首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Inorganic nitrogen and soluble reactive phosphate (o-P) concentrations were measured in the water of a marsh and in its interstitial water at two sites, and in the river water of a floodplain marsh of the Lower Paraná River. These values were compared with the N and P concentration in sediments and macrophyte biomass in order to assess nutrient availability, fate and storage capacity. High variability was found in the interstitital water using a 1 cm resolution device. Nitrate was never detected in the pore water. Depth averaged NH4 + concentrations in the upper 30 cm layer often ranged from N = 1.5 to 1.8 mg l-1, but showed a pronounced minimum (0.5–0.7 mg l-1), close to (March 95), or relatively soon after (May 94) the end of the macrophyte growing season. Soluble phosphate showed a large variation between P = 0.1–1.1 mg l-1 without any discernible seasonal pattern. NH4 + depletion in the pore water concentration and low N/P ratios (3.7 by weight) within the macrophyte biomass at the end of the growing period suggest that available N limits plant growth. NH4 + and o-P concentrations were 35 and 7 times higher, respectively, in the pore water than in the overlying marsh, suggesting a permanent flux of nutrients from the sediments. o-P accumulate in the marsh leading to higher concentrations than in the incoming river. NH4 + did not accumulate in the marsh, and no significant differences were observed between the river and the marsh water, while the NO3 - contributed by the river water was depleted within the marsh, caused probably by coupled nitrification-denitrification at the sediment–water interface. Although an order of magnitude smaller, the pore water pool can supply enough nutrients to build up the macrophyte biomass pool, but only if a fast turnover is attained. The Paraná floodplain marsh retains a large amount of nutrients being stored mainly in the sediment compartment.  相似文献   

2.
Mäkelä  Kalervo  Tuominen  Liisa 《Hydrobiologia》2003,492(1-3):43-53
Chemical profiles of nutrients at the sediment–water interface were measured in the northern Baltic Sea. A whole core squeezer technique capable of mm-scale resolution was used to obtain the vertical profiles of NO3 , NO2 , o-P, NH4 + and Si in the soft bottom sediments. The profiles were compared with nutrient flux and denitrification measurements. In the Gulf of Finland, the profiles revealed a marked chemical zonation in NO3 and NO2 distribution indicating strong potential of nitrification just under the sediment surface followed by a layer of denitrification down to a depth of 30 mm. Below the depth of 20 mm NO3 was usually absent, whereas other nutrients were increasing steadily in concentration. A distinct minimum of NO3 was observed at the sediment–water interface, suggesting NO3 uptake by a microbial biofilm and/or active denitrification at the suboxic microniches usually present in organic-rich sediments. At the deep stations in the Baltic Proper, the NO3 concentration in pore water, as well as denitrification, were very low. The concentrations of NH4 +, o-P and Si were usually increasing steadily with depth.  相似文献   

3.
Hydrologic regime is an important control of primary production in wetland ecosystems. I investigated the coupling of flooding, soil salinity and plant production in northern prairie marshes that experience shallow spring flooding. Field experiments compared whitetop (Scolochloa festucacea) marsh that was: (1) nonflooded, (2) flooded during spring with 25 cm water and (3) nonflooded but irrigated with 1 cm water · day–1. Pot culture experiments examined whitetop growth response to salinity treatments. The electrical conductivity of soil interstitial water (ECe) at 15 cm depth was 4 to 8 dS· m–1 lower in flooded marsh compared with nonflooded marsh during 2 years. Whitetop aboveground biomass in flooded marsh (937 g · m–2, year 1; 969 g · m–2, year 2) exceeded that of nonflooded marsh (117 g · m–2 year 1; 475 g · m–2, year 2). Irrigated plots had lower ECe and higher aboveground biomass than nonflooded marsh. In pot culture, ECe of 4.3 dS · m–1 (3 g · L–1 NaCl) reduced total whitetop biomass by 29 to 44% and ECe of 21.6 dS · m–1 (15 g · L–1 NaCl) reduced biomass by more than 75%. Large reductions of ECe and increases of whitetop growth with irrigation indicated that plants responded to changes in soil salinity and not other potential environmental changes caused by inundation. The results suggest that spring flooding controls whitetop production by decreasing soil salinity during spring and by buffering surface soils against large increases of soil salinity after mid-summer water level declines. This mechanism can explain higher marsh plant production under more reducing flooded soil conditions and may be an important link between intermittent flooding and primary production in other wetland ecosystems.  相似文献   

