首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The division cycle of two phytoplankton species, Olisthodiscus luteus and Heterocapsa sp. was studied in relation to a 12:12 light:dark cycle. Batch cultures in exponential phase were sampled every three hours during 48 hours. Cell number, cellular volume and DNA and RNA concentrations were measured. Microscopic observations of the nuclei of Heterocapsa sp. were also performed. In both species, cell division took place in the dark. In Heterocapsa sp., DNA and RNA showed a similar diel variability pattern, with synthesis starting at the end of the light period, previously to mitosis and cytokinesis. In O. luteus. Major RNA synthesis occurred during darkness, and DNA was produced almost continuously. Both species presented different values and diel rhythmicity on the RNA/DNA ratios.  相似文献   

2.
Two cDNA clones encoding fucoxanthin chlorophyll a/c-binding proteins (FCP) in the diatom Odontella sinensis have been cloned and sequenced. The derived amino acid sequences of both clones are identical, comparison of the corresponding nucleic acids reveals differences only in the third codon position, suggesting a recent gene duplication. The derived proteins are similar to the chlorophyll a/b-binding proteins of higher plants. The presequences for plastid import resemble signal sequences for cotranslational import rather than transit peptides of higher plants. They are very similar to the presequences of FCP proteins in the diatom Phaeodactylum, but different from the presequences of the -subunit of CF0CF1 of Odontella and the peridinin chlorophyll a binding proteins (PCP) of the dinoflagellate Symbiodinium.Abbreviations CAB chlorophyll a/b-binding protein - FCP fucoxanthin chlorophyll a/c-binding protein - fcp the respective FCP genes - LHC light-harvesting complex - PCP peridinin chlorophyll a-binding protein - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

3.
Summary Exponentially grown cells of the freshwater diatom Navicula pelliculosa (Bréb) Hilse, contained chlorophyll a, chlorophyll c, fucoxanthin, diadinoxanthin, diatoxanthin, neofucoxanthin, -carotene, and an unknown pigment, the absorption spectrum of which is reported. Changes in amounts of chlorophyll a, fucoxanthin and diadinoxanthin were determined during the course of silicon-starvation synchrony carried out in the light or dark. Changes in the rate of chlorophyll a and fucoxanthin syntheses were similar. Synthesis ceased after 5–7 hr of silicon starvation, but recommenced in cultures kept in the light, once silicon was re-introduced. In cultures kept in the dark no significant synthesis was observed after re-introduction of silicon. Diadinoxanthin synthesis continued in the light at all times, although at a lower rate during the silicon-starvation period. In the dark, synthesis of this pigment ceased when cell division stopped, and the amount per unit volume of culture decreased. These results are discussed in relation both to the effect of silicon on the metabolism of the diatom and to the possible function of the carotenoids.Dedicated to Prof. C. B. van Niel on the occasion of his 70th birthday.  相似文献   

4.
The superfamily of light-harvesting complex (LHC) proteins is comprised of proteins with diverse functions in light-harvesting and photoprotection. LHC proteins bind chlorophyll (Chl) and carotenoids and include a family of LHCs that bind Chl a and c. Dinophytes (dinoflagellates) are predominantly Chl c binding algal taxa, bind peridinin or fucoxanthin as the primary carotenoid, and can possess a number of LHC subfamilies. Here we report 11 LHC sequences for the chlorophyll a-chlorophyll c 2-peridinin protein complex (acpPC) subfamily isolated from Symbiodinium sp. C3, an ecologically important peridinin binding dinoflagellate taxa. Phylogenetic analysis of these proteins suggests the acpPC subfamily forms at least three clades within the Chl a/c binding LHC family; Clade 1 clusters with rhodophyte, cryptophyte and peridinin binding dinoflagellate sequences, Clade 2 with peridinin binding dinoflagellate sequences only and Clades 3 with heterokontophytes, fucoxanthin and peridinin binding dinoflagellate sequences.  相似文献   

