首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A human promyelocytic leukemia cell line (undifferentiated HL-60 cells) as well as a granulocyte form of HL-60 cells induced in vitro by exposure to dimethyl sulfoxide were examined for binding, metabolism, and biological responses to platelet-activating factor (PAF). Undifferentiated and differentiated HL-60 cells each exhibit a high capacity to incorporate and metabolize [3H]PAF at 37 degrees C; however, the amount of [3H]PAF that is assimilated by both cell populations is greatly reduced and its metabolism abolished at less than or equal to 4 degrees C. At 0 degrees C HL-60 granulocytes bind more [3H]PAF than their undifferentiated counterparts. Binding to differentiated cells reaches equilibrium within 80 min and is saturable, reversible and specific; PAF receptor antagonists WEB 2086, L-659,989, BN 52021, and kadsurenone abolish this specific [3H]PAF binding. In contrast, [3H]PAF uptake by undifferentiated HL-60 cells is neither saturable nor sensitive to specific receptor antagonists. Scatchard analyses reveal 5850 +/- 850 binding sites per differentiated HL-60 cell with a dissociation constant of 0.66 +/- 0.15 nM. In the presence of cytochalasin B, PAF (200 nM) induces degranulation only in differentiated cells and this response also is blocked by PAF receptor antagonists. Our results demonstrate that HL-60 cells develop specific and functionally active PAF receptors only after chemically induced differentiation into granulocytes.  相似文献   

2.
Specific high affinity BK binding sites in the nasal turbinate of the guinea pig have been demonstrated. Specific [3H]BK binding (10-330 pM) was saturable, and nonlinear least squares analysis indicated the presence of a high affinity binding site with a Kd value of 60 (50-78) pM and a Bmax value of 13.1 = 2.0 fmol/mg protein. In inhibition experiments, D-Phe7-BK (a B2 antagonist) inhibited [3H]BK binding with a Ki value of 23 nM, while des-Arg9[Leu8]-BK (a B1 antagonist) had no effect up to a concentration of 10 microM. These studies indicate the presence of B2 BK receptors in the guinea pig nasal turbinate.  相似文献   

3.
Neuropeptide Y (NPY) binding sites in rat cardiac ventricular membranes have been characterized in detail. 125I-NPY bound to the membranes with high affinity. Binding was saturable, reversible and specific, and depended on time, pH and temperature. Analysis of the binding data obtained under optimal conditions, 2 hr, 18 degrees C and at pH 7.5, revealed the presence of low and high affinity binding sites. The high affinity binding sites had an apparent dissociation constant (Kd) of 0.38 nM and a binding capacity (Bmax) of 7.13 fmol/mg protein. The apparent Kd and Bmax for low affinity binding sites were 22.34 nM and 261.25 fmol/mg protein, respectively. Peptides unrelated to NPY did not compete with 125I-NPY for the binding sites even at 1 microM concentrations, whereas homologous peptides, peptide YY (PYY) and pancreatic polypeptide (PP), and NPY(13-36) inhibited 125I-NPY binding but with lower potency compared to NPY. 125I-NPY binding was sensitive to the nonhydrolyzable GTP analog, Gpp(NH)p, suggesting that the NPY receptor is coupled to the adenylate cyclase system. The ventricular membrane receptor characterized in this study may play an important role in mediating the physiological effects of NPY in the heart.  相似文献   

4.
A high amount of leukotriene B4 (LTB4) binding protein was observed in the porcine spleen. It was solubilized and partially purified from spleen membrane with 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS). Scatchard analysis indicated the presence of a single class of receptor with Kd and Bmax values of 0.26 nM and 120 fmol/mg protein, respectively. The receptor was specific for LTB4, and Ki values for 20-hydroxy- and 20-carboxy-LTB4, both inactive metabolites of LTB4, were 1.7 nM and over 1,000 nM, respectively. By the addition of 10 microM GTP gamma S, a low affinity binding site appeared with a Kd value of 390 nM. A pretreatment of the receptor-GTP binding protein complex with islet-activating protein (IAP) increased the inhibitory effect of GTP gamma S on LTB4 binding, indicating that the LTB4 receptor is coupled with an IAP-sensitive GTP-binding protein in the porcine spleen.  相似文献   

5.
The incubation of HL-60 human promyelocytic leukemia cells for 7 days with 100 nM 1 alpha,25-dihydroxyvitamin D3 [1,25(OH)2D3] induced differentiation into monocyte-like cells, as assessed by morphologic and biochemical characteristics. Stereospecific receptors for leukotriene B4 (LTB4) developed on the surface of the HL-60 cell-derived monocytes that had the capacity to transduce LTB4 stimulation of a transient increase in the cytosolic concentration of calcium ([Ca+2]in). HL-60 cell-derived monocytes, but not undifferentiated HL-60 cells, expressed a high affinity subset of 6400 +/- 3700 receptors per cell with a dissociation constant (Kd) of 2.3 +/- 1 nM (mean +/- SD, n = 3) and a low affinity subset of approximately 2.2 X 10(6) receptors per cell with an apparent Kd of 680 +/- 410 nM. Derivatives of LTB4 inhibited the binding of [3H]LTB4 to HL-60 cell-derived monocytes with a rank order of potency of LTB4 greater than 20-OH-LTB4 greater than 3-aminopropyl amide-LTB4, which is similar to the order for LTB4 receptors of human blood PMNL. In contrast, leukotrienes C4 and D4 and formyl-methionyl chemotactic peptides did not inhibit the binding of [3H] LTB4, which demonstrates the specificity of these receptors for isomers of 5,12-dihydroxy-eicosatetraenoic acid. LTB4 stimulated an increase in [Ca+2]in in HL-60 cell-derived monocytes which reached 50% of the maximal level at an LTB4 concentration of 0.5 nM (EC50). Preincubation of HL-60 cell-derived monocytes with 10 nM LTB4 resulted in a selective loss of high affinity receptors, as assessed by binding of [3H]LTB4, and a 200-fold increase in the EC50 for stimulation by LTB4 of increases in [Ca+2]in, without alterations in either the low affinity receptors for LTB4 or the responsiveness of [Ca+2]in to formyl-methionyl chemotactic peptides. HL-60 cells that are induced to differentiate into monocytes thus develop stereospecific receptors for LTB4 with binding and transductional characteristics similar to those of human blood PMNL.  相似文献   