4.
Effects of historic tidal restrictions on salt marsh sediment chemistry   总被引:1,自引:0,他引:1  
The effects of tidalrestrictions by diking on salt marshbiogeochemistry were interpreted by comparingthe hydrology, porewater chemistry and solidphase composition of both seasonally floodedand drained diked marshes with adjacentnatural salt marshes on Cape Cod,Massachusetts. Flooding periods weregreatest in natural and least in drainedmarshes.Differences between the chemistry of thenatural and diked marshes depended upon thedepth of the water table and the supply ofsulfate for anaerobic metabolism. Drainedmarsh sediments were highly acidic (pH <4)with porewaters rich in dissolved Fe; thenatural and diked flooded marshes had pH 6–7.5and Fe orders of magnitude lower. Porewater nutrients, sulfides and alkalinitywere much lower in both flooded and draineddiked marshes than in the natural marsh.Sediments of the drained marsh had subsided90 cm relative to the natural site due toorganic matter decomposition and compaction. However, despite the loss of organic matter,much of the P and N was retained, withNH4 likely protected from nitrificationby low pH and PO4 adsorbed on Fe and Aloxides. Iron, and to a lesser degree sulfur,had also been well retained by the sediment. Despite eight decades of diking, substantialamounts of reduced S, representing potentialacidity, persisted near the top of the watertable.In contrast, the surface of the seasonallyflooded marsh was only 15 cm below thenatural marsh. Accretion since dikingamounted to 25 cm and involved proportionallyless mineral matter.The restoration of seawater flow to bothseasonally flooded and drained diked marsheswill likely extend flooding depth andduration, lower redox, increase cationexchange, and thereby increase NH4,Fe(II), and PO4 mobilization. Increasedporewater nutrients could benefitrecolonizing halophytes but may also degradesurface water quality.  相似文献   

5.
Changes of water table position influence carbon cycling in peatlands, but effects on the sources and sinks of carbon are difficult to isolate and quantify in field investigations due to seasonal dynamics and covariance of variables. We thus investigated carbon fluxes and dissolved carbon production in peatland mesocosms from two acidic and oligotrophic peatlands under steady state conditions at two different water table positions. Exchange rates and CO2, CH4 and DOC production rates were simultaneously determined in the peat from diffusive-advective mass-balances of dissolved CO2, CH4 and DOC in the pore water. Incubation experiments were used to quantify potential CO2, CH4, and DOC production rates. The carbon turnover in the saturated peat was dominated by the production of DOC (10–15 mmol m–2 d–1) with lower rates of DIC (6.1–8.5 mmol m–2 d–1) and CH4 (2.2–4.2 mmol m–2 d–1) production. All production rates strongly decreased with depth indicating the importance of fresh plant tissue for dissolved C release. A lower water table decreased area based rates of photosynthesis (24–42%), CH4 production (factor 2.5–3.5) and emission, increased rates of soil respiration and microbial biomass C, and did not change DOC release. Due to the changes in process rates the C net balance of the mesocosms shifted by 36 mmol m–2 d–1. According to our estimates the change in C mineralization contributed most to this change. Anaerobic rates of CO2 production rates deeper in the peat increased significantly by a factor of 2–3.5 (DOC), 2.9–3.9 (CO2), and 3–14 (CH4) when the water table was lowered by 30 cm. This phenomenon might have been caused by easing an inhibiting effect by the accumulation of CO2 and CH4 when the water table was at the moss surface.  相似文献   