5.
Owens TG  Wold ER 《Plant physiology》1986,80(3):732-738
Three pigment-protein complexes were isolated from the marine diatom Phaeodactylum tricornutum (Bohlin) by treatment of thylakoid membrane fragments with 1% Triton X-100 at 4°C followed by centrifugation on sucrose density gradients. The major complex contains chlorophyll a, c1, c2, and the carotenoid fucoxanthin (chlorophyll a: c1: c2: fucoxanthin = 1.0: 0.09: 0.28: 2.22) bound to an apoprotein doublet of 16.4 and 16.9 kilodaltons. This complex accounts for >70% of the total pigment and 20 to 40% of the protein in the thylakoid membranes. Efficient coupling of chlorophyll c and fucoxanthin absorption to chlorophyll a fluorescence supports a light-harvesting function for the complex. A minor light-harvesting complex containing chlorophyll a, c1, and c2 but no fucoxanthin (chlorophyll a: c1: c2 = 1.0: 0.23: 0.26) was also isolated at Triton: chlorophyll a ratios between 20 and 40. These pigments are bound to a similar molecular weight apoprotein doublet. The third complex isolated was the P700-chlorophyll a protein, the reaction center of photosystem I, which showed characteristics similar to those isolated from other plant sources. The yield of the chlorophyll a/c-fucoxanthin complex was shown to respond strongly to changes in light intensity during growth, accounting for most of the changes in cellular pigmentation.  相似文献   

6.
The assembly of the photosynthetic apparatus was studied during the first six days of development of Fucus serratus L. embryos. HPLC analysis revealed that oospheres and zygotes contain the same photosynthetic pigments (i.e., chlorophyll a, chlorophyll c, fucoxanthin, violaxanthin, and β-carotene) as fully developed thalli. Total pigment amount increased after fertilization, mainly due to an active synthesis of Chl a and fucoxanthin. Spectral modifications revealing the progressive integration of Chl a and Chl c in the photosynthetic units are described. In particular, a distinct emission at 705 nm, reflecting the accumulation of LHC I, was clearly detected. The emission bands at 705 nm and 725 nm were characterized by 77 K excitation fluorescence measurements. Their spectra differed by the presence of a large band at approximately 550 nm due to fucoxanthin in the excitation spectrum of F705 nm. Room temperature variable fluorescence was first observed 30 h after fertilization indicating a functional Photosystem II electron transfer at this developmental stage. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
The present study examined the protein associations and energy transfer characteristics of chlorophyll c and fucoxanthin which are the major light-harvesting pigments in the brown and diatomaceous algae. It was demonstrated that sodium dodecyl sulfate (SDS)-solubilized photosynthetic membranes of these species when subjected to SDS polyacrylamide gel electrophoresis yielded three spectrally distinct pigment-protein complexes. The slowest migrating zone was identical to complex I, the SDS-altered form of the P-700 chlorophyll a-protein. The zone of intermediate mobility contained chlorophyll c and chlorophyll a in a molar ratio of 2 : 1, possessed no fucoxanthin, and showed efficient energy transfer from chlorophyll c to chlorophyll a. The fastest migrating pigment-protein zone contained fucoxanthin and chlorophyll a, possessed no chlorophyll c, and showed efficient energy transfer from fucoxanthin to chlorophyll a. It is demonstrated that the chlorophyll ac-protein and the chlorophyll afucoxanthin-protein complexes are common to the brown algae and diatoms examined, and likely share similar roles in the photosynthetic units of these species.  相似文献   

8.
Summary Whole cell absorption curves of the marine dinoflagellate Glenodinium sp., cultured at irradiances of 250W/cm2 (low light) and 2500W/cm2 (high light), were measured and their difference spectrum determined. Absorption by low light grown cells exceeded that of high light grown cells throughout the visible spectrum by a factor which ranged from 2 to 4. The difference spectrum supported the view that increased pigmentation, resulting from low light conditions, was largely due to an increase in cell content of a peridinin-chlorophyll a-protein (PCP) and an unidentified chlorophyll a component of the chloroplast membrane. Photosynthetic action spectrum measurements indicated that chlorophyll a, peridinin, and very likely chlorophyll c, were effective light-harvesting pigments for photosynthesis in both high and low light grown cultures of Glenodinium sp. Comparison of action spectra and absorption spectra suggested that low light grown cells selectively increased cellular absorption in the 480 nm to 560 nm region, and effectively utilized this spectral region for the promotion of oxygen evolution.Abbreviations PCP peridinin-chlorophyll a-protein - SIO (F.T. Haxo) Scripps Institution of Oceanography collection  相似文献   

