4'-dibenzamido-2,2'-disulfonic stilbene (DBDS), to the anion transport protein of red cell ghost membranes in buffer containing 150 mM NaCl have been measured over the temperature range 0-30 degrees C by equilibrium and stopped-flow fluorescence methods. The equilibrium dissociation constant Keq, increased with temperature. No evidence of a 'break' in the ln(Keq) vs. 1/T plot was found. The standard dissociation enthalpy and entropy changes calculated from the temperature dependence are 9.1 +/- 0.9 kcal/mol and 3.2 +/- 0.3 e.u., respectively. Stopped-flow kinetic studies resolve the overall binding into two steps: a bimolecular association of DBDS with the anion transport protein, followed by a unimolecular rearrangement of the DBDS-protein complex. The rate constants for the individual steps in the binding mechanism can be determined from an analysis of the concentration dependence of the binding time course. Arrhenius plots of the rate constants showed no evidence of a break. Activation energies for the individual steps in the binding mechanism are 11.6 +/- 0.9 kcal/mol (bimolecular, forward step), 17 +/- 2 kcal/mol (bimolecular, reverse step), 6.4 +/- 2.3 kcal/mol (unimolecular, forward step), and 10.6 +/- 1.9 kcal/mol (unimolecular, reverse step). Our results indicate that there is an appreciable enthalpic energy barrier for the bimolecular association of DBDS with the transport protein, and appreciable enthalpic and entropic barriers for the unimolecular rearrangement of the DBDS-protein complex.  相似文献   

10.
The reactivity of cuprous stellacyanin as a quinone and semiquinone reductase has been examined. Rate constants (25.0 degrees C) measured for the oxidation of stellacyanin by 1,4-benzoquinone and benzosemiquinone are 2.3 X 10(4) M-1 s-1 (delta H not equal to = 4.4 kcal/mol, delta S not equal to = -24 eu) and 5.1 X 10(6) M-1 s-1, respectively [pH 7.0, I = 0.1 M (phosphate)]. The agreement of these rate constants with those calculated on the basis of relative Marcus theory is discussed. Stellacyanin is more effective than laccase in quenching benzosemiquinone, suggesting that the physiological role of this metalloprotein is to regulate the concentration of free radicals generated through the laccase-catalyzed oxidation of phenols.  相似文献   

11.
T P Pitner  J D Glickson 《Biochemistry》1975,14(14):3083-3087
Kinetics of internal rotation about the C(6)-N(6) bond of N-6,N-6-dimethyladenine (M2-6A) was investigated by -1H nuclear magnetic resonance line-shape analysis of the methyl resonances (220 MHz). Rates of rotation were determined for M2-6A deuterated at N(1) and for neutral M2-6A. Activation parameters for monodeuterated M2-6A at 22 degrees are Ea = 13.8kcal/mol, log A = 12.6, incrementG++=14.9 kcal/mol, incrementH++ = 13.1 kcal/mol, incrementS++ = minus 5.8 eu; for neutral M2-6A: Ea = 15.5 kcal/mol, log A = 14.9, incrementG++ = 12.6 kcal/mol, incrementH++ = 14.9 kcal/mol, incrementS++ =7.8 eu. Vertical stacking of bases interferes with internal rotation of the dimethylamino group.  相似文献   

12.
Both the nonactivated and activated forms of the chick oviduct cytosol progesterone receptor-hormone complexes displayed first-order dissociation kinetics at temperatures between 0 and 25 degrees C. The rate constant was always 2-3-times greater for the nonactivated than for the activated complex. The thermodynamic parameters calculated from the Eyring plot for the nonactivated and activated forms, respectively, were: delta H+ = 28.6 +/- 0.2 and 29.9 +/- 1.5 kcal/mol; -T delta S+ = 7.4 +/- 0.6 and 7.7 +/- 1.6 kcal/mol; and delta G+ = 21.3 +/- 0.5 and 22.1 +/- 0.1 kcal/mol. These values suggest that activation results in an increase in enthalpy of the ligand-receptor interaction, thus stabilizing the complex. The dissociation rate constants for the native complex obtained by two different experimental approaches, namely, isotope dilution ('chase') and dissociation against charcoal, indicated the absence of cooperativity in the receptor-ligand binding.  相似文献   