6.
Physical and chemical conditions, particulate matter and N-uptake were characterized at two sampling sites at the eastern German coast of the Baltic Sea (Pomeranian Bay) over the annual period of 1997 (February–November). The inshore sampling sites (5 m water depth) differed with respect to the potential influences of river run-off and salt water exchange (mean values of salinity: 7.05 and 8.72 PSU), respectively. The mean org-Cdiss/org-Cpart-ratios (4.9 and 12.6) fell in the same order of magnitude (1.0–12.6) as values of neighboring inshore waters, and increasing values reflect an enhancement of the trophic level. Beside differences of nitrogen concentrations (dissolved inorganic nitrogen: 1.8–23.8 and 0.9–9.9 mol l–1), particulate nitrogen (4.30–41.01 and 2.69–9.08 mol l–1) and absolute uptake of N-nutrients (mean sum of NH4 +, urea, NO3 uptake rates: 0.141 and 0.087 mol l–1 h–1), specific uptake of 15N-labelled nutrients (NH4 +, urea, NO3 ) as well as the relationships between the measured variables characterize distinguishable inshore systems. The high variability at the shallow sampling sites prevents, however a simple resolution of the seasonal courses. Light dose could be identified as a potential key in order to describe long-term variations of N-uptake at the station with higher organic matter concentration (station KW), but phytoplankton development is better reflected in the seasonal course of N-uptake at the other station. Specific nitrogen uptake rates (NH4 +: 0.0009–0.0353 h–1, urea: 0.0001–0.0137 h–1, NO3 : 0.000004–0.0009 h–1) and relative nitrogen preferences indicate extraordinary importance of reduced nitrogenous nutrients (NH4 +, urea) at both stations throughout the year.  相似文献   

7.
Panigatti  M. C.  Maine  M. A. 《Hydrobiologia》2003,492(1-3):151-157
Water – Salvinia herzogii – sediment systems were exposed to different phosphorus and nitrogen combinations in outdoor experiments. The aim was to estimate the amounts of P immobilized in macrophytes and sediments, as well as to elucidate whether or not the presence of N affects the retention of P. The following components were added: o-P, o-P + NH4 +, o-P + NO3 + NH4 +, o-P + NO3 . The concentration of nutrients was periodically determined throughout the experiment (28 days). The concentrations of P and N in plant tissues and sediments were determined at the beginning and the end of the experiment. Sequential extractions of P-fractions in sediment were performed using the EDTA method (Golterman, 1996). The removal efficiency of P in water was 95–99%. The removal of NH4 + (97–98%) was more effective than that of NO3 (44–86%). The presence of nitrogen species increased the removal velocity of o-P from water, NH4 + was the most effective species. Sediments not only had higher P removal rates than macrophytes but, in the control treatment without macrophytes, they reached the values obtained by macrophytes plus sediments in the other treatments. The adsorption of P takes place at the surface layer of the sediment (1 cm). Most of the P incorporated into the sediment during the experiment was sorbed by the fraction Fe(OOH)P. The addition of nutrients to water modified the leaves/lacinias weight ratio.  相似文献   

8.
This study presents the tidal exchange of ammonium, nitrite + nitrate, phosphate and silicate between two salt marshes and adjacent estuarine waters. Marsh nutrient fluxes were evaluated for Pointe-au-Père and Pointe-aux-épinettes salt marshes, both located along the south shore of the lower St. Lawrence Estuary in Rimouski area (QC, Canada). Using nutrients field data, high precision bathymetric records and a hydrodynamic numerical model (MIKE21-NHD) forced with predicted tides, nutrients fluxes were estimated through salt marsh outlet cross-sections at four different periods of the year 2004 (March, May, July and November). Calculated marsh nutrient fluxes are discussed in relation with stream inputs, biotic and abiotic marsh processes and the incidence of sea ice cover. In both marshes, the results show the occurrence of year-round and seaward NH4 + fluxes and landward NO2  + NO3 fluxes (ranging from 9.06 to 30.48 mg N day−1 m−2 and from −32.07 to −9.59 mg N day−1 m−2, respectively) as well as variable PO4 3− and Si(OH)4 fluxes (ranging from −3.73 to 6.34 mg P day−1 m−2 and from −29.19 to 21.91 mg Si day−1 m−2, respectively). These results suggest that NO2  + NO3 input to marshes can be a significant source of NH4 + through dissimilatory nitrate reduction to ammonium (DNRA). This NH4 +, accumulating in marsh sediment rather than being removed through coupled nitrification–denitrification or biological assimilation, is exported toward estuarine waters. From average P and Si tidal fluxes analysis, both salt marshes act as a sink during high productivity period (May and July) and as a source, supplying estuarine water during low productivity period (November and March).  相似文献   