9.
The effect of Fe(III) deficiency on qualitative and quantitative changes in pigment composition in Phaeodactylum tricornutum Bohlin was demonstrated by HPLC and AAS. Maximum content of pigments showed the diatom cells incubated at the optimum iron concentration, i.e., 10 M. The contents of chlorophyll a, chlorophyll c 1+c 2, fucoxanthin, diadinoxanthin and ,-carotene were 109.99, 20.16, 40.39, 1.29 and 1.48 fg per cell, respectively. The results obtained showed that Fe(III) affected qualitative and quantitative pigment composition in P. tricornutum. The content of individual pigments, proportions between accompanying pigments and their ratios to chlorophyll a were important indicators of phytoplankton response to iron stress. The strong reduction in ,-carotene content, several times (2–5) increase in diadinoxanthin level as compared to ,-carotene, and high amount of diadinoxanthin in relation to chlorophyll a were observed in algae growing at very low Fe(III) concentrations, 0.001 and 0.01 M. The data suggested that phytoplankton pigments could be a potential physiological marker.  相似文献   

10.
The utility of absorbance and fluorescence-emission spectra for discriminating among microalgal phylogenetic groups, selected species, and phycobilin- and non-phycobilin-containing algae was examined using laboratory cultures. A similarity index algorithm, in conjunction with fourth-derivative transformation of absorbance spectra, provided discrimination among the chlorophyll [Chl] a/phycobilin (cyanobacteria), Chl a/Chl c/phycobilin (cryptophytes), Chl a/Chl b (chlorophytes, euglenophytes, prasinophytes), Chl a/Chl c/fucoxanthin (diatoms, chrysophytes, raphidophytes) and Chl a/Chl c/peridinin (dinoflagellates) spectral classes, and often between}among closely related phylogenetic groups within a class. Spectra for phylogenetic groups within the Chl a/Chl c/fucoxanthin, Chl a/Chl c/peridinin, Chl a/phycobilins and Chl a/Chl c/phycobilin classes were most distinguishable from spectra for groups within the Chl a/Chl b spectral class. Chrysophytes/diatoms/raphidophytes and dinoflagellates (groups within the comparable spectral classes, Chl a/Chl c/fucoxanthin and Chl a/Chl c/peridinin, respectively) displayed the greatest similarity between/among groups. Spectra for phylogenetic groups within the Chl a/Chl c classes displayed limited similarity with spectra for groups within the Chl/phycobilin classes. Among the cyanobacteria and chlorophytes surveyed, absorbance spectra of species possessing dissimilar cell morphologies were discriminated, with the greatest range of differentiation occurring among cyanobacteria. Among the cyanobacteria, spectra for selected problematic species were easily discriminated from spectra from each other and from other cyanobacteria. Fluorescence-emission spectra were distinct among spectral classes and the similarity comparisons involving fourth-derivative transformation of spectra discriminated the increasing contribution of distinct cyanobacterial species and between phycobilin- and non-phycobilin-containing species within a hypothetical mixed assemblage. These results were used to elucidate the application for in situ moored instrumentation incorporating such approaches in water quality monitoring programmes, particularly those targeting problematic cyanobacterial blooms.  相似文献   

11.
A light-harvesting pigment-protein complex was isolated from the diatom Phaeodactylum tricornutum using the zwitterionic detergent CHAPS (3-[3-cholamidopropyl)dimethylammonio]-1-propanesulfonate). Detergent-solubilized membranes were fractionated by sucrose density gradient centrifugation into three components. The medium density fraction contained chlorophyll a, chlorophyll c, and fucoxanthin. This fraction was purified by DEAE-ion exchange chromatography, and contained chlorophyll a, chlorophyll c, and fucoxanthin in a molar ratio of 2.4:1.0:4.8. Fluorescence emission and excitation spectra of the isolated complex demonstrated that light energy absorbed by chlorophyll c and fucoxanthin was coupled to chlorophyll a fluorescence. Upon denaturation, the apoprotein yielded a polypeptide doublet at 17.5 to 18.0 kilodaltons which accounted for 30 to 40% of the toal membrane protein. These findings indicate that this pigment-protein complex is a major component of the diatom photosynthetic lammellae. The quantitative amino acid composition of the apoprotein was very similar to those reported for other membrane-bound pigment-protein complexes. Based on the protein to chlorophyll a ratio of 7700 grams protein per mole chlorophyll a for the complex, each apoprotein molecule contains, to the nearest integer, two chlorophyll a, one chlorophyll c, and five fucoxanthin molecules. Polyclonal antibodies raised against the 17.5 to 18.0 kilodaltons apoprotein showed a monospecific reaction with only the 17.5 to 18.0 protein zone from denatured P. tricornutum membranes as well as to the nondenatured pigment-protein complex. It appears that this complex is common to other diatom species.  相似文献   