13.
The reduction of horse heart ferricytochrome c by the tryptic fragment of bovine liver cytochrome b5 and its dimethyl ester heme (DME)-substituted derivative has been studied as a function of ionic strength, pH, and temperature under solution conditions where the reaction is bimolecular. The rate constant for ferricytochrome c reduction by native ferrocytochrome b5 is 1.8 (+/- 0.2) x 10(7) M-1 s-1 (25 degrees C) with delta H++ = 7.5 (+/- 0.2) kcal/mol and delta S++ = -0.3 (+/- 0.6) eu (pH 7.0, I = 0.348 M). Under the same solution conditions, the reduction of ferricytochrome c by DME-ferrocytochrome b5 proceeds with a rate constant of 1.7 (+/- 0.1) x 10(7) M-1 s-1 with delta H++ = 7.9 (+/- 0.4) kcal/mol and delta S++ = 1 (+/- 1) eu. The rate constants for both reactions are strongly dependent on ionic strength. A detailed electrostatic analysis of the proteins has been performed. Two relatively simple Brownian dynamics simulation models predict rate constants for the reaction between the two native proteins that demonstrate a dependence on ionic strength similar to that observed experimentally. In one of these models, the proteins are treated as spheres with reactive surface patches that are defined by a 5 degrees cone generated about the dipole vector calculated for each protein and aligned with the presumed electron-transfer site near the partially exposed heme edge. The second model replaces the reactive patch assumption with an exponential distance dependence for the probability of reaction that permits estimation of a value for the distance-dependence factor alpha. Calculations with this latter model in combination with the aligned dipole assumption provide a reasonable approximation to the observed ionic strength dependence for the reaction and are consistent with a value of alpha = 1.2 A-1.  相似文献   

14.
Thermodynamics of reversible monomer-dimer association of tubulin   总被引:1,自引:0,他引:1  
D L Sackett  R E Lippoldt 《Biochemistry》1991,30(14):3511-3517
The equilibrium between the rat brain tubulin alpha beta dimer and the dissociated alpha and beta monomers has been studied by analytical ultracentrifugation with use of a new method employing short solution columns, allowing rapid equilibration and hence short runs, minimizing tubulin decay. Simultaneous analysis of the equilibrium concentration distributions of three different initial concentrations of tubulin provides clear evidence of a single equilibrium characterized by an association constant, Ka, of 4.9 X 10(6) M-1 (Kd = 2 X 10(-7) M) at 5 degrees, corresponding to a standard free energy change on association delta G degrees = -8.5 kcal mol-1. Colchicine and GDP both stabilize the dimer against dissociation, increasing the Ka values (at 4.5 degrees C) to 20 X 10(6) and 16 X 10(6) M-1, respectively. Temperature dependence of association was examined with multiple three-concentration runs at temperatures from 2 to 30 degrees C. The van't Hoff plot was linear, yielding positive values for the enthalpy and entropy changes on association, delta S degrees = 38.1 +/- 2.4 cal deg-1 mol-1 and delta H degrees = 2.1 +/- 0.7 kcal mol-1, and a small or zero value for the heat capacity change on association, delta C p degrees. The entropically driven association of tubulin monomers is discussed in terms of the suggested importance of hydrophobic interactions to the stability of the monomer association and is compared to the thermodynamics of dimer polymerization.  相似文献   