9.
Nitrate transformation and water movement in a wetland area   总被引:6,自引:1,他引:5  
The NO3 transformation capacity of a riparian zone at Rabis stream, Denmark, was investigated for a period of 2 years. The riparian zone of 15–25 m received NO3 -containing groundwater from the adjoining agricultural areas. The water flows as surface runoff along the surface of the wetland and in the root zone towards the stream. Changes in water chemistry, water balance and mass transport were investigated. The riparian zone acted as a buffer zone for NO3 , PO4 3– and dissolved Fe2+. The NO3 -transformation capacity of the wetland was about 400 kg N ha–1 y–1, but varied seasonally. A simple rearrangement of drain systems in wetland areas can probably reduce the NO3 content of Danish surface waters by 20 000–50 000 t N y–1.  相似文献   

10.
Habitat-simulating media were used with the Hungate anaerobic roll tube technique to enumerate culturable anaerobic photosynthetic bacteria in sediment, tidal waters, and Spartina alterniflora plant samples collected from the salt marsh at Sapelo Island, Ga. No phototrophs were detected in samples of creekside (low marsh) sediment or in tidal waters in creekside regions. In the high marsh region, 90% of anaerobic phototrophic bacteria occurred in the top 5 mm of sediment and none were detected below 6 mm. There was a seasonal variation, with maximal populations occurring in summer and fall (mean, 4.4 × 105 phototrophs g of dry sediment−1) and minimal numbers occurring in winter (mean, 3.9 × 103 phototrophs g of dry sediment−1). During winter and late spring, phototrophs had a patchy distribution over the high marsh sediment surface. In contrast, during late summer they had a random uniform distribution. Tidal water collected over high marsh sediment contained an average of 8.7 × 102 phototrophs ml−1, with no significant seasonal variation. Anaerobic phototrophic bacteria were also cultured from the lower stem tissue of S. alterniflora growing in both the high (4.3 × 104 phototrophs g of dry tissue−1) and creekside (4.9 × 104 phototrophs g of dry tissue−1) marsh regions. Chromatium buderi, Chromatium vinosum, Thiospirillum sanguineum, Rhodospirillum molischianum, and Chlorobium phaeobacteroides were the predominant anaerobic phototrophic species cultured from high marsh sediment. The two Chromatium species were dominant.  相似文献   

11.
The contribution of potential export of materials from bottom sedimentsand salt marshes into the water column of a shallow estuarine system of Ria deAveiro to the observed high bacterial productivity in the mid section of thisestuary was evaluated. Vertical profiles of physical, chemical and bacterialvariables were studied in the marine and brackish water zones, and oftransversal profiles in the brackish zone only. Although the concentrations ofseston (17–241 mg l–1), particulate organiccarbon (3–15.5 mg l–1) and chlorophyll(1.2–7.0 g l–1) varied widely, thevertical and transversal profiles were without much variation. Total bacterialnumber (0.2–8.5 × 109 cellsl–1) and the number of particle-attached bacteria(0.02–2.50 × 109 cellsl–1)along vertical and transversal profiles did not differ much, but the rate ofbacterial production (0.05–14.2 g C l–1h–1) and dissolved organic carbon concentration(6.0–69.2 mg l–1) were frequently highernear the salt marsh margin at the brackish water transect. The increase inproductivity could not be associated with runoff of particulate matter butcoincided with the inputs of dissolved organic carbon. The results of verticaland transversal profiles point to a minor role of particulate matter additionsfrom the salt marsh area or from bed sediments.  相似文献   

