首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impact of growth temperature was evaluated for the fungal plant pathogen Mycoleptodiscus terrestris over a range of temperatures (20–36°C). The effect of temperature on biomass accumulation, colony forming units (cfu), and microsclerotia production was determined. Culture temperatures of 24–30°C produced significantly higher biomass accumulations and 20–24°C resulted in a significantly higher cfu. The growth of M. terrestris was greatly reduced at temperatures above 30°C and was absent at 36°C. The highest microsclerotia concentrations were produced over a wide range of temperatures (20–30°C). These data suggest that a growth temperature of 24°C would optimize the parameters evaluated in this study. In addition to growth parameters, we also evaluated the desiccation tolerance and storage stability of air-dried microsclerotial preparations from these cultures during storage at 4°C. During 5 months storage, there was no significant difference in viability for air-dried microsclerotial preparations from cultures grown at 20–30°C (>72% hyphal germination) or in conidia production (sporogenic germination) for air-dried preparations from cultures grown at 20–32°C. When the effect of temperature on germination by air-dried microsclerotial preparations was evaluated, data showed that temperatures of 22–30°C were optimal for hyphal and sporogenic germination. Air-dried microsclerotial preparations did not germinate hyphally at 36°C or sporogenically at 20, 32, 34, or 36°C. These data show that temperature does impact the growth and germination of M. terrestris and suggest that water temperature may be a critical environmental consideration for the application of air-dried M. terrestris preparations for use in controlling hydrilla.  相似文献   

2.
The ability of Rhizoctonia solani AG‐1 IA, the causal agent of rice sheath blight, to survive in diseased rice straw and as sclerotia and mycelia was investigated. After storage for 10 months at 4°C, 25°C and non‐air‐conditioned natural room temperature (NRT, temperature range from 6°C to 35°C), sclerotia placed inside a desiccator, soaked in sterile water or immersed in wet paddy soil were viable. In contrast, only 15% of sclerotia in dry paddy soil survived. Survival of mycelia was severely affected by temperature and humidity. After 10 months in a desiccator at 4°C, 55% of mycelia samples could survive, whereas at 25°C and NRT, mycelial samples survived for only 7 and 5 months, respectively. However, mycelia stored in sterile water at constant temperatures (4°C or 25°C) survived for 10 months. A certain amount of UV radiation had no obvious effect on the survival of sclerotia or mycelia. The survival rate of the fungus in diseased rice straw stored for 16 months could reach 100% at 4°C, 50% at 25°C and 35% at NRT. The survival rates of the pathogen in diseased rice straw buried in dry, wet and flooded paddy soils after 10‐month storage at NRT were 75, 100 and 100%, respectively, indicating that soil humidity is a crucial factor for the survival of this fungus.  相似文献   

3.
Macroconidia of Sporidesmium sclerotivorum, a mycoparasite of Sclerotinia spp., germinated after 3 days in soil adjacent to sclerotia of S. minor and on membrane filters placed on soil containing sclerotia. Germination increased with time up to 18 days and with concentration of sclerotia. Conidia as distant as 9 mm from single sclerotia germinated. Germination of conidia was maximum on a sclerotial agar medium in the range of pH 5 to pH 7. Cultivation of S. sclerotivorum parasitically on living sclerotia proceeded optimally in moist, fine quartz sand amended with 1 to 2% (w/w) sclerotia and 0.07% (w/w) CaCO3, at 25 degrees C. Infection of sclerotia in sand reached 100% by 5 weeks. Conidia production paralled infection resulting in logarithmic increase in numbers; a maximum of 3 x 10(5) to 4 x 10(5) conidia/g was reached in 6 to 12 weeks. Viability of air-dried sand-sclerotial cultures of S. sclerotivorum was reduced after 1 and 6 days, but viability was undiminished in air-dried soil. Sporidesmium sclerotivorum survived in moist and air-dried soils stored at room temperature for 15 months.  相似文献   