15.
The Escherichia coli single strand binding (SSB) protein is an essential protein required for DNA replication and involved in recombination and a number of repair processes. It is a stable homotetramer in solution; however the ssb-1 mutation (His-55 to Tyr) destabilizes the tetramer with respect to monomers and this defect seems to explain the observed phenotype (Williams, K. R., Murphy, J. B., and Chase, J. W. (1984) J. Biol. Chem. 259, 11804-11811). We report a quantitative study of the SSB-1 monomer-tetramer equilibrium in vitro as a function of temperature, pH, NaCl, MgCl2, urea, and guanidine hydrochloride concentrations. The self-assembly equilibrium was monitored by the increase in intrinsic protein fluorescence anisotropy accompanying the formation of the tetramer. The experimental isotherms indicate that SSB-1 dimers are not highly populated at equilibrium, hence the formation of the tetramer is well-described as a one-step association of four monomers. At 25 degrees C, pH 8.1, the monomer concentration for 50% tetramer dissociation is (MT)1/2 = 0.87 microM, corresponding to a monomer-tetramer equilibrium constant, KT = 3 +/- 1 x 10(18) M-3. The tetramerization constant, KT, is highly dependent upon temperature and pH, with delta H0 = -51 +/- 7 kcal/mol (pH 8.1) and delta H0 = -37 +/- 5 kcal/mol (pH 6.9). There is no effect of NaCl on the monomer-tetramer association in the range from 0.20 to 1.0 M; however, MgCl2 decreases the stability of the SSB-1 tetramer. In the presence of high concentrations of the single-stranded oligonucleotide, dT(pT)15, the tetramerization constant is slightly increased indicating that binding of the oligonucleotide to the SSB-1 monomer promotes the assembly process, although not dramatically. The large negative delta H0 that is associated with formation of the tetramer provides a likely explanation for the temperature sensitivity of the ssb-1 mutation.  相似文献   

16.
R Rudolph  I Heider  R Jaenicke 《Biochemistry》1977,16(25):5527-5531
Dissociation and deactivation of the H4 and M4 isoenzymes of lactic dehydrogenase in strong denaturants may be reversed with a yield of reactivation up to 100%. The products of reconstitution are indistinguishable from the native enzymes as far as the Michaelis constants and the dissociation constants for substrate and coenzyme as well as spectral and hydrodynamic properties are concerned. The presence of NAD+ and NADH does not affect either the conformational state of the product of reconstitution, or the kinetics of reactivation, using the pure apoenzymes as a reference. At 20 degrees C the kinetics of reactivation for LDH-M4 in the presence and absence of coenzyme may be quantitatively described by a second-order rate equation (k2 = 23.4 +/- 2.6 mM-1S-1) while LDH-H4 is characterized by a uni-bimolecular reaction sequence (k1 = 1.45 +/- 0.45 X 10(-3)-S-1, k2 = 5 +/- 1 mM-1S-1), in agreement with earlier observations (Rudolph, R., et al. (1977), Biochemistry 16, 3384-3390). Regarding the influence of temperature on the rate of reactivation no significant anomalies are detectable within the range of 0-25 degrees C. The (apparent) activation energies, taken from the linear Arrhenius plots, are 58 kcal/mol for the association reaction of LDH-M4, and 41 kcal/mol for the transconformation reaction of LDH-H4.  相似文献   

17.
This study describes the kinetic behaviour and physicochemical aspects of an endogenous inhibitor of progesterone--receptor binding in trophoblast cytosol from day-12 embryos. The progesterone cytosol receptor was partially purified and isolated from the inhibitor as the 0--50%-satd. (NH4)2SO4 fraction. The inhibitory substance was shown to reside in the 50--70%-satd. (NH4)2SO4 fraction. Equilibration of the inhibitor preparation with the receptor fraction increased the Kapp.D of the ligand--receptor binding reaction in a concentration-dependent manner (26 +/- 3-fold increase in Kapp.D per mg of protein of the (NH4)2SO4 fraction, n = 16). However, the inhibitor did not alter the concentration of binding sites. Studies of other physicochemical aspects of the inhibitor showed it to be non-diffusible, excluded from Sephadex G-25, stable at 35 degrees C for 30 min, but irreversibly denatured at 70 degrees C for 30 min. The Stokes' radius was estimated by gel chromatography to be 2.8 +/- 0.11 nm (n = 5). Inhibitory activity was destroyed by HgCl2, suggesting that disulphide bridges play an essential role in the biological activity of this molecule. The inhibitor is a macromolecule which does not bind progesterone and differs from albumin. The kinetic mechanism by which the inhibitor enhanced Kapp.D was investigated by measuring association and dissociation rate constants and the energy of activation (Ea) for each reaction. The association rate (k+1) for progesterone and receptor was (1.3 +/- 0.2) x 10(4) M-1 . s-1 but declined to (0.4 +/- 0.1) x 10(4) M-1 . s-1 (n = 5) when exposed to the inhibitor (P less than 0.01). The dissociation rate (k-1) was (3.2 +/- 0.6) x 10(-5) s-1 for progesterone--receptor complex and was unchanged by the inhibitor. The Ea for the association of complex was 33.6 +/- 4.2 kJ/mol and was increased to 63.0 +/- 8.4 kJ/mol by the inhibitor (P less than 0.05). The Ea of dissociation was unaltered. Thus, an inhibitor is present in trophoblast cytosol which specifically enhances Kapp.D without altering availability of binding sites. The mode of action of inhibitor is to increase the energy of activation for association of complex without influencing the dissociation reaction.  相似文献   