12.
Silberbush  M.  Ben-Asher  J. 《Plant and Soil》2001,233(1):59-69
Soilless plant growth systems are widely used as a means to save irrigation water and to reduce groundwater contamination. While nutrient concentrations in the growth medium are depleted due to uptake by the plants, salinity and toxic substances accumulate due to transpiration. A theoretical model is suggested, to simulate nutrient uptake by plants grown in soilless cultures with recycled solutions. The model accounts for salinity accumulation with time and plant growth, and its effects on uptake of the different nutrients by means of interaction with Na and Cl ions. The sink term occurs due to uptake by a growing root system. Influx as a function of the ion concentration is according to Michaelis–Menten active mechanisms for K+, NO3 -N, NH4 +-N, PO4-P, Ca2+, Mg2+ and SO4 2-, whose influx parameters are affected by Na and Cl, but not with time (age). Sodium influx is passive above a critical concentration. Sum of cations–anions concentrations is balanced by Cl to maintain electro-neutrality of the growth solution. Salinity (by means of Na concentration) suppresses root and leaf growth, which further effect uptake and transpiration. The model accounts for instantaneous transpiration losses, during daytime only and its effect on uptake of nutrients and plant development due to salt accumulation. The model was tested against NO3 and K+ uptake by plants associated with cumulative transpiration and with different NaCl salinity levels. Deviations from observed K+ uptake should be attributed to the salinity tolerance of the plants. In a study with data obtained from published literature, the model indicated that nutrient depletion and salinity buildup might be completely different with fully grown-up plants (that do not grow) and plants that grow with time. Depletion of different nutrients are according to their initial concentration and plant uptake rate, but also affected by their interactions with Na and Cl ions.  相似文献   

13.
Three field experiments were performed in Lake Lacawac, PA to determine the importance of potentially limiting nutrients relative to other factors (grazing, depth) in structuring shallow water algal periphyton communities. All three experiments measured periphyton growth (as chlorophyll-a, AFDM or biovolumes of the algal taxa) on artificial clay flower pot substrates which released specified nutrients to their outer surfaces.Control of standing crop by nutrient supply rate vs. grazing was examined in Expt. I. Substrates releasing excess N and P, together with one of 4 levels of C (as bicarbonate) were placed either inside or outside exclosures designed to reduce grazer densities. Chlorophyll-a rose from 1.1–25.6 µg.cm–2, and some dominant taxa (e.g., Oedogonium, Nostoc, Anacystis) were replaced by others (e.g., Scenedesmus, Cryptomonas) as bicarbonate supply increased. Reductions in invertebrate density did not significantly affect chlorophyll-a at any of the nutrient levels.Reasons for the species shift were further evaluated in Expt. II, using a minielectrode to measure the elevation of pH within the periphyton mat through photosynthetic utilization of bicarbonate. The pH adjacent to pots diffusing N, P and large quantities of bicarbonate, and supporting high chlorophyll-a densities of 32 µg cm–2, averaged 10.0 compared to 6.3 in the water column. Pots diffusing only N and P supported 0.7 µg chlorophyll-a cm–2 and elevated pH to 8.2. We suspect that bicarbonate addition favored efficient bicarbonate users (e.g., Scenedesmus), while inhibiting other taxa (e.g., Oedogonium) because of the attendant high pH.Expt. III was designed to test effects of depth (0.1 m vs. 0.5 m) and N (NH4 + vs. NO3 ) upon the growth response to bicarbonate observed in Expts. I and II. Similar standing crop and species composition were noted on pots at 0.1 m vs. 0.5 m. Enrichment with NH4 + vs. NO3 also appeared to have little effect upon the periphyton community.Shallow water periphyton communities in Lake Lacawac, when supplied with sufficient N and P, appear to show a distinctive response to increasing bicarbonate concentration and pH which is robust to moderate variation in grazer densities, distance from the water surface, and the form of N enrichment.  相似文献   

14.
The authors studied removal rates of bacteria and the regeneration of inorganic nutrients in coral reef cavities in the reef slope of Curaçao, Netherlands Antilles. We found that in cavities the hard substratum surface area (=ca 68% of cavity surface area) is 65% covered with sessile filter feeders. The cryptic cavity surface area exceeds the projected surface area of the reef by 1.5–8 times. Consequently, the organisms living in these cryptic habitats have potentially a large impact on pico- and nano-plankton densities and are important in reef water nutrient dynamics. We closed cavities (±70 l volume, 15 m depth) in seven experiments to study changes in bacterial densities and dissolved inorganic nutrients (DIN, DIP, and silicate) over time. Water samples were taken from the middle of the cavity at 5-min intervals, for 30 min, and analyzed for heterotrophic bacterial abundance and nutrient concentrations. After closure, bacterial abundance dropped rapidly. Of the initial bacterial concentration in the cavities, 50–60% had disappeared after 30 min, an average disappearance rate of 1.43×104 bacteria ml–1 min–1 (0.62 mg C l–1 d–1; or 30.1 mg C m–2 cavity surface area d–1). NOx concentrations increased significantly during the time of closure. Efflux rates varied between 1.02–9.77 mmol m–2 cavity surface area d–1. NH4+ and PO43– concentrations were variable and did not show a consistent change over time in the experiments. Comparison of bacterial organic nitrogen disappearance rates and DIN (NOx+NH4+) release rates suggests that on average only 30–40% of additional sources of N besides bacteria were required to balance the nitrogen budget. This highlights the importance of heterotrophic bacterioplankton as food for cryptic filter feeders on coral reefs. Silicate concentrations significantly decreased after closure with 0.50 mmol m–2 cavity surface area d–1, suggesting the net deposition of SiO42– in spicules of cryptic filter feeding sponges. We conclude that coral reef cavities are a major sink for heterotrophic bacteria, a sink for dissolved silicon (DSi), and a source for NOx. That reef cavities are a source for NOx suggests strong remineralization and nitrification in cavities with a potential role for sponge-symbiotic microbial nitrification.Communicated by K.S. Sealey  相似文献   