4.
The effect of temperature on the recovery of bacterial growth after rewetting dry soil was measured in a soil that responded with bacterial growth increasing immediately upon rewetting in a linear fashion (type (i) response sensu Meisner et al. (Soil Biol Biochem 66: 188-192, 2013)). The soil was air-dried for 4 days and then rewetted at different temperatures. Bacterial growth over time was then estimated using the leucine incorporation method. At 25 °C, the recovery of bacterial growth to levels of a wet control soil was rapid, within 6 h, while at 15 °C, recovery time increased to around 60 h, becoming more than a week at 5 °C. The temperature dependency of the recovery time was well modeled by a square root function. Thus, temperature will not only directly affect growth rates but also affect length of transition periods, like resuscitation after a drying event. The temperature during the rewetting event thus has to be taken into consideration when analyzing the microbial response dynamics.  相似文献   

5.
Unformulated conidia of Beauveria bassiana were stored at five different temperatures (0°, 10°, 20°, 30° and 40°C) at six different relative humidities (RH) (0, 33, 53, 75, 85 and 98%). Conidial viabilities and virulence against third instar larvae of Helicoverpa armigera were determined over a 24‐month period. Conidia survived longest at lower temperatures (0–20°C) and lower RH levels (0–53% RH). At higher temperatures (30–40°C) conidia did not survive. When the temperature was decreased from 30°C to 0°C, at nearly all RH levels the longevity of conidia increased. Conidia remained virulent for third instar larvae of H. armigera under favourable storage conditions for 24 months.  相似文献   

6.
  1. At temperature levels from 10 to 25°C animals from resting eggs produce subitaneous eggs independent on temperature. In contrast animals from subitaneous eggs produce subitaneous eggs dependent on temperature. At a high rate subitaneous eggs are only formed at temperature levels above 20°C.
  2. Below 10°C no development occurs in the juveniles. At temperatures of 30/22°C (24.7°C) the first subitaneous eggs are formed after 6–9 days, at 14/9°C (10.7°C) they are formed after 34 days. At different temperature levels the developmental rate of the young is from 10.5 to 42 days. One generation extends over 16.5 (30/22°C) to 75 days (14/9°C). The average egg production is 10–20 subitaneous eggs or 30–60 resting eggs. The maximum egg production of one individual is 50 subitaneous eggs or 84 resting eggs. 50% of the animals have just formed resting eggs, before the juveniles are hatched. Resting eggs in the first egg-batch are formed 6–20 days later than subitaneous eggs. The duration of life is between 65 (30/22°C) and 140 days (19/13°C).
  3. Young worms in resting eggs have a dormance period of at least 15–30 days.
At room temperatures (20°C) no juvenile in resting eggs hatches from water. By combining room and refrigerator (3.5°C) temperatures the hatching rate increases to a maximum of 85%. To reach a hatching rate of 50–65% the influence of low temperatures must be at least 30 days. At room temperatures 60% of the young in resting eggs hatch from mud covered with water. Combining high and low temperatures the hatching success is between 67 and 81%, where the highest percentage of the young may hatch at room temperature. Up to 90 days low temperatures cause a maximum hatching rate of 79%. It decreases to approximately 30% after 180 days. At high temperatures resting eggs preserved in 100% moist mud, survive for two months. By adding a period of low temperatures the hatching rate increases to a maximum of 52%. Low temperatures are survived for more than 6 months. Up to 30 days preservation at 3.5°C causes a maximum hatching rate of 61%, up to 12o days it decreases to 30%. At room temperature the young in resting eggs are not resistant against air-dried mud (30–40% rel. air moisture). Combining high and low temperatures air-dried mud is endured 1 month (hatching rate 5–14%). Preservation of 30–120 days at 3.5°C and 70% rel. air moisture result in a hatching rate of 43–61%. li]4. In the open air in Middle-Europe there occur 5–6 generations of M. ehrenbergii per life-cycle. The first generation hatches from resting eggs in May, where the production of subitaneous eggs is independent on temperature. All other generations up to October hatch from subitaneous eggs. The egg-production of those worms is dependent on environmental factors. In summer subitaneous egg production prevails, in autumn resting egg production. The abundance during the life-cycle is dependent on the number of animals which produce subitaneous eggs. Resting eggs are predestinated to endure periods of dryness and cold. The life-cycles of the species M. lingua and M. productum are different from those of M. ehrenbergii in length and in the number of generations. In both species 7 generations occur over 8 to 8.5 respectively 5.5 months. M. nigrirostrum only forms resting eggs. The life-cycle consists of one generation from February/March to May/June.  相似文献   