12.
In the Nervion River estuary surface samples were taken from March to September 2003 at six sites covering most of the salinity range with the aim to know the biomass and taxonomic composition of phytoplankton assemblages in the different segments. Nine groups of algae including cyanobacteria, diatoms, dinoflagellates, chlorophytes, prasinophytes, euglenophytes, chrysophytes, haptophytes, raphidophytes and cryptophytes were identified by means of a combination of pigment analysis by high-performance liquid chromatography (HPLC) and microscopic observations of live and preserved cells. Diatoms, chlorophytes and cryptophytes were the most abundant algae in terms of cells number, whereas fucoxanthin, peridinin, chlorophyll b (Chl b) and alloxanthin were the most abundant auxiliary pigments. Based on multiple regression analysis, in the outer estuary (stations 0, 1, 2 and 3) about 93% of the chlorophyll a (Chl a) could be explained by algae containing fucoxanthin and by algae containing Chl b, whereas in the rest of the estuary most of the Chl a (about 98%) was accounted for by fucoxanthin, Chl b and alloxanthin containing algae. The study period coincided with that of most active phytoplankton growth in the estuary and fucoxanthin was by far the dominant among those signature pigments. Several diatoms, chrysophytes, haptophytes and raphydophytes were responsible for fucoxanthin among identified species. Besides, dinoflagellates with a pigment pattern corresponding to chrysophytes and type 4 haptophytes were identified among fucoxanthin-bearing algae. Cryptophytes were the most abundant species among those containing alloxanthin. The maximum of Chl b registered at the seaward end in April coincided with a bloom of the prasinophytes Cymbomonas tetramitiformis, whereas the Chl b maxima in late spring and summer were accounted for by prasinophytes in the middle and outer estuary and by several species of chlorophytes in the middle and inner estuary. Other Chl b containing algae were euglenophytes and the dinoflagellate Peridinium chlorophorum. Dinoflagellates constituted generally a minor component of the phytoplankton.  相似文献   

13.
The photosynthetic pigments of 51 species (71 isolates) of tropical and sub-tropical diatoms from 13 out of 22 families were examined. These were the Thalassiosiraceae, Melosiraceae, Coscinodiscaceae, Rhizosoleniaceae, Biddulphiaceae, Chaetoceraceae, Lithodesmiaceae, Eupodiscaceae, Cymatosiraceae, Diatomaceae, Naviculaceae, Nitzschiaceae and Phaeodactylinaceae. Pigments were analyzed by cellulose and polyethylene thin-layer chromatography (TLC) and reverse-phase high-performance thin-layer chromatography (HPTLC). All species contained chlorophylls a and c2 and the carotenoids carotene, fucoxanthin, diatoxanthin and diadinoxanthin. In addition, 14 species (20 isolates) contained one or more of four minor carotenoids, which were not identified further. One species, Thalassiothrix heteromorpha, contained small amounts of a 19′-butanoyloxyfucoxanthin-like pigment, in addition to fucoxanthin. Chlorophyll c2 was present in all the diatoms tested and occurred together with chlorophyll c1 in 88% of them. The presence of both chlorophylls c1 and c2 therefore can no longer be considered a universal characteristic of the diatom class. Where chlorophyll c1 was absent or occurred in trace amounts only (8 species, 11 isolates), it was usually replaced by a new chlorophyll c pigment designated chlorophyll c3, recently characterized from several prymnesiophytes and one chrysophyte. Exceptions were Nitzschia closterium (CS-114), which contained only chlorophyll c2, and Nitzschia bilobata (CS-47), which contained all three chlorophylls (c1, c2 and c3) in approximately equal amounts. Five species that contained chlorophylls c1 and c2 also contained chlorophyll c3 in trace quantities Quantitative pigment analyses of the 71 isolates showed that chlorophyll concentrations ranged from 0.02 μg. 106 cells?1 in the smallest diatom, Extubocellulus spinifer, to 174.4 μg. 106 cells?1 in one of the largest diatoms, Coscinodiscus sp. under the standard growth conditions used. The mean molar ratio of chlorophyll a:c in the 72 isolates was 3.33, with a range of 1.65–7.25. The close similarity between diatom and prymnesiophyte pigmentation was confirmed. Each class has three patterns of pigmentation: viz species with chlorophylls c1 and c2 and‘true’fucoxanthin, species with chlorophylls c3 and c2 and‘true’fucoxanthin, and species with chlorophylls c3 and c2 and fucoxanthin derivatives.  相似文献   