15.
A three-year (1991–1993) field investigation was conducted to quantify the hydrodynamics of intertidal marshes adjacent to tidal channels and shallow bays within two Louisiana coastal regions: (1) the sediment-rich Atchafalaya Basin, and, (2) the sediment-poor Terrebonne Basin with relatively minor riverine inflow. The Terrebonne Basin marsh is regularly inundated and flooding is characterized by sporadic draining interspersed by prolonged flooding events. The maximum water depth on the marsh surface exceeds 50 cm, the flow velocity across marsh surface reaches 10 cm sec–1, and the sediment deposition rate varies from 10 to 90 g m–2 per tidal cycle. This rather high sediment deposition rate occurs during winter storms with strong southerly winds. In contrast, the marsh site within the sediment-rich Atchafalaya Basin is irregularly inundated and characterized by sporadic flooding interspersed by prolonged draining. There the marsh flooding depth rarely exceeds 25 cm, the over-marsh flow velocity barely reaches 2.5 cm sec–1, and the sediment deposition rate ranges from 5 to 50 g m–2 per tidal cycle. The surprisingly low rate of sediment deposition in a marsh within a sediment-rich region is largely due to the man-made canals that alter the hydrologic regime in the upper reaches of the tidal channel.  相似文献   

16.
Aqueous biphasic systems (ABS) are suitable for the separation of small organic molecules in industrial and environmental applications and thus, it is important to correlate partitioning behavior of model organic solutes with their structure in order to develop predictive models. The partitioning behavior of five, uncharged, substituted benzenes (benzene, toluene, chlorobenzene, 1,4-dichlorobenzene and 1,2,4-trichlorobenzene) were studied in ABS prepared from stock solutions of 40% (w/w) PEG-2000 and increasing concentrations of four water-structuring salts (K3PO4, K2CO3, (NH4)2SO4 and NaOH). For a given solute and a defined concentration of salt, the partition coefficients increase as the ΔGhyd value of the salt anion becomes more negative (e.g., Dbenzene increases in the order OH<SO42<CO32<PO43). In a given salt, the distribution ratios increase in the order benzene<toluene<chlorobenzene<1,4-dichlorobenzene<1,2,4-trichlorobenzene. The partitioning behavior of the solutes in PEG–salt ABS was found to be strongly correlated with their partitioning coefficients in 1-octanol–water biphasic systems.  相似文献   

17.
Nutrients in pore waters from Dead Sea sediments   总被引:2,自引:1,他引:1  
Pore waters were separated from 50 cm-long cores of Dead Sea sediments raised from waters depths of 25, 30 and 318 m. The salinity of the pore water is close to that of the overlying water at 225–230 g l–1 chloride. The titration alkalinity of the pore water is about 60 % of the overlying water, and sulfate is also depleted. Ammonia and phosphate concentrations are higher than those of the water column with up to 50 mg l–1 N-NH3 (ten times increase) and 350 µg l–1 P-PO inf4 sup3– (four to eight times increase). Early diagenetic reactions are a result of decomposition of organic matter and of water-sediment interactions, resulting in aragonite precipitation, phosphate removal to the sediments, probably by absorption on iron-oxyhydroxides followed by remobilization, reduction of sulfate and formation of iron sulfides and accumulation of ammonia. Mass balance calculations show that pore water contribute about 80% of the ammonia and 30% of the phosphate input into the Dead Sea water column. On the other hand, the sediments act as a sink for carbonate and sulfate.  相似文献   