7.
The sclerotia of Sclerotium rolfsii Sacc. survived in natural soil for 225 days under controlled moisture at 50% water holding capacity (WHC) after which there was a progressive reduction in the population of viable sclerotia. At 390 days only 48% were recovered. Sclerotia survived well at moisture contents upto 75% WHC but at 100% the population declined rapidly and none were recovered after 60 days. The contents of the sclerotia were found to lyse without germination leaving hollow rinds. Such lysis was found to be favoured between 25 and 40°C. At and below 20°C no such lysis was recovered and more than 80% sclerotia were recovered even after 60 days.  相似文献   

8.
菌核是核盘菌Sclerotinia spp.在土壤中的主要存活形式和菌核病的主要初侵染源,在土壤中可存活8年以上,其数量和存活状况直接影响着菌核病的发生和危害程度.本研究以雪腐核盘菌Sclerotinia nivalis菌株SS-TB为材料,分析了菌核萌发的影响因素、致死温度以及土壤温度对菌核存活的影响.结果 表明,未...  相似文献   

9.
The impact of climate change on N leaching from hill land plant/soil systems was investigated using a transplant technique involving the movement of intact lysimeter cores of three contrasting soil types down an altitudinal gradient at Great Dun Fell, Cumbria. Air and soil temperatures and precipitation were monitored at four elevations down an altitudinal transect using automatic weather stations for a period of two years. The altitudinal sequence of air temperature followed the anticipated pattern, providing mean annual temperatures at the four locations of 3.4, 5.0, 6.3 and 8.1 °C. Lapse rates of both mean air and soil temperatures over the altitudinal range 171–845 m were 6.6 (1993) and 7.0 °C km–1 (1994). Soil monthly temperature gradients for a particular soil type for each of the two years showed a seasonal range of 6.0 and 7.4 °C km–1, respectively, and for air temperature of 4.3 and 3.1 °C km–1. Precipitation gradients showed the expected general increase with altitude, but were less predictable. Inorganic nitrogen leaching was studied in lysimeter leachates with climatic amelioration resulting in dramatic reductions in leachate nitrate concentrations and associated total concentrations of inorganic nitrogen. Decreases in leachate nitrate concentrations were observed for all three soil types studied. Soils receiving supplemented rainfall also showed decreased N concentrations, suggesting that temperature was the main controlling factor responsible for the observed reductions. Increased N uptake by the vegetation, in response to the increases in temperature, is considered to be critical in controlling soil solution chemistry at these sites.  相似文献   

10.
Low soil temperatures induce water deficits in olive (Olea europaea) trees   总被引:2,自引:0,他引:2  
Olive trees are often subjected to low temperatures during winter. To quantify the effects of low temperatures on the water relations of olive trees, we studied the responses to low soil temperatures on winter days of variable evaporative demand (ET0) in 1-year-old potted olive (Oleo europaea L. cv. Picual) trees in 1996 and 1997. Low night (2.5 and 5.2°C) but ambient day soil temperatures (above 10°C) did not affect stomatal conductance (gs), leaf (Ψleaf) and stem (Ψstem) water potentials. Soil temperature levels inducing water stress in olive trees were determined for winter days with ET0 typical for southern Spain (ET0= 1.5 ± 0.3 mm day?1). Leaf and stem water potential decreased and root hydraulic resistance (rroot) increased when trees were exposed to night and day soil temperatures below 10°C. Stomatal conductance was not affected at soil temperatures between 6.4 and 10°C, but decreased at temperatures below 6.4°C. The soil temperature levels affecting the water uptake of olive trees remained relatively constant over the range of ET0 of 1-2 mm day?1 during winter and early spring months. However, the soil temperature influencing gs appeared to be more variable and was affected by ET0. Olive tree recovery from low soil temperature stress depended on stress duration and severity and interacted with ET0. Recovery of ψ started already during the stress period, probably induced by stomatal closure and high rroot, thus allowing tree rehydration overnight. Root hydraulic resistance contributed the major part of whole-tree hydraulic resistance in response to cold stress, accounting for 76 and 89% at 6.4 and 4.6°C, respectively; which indicates that rroot is the primary control of the water status in olive trees under low temperatures.  相似文献   