14.
The lipophilic photosynthetic pigments in Limnothrix redekei, Planktothrix agardhii (cyanobacteria), Stephanodiscus minutulus, Synedra acus (diatoms), Scenedesmus acuminatus, and Scenedesmus armatus (chlorophycean) all isolated from an eutrophic lake were quantitatively determined by HPLC. The algae were grown semi-continuously under nutrient sufficient conditions at 20°C at a 12/12 h light/dark cycle with constant irradiance or with simulated natural light fluctuations as well as at a 6/18 h light/dark cycle with constant irradiance, all at the same daily light exposure. The zeaxanthin and the myxoxanthophyll contents of cyanobacteria were not influenced by fluctuating light, a short photoperiod or a different sampling time. The chlorophyll b/a ratio, the lutein/chlorophyll a ratio, and the neoxanthin content of chlorophycean as well as the chlorophyll c/a and the fucoxanthin/chlorophyll a ratio of diatoms were only slightly influenced by these factors. Therefore in some cases marker pigment contents and in other cases marker pigment/chlorophyll a ratios may be more useful for quantifying the relative importance of different taxonomic groups in natural phytoplankton. Simulated natural light fluctuations or the length of the photoperiod only slightly influenced the pigment content or the marker pigment/chlorophyll a ratio.  相似文献   

15.
Spatial and seasonal characteristics of phytoplankton in Tolo Harbour, Hong Kong, were studied by microscopic observation of phytoplankton samples and HPLC analysis of chemotaxonomic pigments. Diatoms dominated the phytoplankton. Common diatoms included Skeletonema costatum and species of Cerataulina, Leptocylindrus, Pseudo-nitzschia and Thalassiosira. Dinoflagellates occurred sporadically and mainly in the inner part of the harbour. The dinoflagellate Scrippsiella trochoidea was the causative organism for the red tide occurrences in March, April and September 2001. Significant positive correlations between fucoxanthin and diatoms and between peridinin and dinoflagellates suggested that fucoxanthin and peridinin were valuable chemotaxonomic markers for diatoms and dinoflagellates, respectively. Analysis of pigment ratios revealed that red tide events caused by dinoflagellates were marked by increase in the value of PERI:chl a and decrease in the value of FUCO:chl a. Increase in the value of FUCO:chl a also revealed the presence of a dense population of Pseudo-nitzschia that was not indicated by increase in chlorophyll a and fucoxanthin concentrations. Pigment analysis also revealed the presence of cyanobacteria, silicoflagellates, cryptophytes and green algae in the surface waters of Tolo Harbour.  相似文献   