18.
Dynamics of greenhouse gases, CH4, CO2 and N2O, and nutrients, NO 2 + NO 3 , NH 4 + and P, were studied in the sediments of the eutrophic, boreal Lake Kevätön in Finland. Undisturbed sediment cores taken in the summer, autumn and winter from the deep and shallow profundal and from the littoral were incubated in laboratory microcosms under aerobic and anaerobic water flow conditions. An increase in the availability of oxygen in water overlying the sediments reduced the release of CH4, NH 4 + and P, increased the flux of N2O and NO 2 + NO 3 , but did not affect CO2 production. The littoral sediments produced CO2 and CH4 at high rates, but released only negligible amounts of nutrients. The deep profundal sediments, with highest carbon content, possessed the greatest release rates of CO2, CH4, NH 4 + and P. The higher fluxes of these gases in summer and autumn than in winter were probably due to the supply of fresh organic matter from primary production. From the shallow profundal sediments fluxes of CH4, NH4 + and P were low, but, in contrast, production of N2O was the highest among the different sampling sites. Due to the large areal extension, the littoral and shallow profundal zones had the greatest importance in the overall gas and nutrient budgets in the lake. Methane emissions, especially the ebullition of CH4 (up to 84% of the total flux), were closely related to the sediment P and NH 4 + release. The high production and ebullition of CH4, enhances the internal loading of nutrients, lake eutrophication status and the impact of boreal lakes to trophospheric gas budgets.  相似文献   

19.
We measured concentrations of soil nutrients (0–15 and 30–35 cm depths) before and after the dry season in control and dry-season irrigated plots of mature tropical moist forest on Barro Colorado Island (BCI) in central Panama to determine how soil moisture affects availability of plant nutrients. Dry-season irrigation (January through April in 1986, 1987, and 1988) enhanced gravimetric soil water contents to wet-season levels (ca. 400 g kg–1 but did not cause leaching beyond 0.8 m depth in the soil. Irrigation increased concentrations of exchangeable base cations (Ca2+, Mg2+, K+, Na+), but it had little effect on concentrations of inorganic N (NH4 +C, NO3 and S (SO4 2–). These BCI soils had particularly low concentrations of extractable P especially at the end of the dry season in April, and concentrations increased in response to irrigation and the onset of the rainy season. We also measured the response of soil processes (nitrification and S mineralization) to irrigation and found that they responded positively to increased soil moisture in laboratory incubations, but irrigation had little effect on rates in the field. Other processes (plant uptake, soil organic matter dynamics) must compensate in the field and keep soil nutrient concentrations at relatively low levels.  相似文献   

20.
Percent respiration was measured in over 1,100 arctic and subarctic marine water and sediment samples using14C-labeled glucose and glutamate. These measurements were made at different times of the year in 4 regions. Percent respiration values were typically lower in regions where the waters of large rivers mixed with seawater. They were also lower in sediments and in waters collected near the bottom than in surface waters. They were higher in winter arctic waters than water samples collected in the summer; however, a similar seasonal trend was not observed in subarctic waters. There were a number of studies in which there were significant positive rank correlations between percent respiration and salinity and between percent respiration and temperature. From what is known about the range of temperature and salinity encountered in samples collected during these studies and the results of temperature and salinity effects experiments, it was concluded that changes in these 2 variables did not explain the variation observed in percent respiration. Correlations between percent respiration and the inorganic nutrients PO4 –3, NH4 + and NO3 showed that of the 3 variables, only NO3 showed relatively high correlations with all the same sign. From this it was concluded that there may be situations in which NO3 levels may influence percent respiration in nearshore marine waters. It is also likely that qualitative characteristics of the available organic nutrients may also influence percent respiration levels. Although no organic nutrient data is available for statistical analysis, the patterns of percent respiration near river plumes and the relatively strong negative correlation often observed between uptake rates (heterotrophic activity) and percent respiration suggests that organic nutrients may be a factor in controlling percent respiration. It is suggested that there are situations in which percent respiration measurements may be used to document stress in natural microbial populations due to nutrient deficiencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号