11.
Temperature preference behaviour of gammarid crustaceans from depths between 600–2000 m in Lake Baikal was studied in a system which provided a stable temperature gradient at pressures ranging from 50–150 atm. At the pressure of their habitat, these animals show well-defined modal distributions of sojourn temperatures around mean values from 3.0–5.5°C, av. 3.9 ± 0.3°C; mean modal Tp is estimated at 3.5°C. Year-round habitat temperatures are 3.0–3.6°C. The effect of changing pressure upon sojourn temperatures was explored over the range 50–150 atm. The slope of the mean sojourn temperature/pressure curves was 2.1°C/100 atm, significantly greater than 0. Mean nodal temperature estimates indicate that the corresponding slope in the range of 50–100 atm is 3°C/100 atm, and in the range of 100–150 atm, is likely to exceed 5°C/100 atm.  相似文献   

12.
The infection potential of sporosori of Polymyxa graminis involved in the transmission of the Indian peanut clump virus (IPCV) was assessed by culturing bait plants exposed to various concentrations of sporosorus suspensions and then determination of the numbers of plants that became infected. Storage of air-dried inoculum at temperatures above 30°C resulted in an increase in the infection potential compared to that of sporosori stored at 15°C or 20°C. In contrast, when the sporosori were stored at -20°C or freeze-dried, their infection potential was low. These results confirm the adaptation of P. graminis isolates associated with IPCV transmission to the tropical environment. The implication of storage temperature for the epidemiology of Indian peanut clump virus and for the assessment of the infection potential of the vector in the soil is discussed.  相似文献   

13.
The threatened Gulf of St. Lawrence Aster, Symphyotrichum laurentianum Fernald (Nesom), is an annual coastal halophyte of the southern Gulf of St. Lawrence, Canada. We examined the effects of salinity (0–20 g/L) and temperature (16–30°C) on germination of S. laurentianum seeds over 32 days. The time‐course of germination was significantly affected by both salinity and temperature. At lower temperatures (16°C and 23°C), germination was inhibited by salt water at days 16 and 32. However, at 30°C germination rates after 16 days were highest at an intermediate salinity, whereas after 32 days germination was uniformly high in all salinity treatments. Overall, the effect of temperature on germination was much stronger than the effect of salinity. Delays in germination resulting from exposure to salinity or from low soil temperatures could set up strong size asymmetries between seedlings of S. laurentianum and the surrounding vegetation, leading to suppression of growing seedlings via shading. Because germination has the potential to be a significant population bottleneck for this seed‐dependent annual, conservation efforts should consider microsite suitability for germination in the management of natural populations and in the selection of sites for explants.  相似文献   

14.
A world-wide study of high altitude treeline temperatures   总被引:43,自引:0,他引:43  
Aim At a coarse scale, the treelines of the world's mountains seem to follow a common isotherm, but the evidence for this has been indirect so far. Here we aim at underpinning this with facts. Location We present the results of a data‐logging campaign at 46 treeline sites between 68° N and 42° S. Methods We measured root‐zone temperatures with an hourly resolution over 1–3 years per site between 1996 and 2003. Results Disregarding taxon‐, landuse‐ or fire‐driven tree limits, high altitude climatic treelines are associated with a seasonal mean ground temperature of 6.7 °C (±0.8 SD; 2.2 K amplitude of means for different climatic zones), a surprisingly narrow range. Temperatures are higher (7–8 °C) in the temperate and Mediterranean zone treelines, and are lower in equatorial treelines (5–6 °C) and in the subarctic and boreal zone (6–7 °C). While air temperatures are higher than soil temperatures in warm periods, and are lower than soil temperatures in cold periods, daily means of air and soil temperature are almost the same at 6–7 °C, a physics driven coincidence with the global mean temperature at treeline. The length of the growing season, thermal extremes or thermal sums have no predictive value for treeline altitude on a global scale. Some Mediterranean (Fagus spp.) and temperate South Hemisphere treelines (Nothofagus spp.) and the native treeline in Hawaii (Metrosideros) are located at substantially higher isotherms and represent genus‐specific boundaries rather than boundaries of the life‐form tree. In seasonal climates, ground temperatures in winter (absolute minima) reflect local snow pack and seem uncritical. Main conclusions The data support the hypothesis of a common thermal threshold for forest growth at high elevation, but also reflect a moderate region and substantial taxonomic influence.  相似文献   