16.
The molecular structure of the carotenoid lactoside P457, (3S,5R,6R,3′S,5′R,6′S)‐13′‐cis‐5,6‐epoxy‐3′,5′‐dihydroxy‐3‐(β‐d ‐galactosyl‐(1→4)‐β‐d ‐glucosyl)oxy‐6′,7′‐didehydro‐5,6,7,8,5′,6′‐hexahydro‐β,β‐caroten‐20‐al, was confirmed by spectroscopic methods using Symbiodinium sp. strain NBRC 104787 cells isolated from a sea anemone. Among various algae, cyanobacteria, land plants, and marine invertebrates, the distribution of this unique diglycosyl carotenoid was restricted to free‐living peridinin‐containing dinoflagellates and marine invertebrates that harbor peridinin‐containing zooxanthellae. Neoxanthin appeared to be a common precursor for biosynthesis of peridinin and P457, although neoxanthin was not found in peridinin‐containing dinoflagellates. Fucoxanthin‐containing dinoflagellates did not possess peridinin or P457; green dinoflagellates, which contain chlorophyll a and b, did not contain peridinin, fucoxanthin, or P457; and no unicellular algae containing both peridinin and P457, other than peridinin‐containing dinoflagellates, have been observed. Therefore, the biosynthetic pathways for peridinin and P457 may have been coestablished during the evolution of dinoflagellates after the host heterotrophic eukaryotic microorganism formed a symbiotic association with red alga that does not contain peridinin or P457.  相似文献   

17.
Understanding the natural variability of photosynthetic pigment ranges and distributions in healthy corals is central to evaluating how useful these measurements are for assessing the health and bleaching status of endosymbiotic reef-building corals. This study examined the photosynthetic pigment variability in visibly healthy Porites lobata and Porites lutea corals from Kaneohe Bay, Hawaii and explored whether pigment variability was related to the genetic identity or phenotypic characteristics of the symbionts. Concentrations of the photosynthetic pigments chlorophyll a, peridinin, chlorophyll c 2 , diadinoxanthin, diatoxanthin, β,β-carotene and dinoxanthin were quantified using high-performance liquid chromatography (HPLC). Pigment concentrations were found to range 1.5–10 fold in colonies of each species at similar depths (0–2, 2–4, 10–15 and 19–21 m). Despite the high pigment variability, pigment ratios for each species were relatively conserved over the 0–21 m depth gradient. The genetic identity of the symbiont communities was examined for each colony using 18S nuclear ribosomal DNA (nrDNA) restriction fragment length polymorphisms. All colonies contained symbionts belonging to clade C. The density and phenotypic characteristics of the symbionts were explored using flow cytometry, and fluorescence and side scatter (cell size) properties revealed phenotypically distinct symbiont subpopulations in every colony. The symbiont subpopulations displayed pigment trends that may be driven by acclimatization to irradiance microenvironments within the host. These results highlight the biological complexity of healthy coral–symbiont associations and the need for future research on pigments and symbiont subpopulation dynamics.  相似文献   

18.
19.
A short overview, based on our own findings, is given of the minor pigments that function as key components in photosynthesis. Recently, we found the presence of chlorophyll a, chlorophyll d′ and pheophytin a as minor pigments in the chlorophyll d-dominated cyanobacterium Acaryochloris marina. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
A comparision of high (330 microeinsteins per meter squared per second) and low (80 microeinsteins per meter squared per second) light grown Gonyaulax polyedra indicated a change in the distribution of chlorophyll a, chlorophyll c2, and peridinin among detergent-soluble chlorophyll-protein complexes. Thylakoid fractions were prepared by sonication and centrifugation. Chlorophyll-protein complexes were solubilized from the membranes with sodium dodecyl sulfate and resolved by Deriphat electrophoresis. Low light cells yielded five distinct chlorophyll-protein complexes (I to V), while only four (I′ to IV′) were evident in preparations of high light cells. Both high molecular weight complexes I and I′ were dominated by chlorophyll a absorption and associated with minor amounts of chlorophyll c. Both complexes II and II′ were chlorophyll a-chlorophyll c2-protein complexes devoid of peridinin and unique to dinoflagellates. The chlorophyll a:c2 molar ratio of both complexes was 1:3, indicating significant chlorophyll c enrichment over thylakoid membrane chlorophyll a:c ratios of 1.8 to 2:1. Low light complex III differed from all other high or low light complexes in that it possessed peridinin and had a chlorophyll a:c2 ratio of 1:1. Low light complexes IV and V and high light complexes III′ and IV′ were spectrally similar, had high chlorophyll a:c2 ratios (4:1), and were associated with peridinin. The effects of growth irradiance on the composition of chlorophyll-protein complexes in Gonyaulax polyedra differed from those described for other chlorophyll c-containing plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号