18.
19.
K H Mayo 《Biochemistry》1991,30(4):925-934
Low-affinity platelet factor 4 (LA-PF4), unlike another related, sequentially homologous (about 50%) platelet-specific protein, platelet factor 4 (PF4), is an active mitogenic and chemotactic agent. PF4 exhibits a high binding affinity for heparin, while LA-PF4 does not. Both PF4 and LA-PF4 can exist in dimer and tetramer aggregate states. Equilibrium constants for PF4 aggregation have recently been estimated from fractional populations derived from proton nuclear magnetic resonance (NMR) integrals assigned to resonances in monomer, dimer, and tetramer states [Mayo & Chen (1989) Biochemistry 28, 9469]. On a 500-MHz NMR time scale, relatively slow exchange among LA-PF4 aggregate species has also allowed Tyr 15 ring proton resonances to be assigned for monomer, dimer, and tetramer states in LA-PF4. As a function of pH and ionic strength, equilibrium association constants for LA-PF4 dimer (KD) and tetramer (KT) formation have been estimated from Tyr 15 ring proton resonance integrals. At low ionic strength, KD reaches a minimum value of 12 M-1 at pH 3 where KT is at its maximum value of 1.6 x 10(5) M-1. At pH 4.1, KD and KT have the same value, 1.1 x 10(3) M-1, which is the minimum value for KT. KD plateaus off to its maximum value of 2.2 x 10(4) M-1 by pH 5.5. These values are significantly lower than those for PF4. Analysis of the pH dependence of KD and KT suggests that electrostatic interactions probably among Glu/Asp and Lys/Arg side chains form the predominant force in the monomer-monomer binding process, i.e., KD, while like-charge repulsion due to proximal, intersubunit Glu/Asp residues decreases KT as the pH is raised. At pH 7 and low ionic strength, the dimer state is highly favored over the tetramer state. Elevating the solvent ionic strength at pH 7 destabilizes the dimer state. Under these more physiologic conditions, i.e., pH 7 and 0.1-0.2 M NaCl, LA-PF4 monomers are highly favored over dimers and tetramers. For PF4 under similar solvent conditions, tetramers predominate. Differences in biological activities between these homologous platelet-specific proteins may be the result, at least in part, of differing aggregation properties. The biologically active state for PF4 is tetramer, while for LA-PF4 it is monomer. Quaternary structure may, therefore, account for strong heparin binding in PF4, most likely by presenting a more favorable structural matrix for effective glycosaminoglycan interactions.  相似文献   

20.
The kinetics of hybridization of 11-meric and 14-meric oligonucleotides, dTGGGAAGAGGG (ODN-11) and dTGGGAAGAGG GTCA (ODN-14), with 14-meric oligonucleotide dpTGACCCTCT TCCCA (p14) attached to the surface of a cuvette was studied by the resonant mirror method. The treatment of the experimental curves with exponential equations leads to the following values for association (kas) and dissociation (kdis) rate constants at 25 degrees C: kas = 219 +/- 39 and 183 +/- 162 M-1 s-1, kdis = (2.0 +/- 0.4) x 10(-3) and (4 +/- 1) x 10(-4) s-1 for the duplexes (p14) x (ODN-11) and p14 x (ODN-14), respectively. The oligonucleotide dTGCCTTGAATGGGAA GAGGGTCA (ODN-23), which forms a hairpin structure, does not associate with p14. The data were compared with the results of melting curve detection and temperature-jump experiments. The association rate constants for ODN-11 and ODN-14 are much slower than those values in homogeneous aqueous solution. The dissociation rate constants have the same magnitude values as estimated by using association constants measured from melting curves but differ from the values estimated in temperature-jump experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号