15.
《Aquatic Botany》1987,27(2):127-138
Greenhouse and growth chamber studies were conducted to evaluate growth and N utilization by Typha latifolia L. in flooded organic soil under varying temperatures and rates of N additions. Elevation of temperature from 10 to 25°C increased shoot biomass yields by 275%. Root biomass yields were lowest at 10°C and increased linearly as a function of temperature. Shoot/root ratios were low (0.72–0.82) at lower temperatures (10–15°C) and ratios increased by about three times at higher temperatures (20–30°C). Biomass yields were increased by addition of N fertilizers, while the shoot/root ratios were directly related to plant-available N present in the soil.Fertilizer 15N uptake (expressed as % of applied N) by the whole plant was 5.3% at 10°C, 37.5% at 20°C and at 30°C decreased to 20.8%. Fertilizer N accumulation in shoots was 2.1–29.8% of applied N, while roots accumulated 3.2–7.7%. Under greenhouse conditions, N uptake by T. latifolia was found to increase with increased rate of N application. Fertilizer N uptake by both shoots and roots was in the range of 61–77%. Plants cultured in growth chambers were affected by low light conditions resulting in poor growth and low fertilizer 15N uptake, as compared to plants grown under greenhouse conditions. Added fertilizer N was the major source of N during the early part of the growing season, while soil organic N was the major and perhaps the sole source of N during the latter part of the growing season.  相似文献   

16.
Abstract The germination of Sorghum bicolor seeds of 9 genotypes was tested at temperatures between 8°C and 48°C on a thermal gradient plate. Samples were tested from three regions of the panicle expected to differ in temperature during grain filling. Seeds of a tenth genotype, SPV 354, produced in controlled-environment glasshouses at different panicle temperatures, were tested similarly. In addition, the emergence of SPV 354 was measured from planting depths of 2 and 5 cm at mean soil temperatures of 15, 20 and 25°C. Four methods of calculating mean germination rate for the nine genotypes were compared. Germination characters like base, optimum and maximum temperature (Tb, To, Tm), thermal time (θ)and the germination rate at To(Rmax showed only small differences between methods. There was a range of genotypic variation in all characters: Tb 8.5–11.9°C; To, 33.2–37.5°C; Tm, 46.8–49.2°C; θ, 23.4–38.0°Cd; Rmax, 0.69–1.14-d-1. In contrast, mean germinability (G) was between 90% and 100% over the temperature range 13–40°C. Panicle temperature had no effect on any germination character in SPV 354. However, deeper burial increased θ for emergence and decreased G, irrespective of soil temperature except at 5 cm. Increasing panicle temperature, by reducing seed size, reduced G and increased θ by about 10% only at 15°C and 5 cm depth.  相似文献   

17.
14C‐labelled straw was mixed with soils collected from seven coniferous forests located on a climatic gradient in Western Europe ranging from boreal to Mediterranean conditions. The soils were incubated in the laboratory at 4°, 10°, 16°, 23° and 30 °C with constant moisture over 550 days. The temperature coefficient (Q10) for straw carbon mineralization decreased with increasing incubation temperatures. This was a characteristic of all the soils with a difference of two Q10 units between the 4–10° and the 23? 30 °C temperature ranges. It was also found that the magnitude of the temperature response function was related to the period of soil incubation. Initial temperature responses of microbial communities were different to those shown after a long period of laboratory incubation and may have reflected shifts in microbial species composition in response to changes in the temperature regime. The rapid exhaustion of the labile fractions of the decomposing material at higher temperatures could also lead to underestimation of the temperature sensitivity of soils unless estimated for carbon pools of similar qualities. Finally, the thermal optima for the organic soil horizons (Of and Oh) were lower than 30 °C even after 550 days of incubation. It was concluded that these responses could not be attributed to microbial physiological adaptations, but rather to the rates at which recalcitrant microbial secondary products were formed at higher temperatures. The implication of these variable temperature responses of soil materials is discussed in relation to modelling potential effects of global warming.  相似文献   

18.
Global warming has created a need for studies along climatic gradients to assess the effects of temperature on ecological processes. Altitudinal and latitudinal gradients are often used as such, usually in combination with air temperature data from the closest weather station recorded at 1.5–2 m above the ground. However, many ecological processes occur in, at, or right above the soil surface. To evaluate how representative the commonly used weather station data are for the microclimate relevant for soil surface biota, we compared weather station temperatures for an altitudinal (500–900 m a.s.l.) and a latitudinal gradient (49–68°N) with data obtained by temperature sensors placed right below the soil surface at five sites along these gradients. The mean annual temperatures obtained from weather stations and adjusted using a lapse rate of ?5.5°C km?1 were between 3.8°C lower and 1.6°C higher than those recorded by the temperature sensors at the soil surface, depending on the position along the gradients. The monthly mean temperatures were up to 10°C warmer or 5°C colder at the soil surface. The within‐site variation in accumulated temperature was as high as would be expected from a 300 m change in altitude or from a 4° change in latitude or a climate change scenario corresponding to warming of 1.6–3.8°C. Thus, these differences introduced by the decoupling are significant from a climate change perspective, and the results demonstrate the need for incorporating microclimatic variation when conducting studies along altitudinal or latitudinal gradients. We emphasize the need for using relevant temperature data in climate impact studies and further call for more studies describing the soil surface microclimate, which is crucial for much of the biota.  相似文献   

19.
The survival of the fungus Monilinia fructicola on fruit and inert surfaces at different temperatures (range: 0–30°C) and relative humidity (RH) (range: 60–100%) was investigated. M. fructicola conidia survived better on fruit than on inert surfaces. The viability reduction rate at 20°C and 60% RH was 1.2 and 5.8 days?1 on fruit and inert surfaces, respectively. Overall, on fruit surfaces, conidia viability was reduced at high temperatures and was longer at higher RH than at lower RH; in contrast, on inert surfaces, conidia viability was longer at only low temperatures. On fruit surfaces, at 0°C and 100% RH, conidia survived up to 35 days, and at 30°C and 60% RH, conidia survived up to 7 days. However, on inert surfaces at 20°C and 30°C, conidia lost their viability after 48 and 24 h, respectively. These results suggest that M. fructicola can remain viable in cold rooms for over 30 days on fruit surfaces or over 25 days on inert surfaces. Furthermore, under the orchard conditions during the growing season, conidia may remain viable for only 2–3 days on immature fruit surfaces before conidia will be unable to penetrate the host.  相似文献   

20.
Abstract Soil temperatures were measured during 11 experimental fires in semi-arid mallee shrublands in central NSW. Sensors were placed at depths from 1–10 cm beneath the soil surface in three fuel types; litter beneath Eucalyptus shrubs, live hummocks of the grass Triodia irritans and litter beneath shrubs of Acacia species. Weights of these fuels per unit area were determined. Maximum soil temperature and its duration were related to fuel type and depth. Mean weights of Eucalyptus and Triodia fuels were similar (0.35 kg m?2), while there was less Acacia fuel (0.1 kg m?2). Highest maximum temperatures were registered under Eucalyptus litter (e.g. 140°C at 2 cm). Maximum temperatures under Triodia and Acacia litter were similar (e.g. 60–70°C at 2 cm). Durations were examined in two temperature classes (60–120 and > 120°C) chosen to represent threshold for stimulation of germination and mortality, respectively, of soil-stored seeds. Temperatures between 60 and 120°C were recorded only between 0–2 cm soil depth for Acacia and Triodia (one exception at 4 cm). No temperatures >120°C were recorded for these fuel types. Temperatures between 60 and 120°C were recorded to 5 cm depth under Eucalyptus fuels while putative lethal temperatures for seeds occurred occasionally at 0–2 cm depth. The results indicated greatest potential for stimulation of germination and death of buried seeds under Eucalyptus fuels, although the level of variability of temperature was highest under Eucalyptus fuels. Despite similar fuel loads, differences between temperatures under Eucalyptus and Triodia fuels reflected the influence of the depth of the fuel bed, with Triodia hummocks constituting a deep fuel bed and Eucalyptus litter a shallow fuel bed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号