6.
Human granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine derived from activated T cells, endothelial cells, fibroblasts, and macrophages. It stimulates myeloid and erythroid progenitors to form colonies in semisolid medium in vitro, as well as enhancing multiple differentiated functions of mature neutrophils, macrophages, and eosinophils. We have examined the binding of human GM-CSF to a variety of responsive human cells and cell lines. The most mature myelomonocytic cells, specifically human neutrophils, macrophages, and eosinophils, express the highest numbers of a single class of high affinity receptors (Kd approximately 37 pM, 293-1000 sites/cell). HL-60 and KG-1 cells exhibit an increase in specific binding at high concentrations of GM-CSF; computer analysis of the data is nonetheless consistent with a single class of high affinity binding sites with a Kd approximately 43 pM and 20-450 sites/cell. Dimethyl sulfoxide induces a 3-10-fold increase in high affinity receptors expressed in HL-60 cells, coincident with terminal neutrophilic differentiation. Finally, binding of 125I-GM-CSF to fresh peripheral blood cells from six patients with chronic myelogenous leukemia was analyzed. In three of six cases, binding was similar to the nonsaturable binding observed with HL-60 and KG-1 cells. GM-CSF binding was low, or in some cases, undetectable on myeloblasts obtained from eight patients with acute myelogenous leukemia. The observed affinities of the receptor for GM-CSF are consistent with all known biological activities. Affinity labeling of both normal neutrophils and dimethyl sulfoxide-induced HL-60 cells with unglycosylated 125I-GM-CSF yielded a band of 98 kDa, implying a molecular weight of approximately 84,000 for the human GM-CSF receptor.  相似文献   

7.
We identified leukotriene B4 (LTB4)/12-hydroxyeicosatetraenoic acid (12-HETE) binding sites in a squamous cell cancer-derived human epidermal cell line. Analysis of the binding data revealed a single class of binding sites with a dissociation constant of 0.16 microM and a Bmax of 3.8 x 10(6) sites per cell. Competitive binding assays with various eicosanoids at 37 degrees C showed nearly equal binding of 12(S)-HETE, 12(R)-HETE and LTB4. 5(S)-HETE and LTB4-analogs bound with lesser affinity. Specific LTB4 binding at 37 degrees C could also be demonstrated in freshly isolated normal human keratinocytes. Since lipoxygenase-derived eicosanoids are thought to play an important role in hyperproliferative and inflammatory skin diseases, the identification of LTB4/12-HETE binding sites in keratinocytes could have implications for the development of new drugs controlling these disease processes.  相似文献   

8.
Many cells (including angiotensin II target cells) respond to external stimuli with accelerated hydrolysis of phosphatidylinositol 4,5-bisphosphate, generating 1,2-diacylglycerol and inositol 1,4,5-trisphosphate, a rapidly diffusible and potent Ca2+-mobilizing factor. Following its production at the plasma membrane level, inositol 1,4,5-trisphosphate is believed to interact with specific sites in the endoplasmic reticulum and triggers the release of stored Ca2+. Specific receptor sites for inositol 1,4,5-trisphosphate were recently identified in the bovine adrenal cortex (Baukal, A. J., Guillemette, G., Rubin, R., Sp?t, A., and Catt, K. J. (1985) Biochem. Biophys. Res. Commun. 133, 532-538) and have been further characterized in the adrenal cortex and other target tissues. The inositol 1,4,5-trisphosphate-binding sites are saturable and present in low concentration (104 +/- 48 fmol/mg protein) and exhibit high affinity for inositol 1,4,5-trisphosphate (Kd 1.7 +/- 0.6 nM). Their ligand specificity is illustrated by their low affinity for inositol 1,4-bisphosphate (Kd approximately 10(-7) M), inositol 1-phosphate and phytic acid (Kd approximately 10(-4) M), fructose 1,6-bisphosphate and 2,3-bisphosphoglycerate (Kd approximately 10(-3) M), with no detectable affinity for inositol 1-phosphate and myo-inositol. These binding sites are distinct from the degradative enzyme, inositol trisphosphate phosphatase, which has a much lower affinity for inositol trisphosphate (Km = 17 microM). Furthermore, submicromolar concentrations of inositol 1,4,5-trisphosphate evoked a rapid release of Ca2+ from nonmitochondrial ATP-dependent storage sites in the adrenal cortex. Specific and saturable binding sites for inositol 1,4,5-trisphosphate were also observed in the anterior pituitary (Kd = 0.87 +/- 0.31 nM, Bmax = 14.8 +/- 9.0 fmol/mg protein) and in the liver (Kd = 1.66 +/- 0.7 nM, Bmax = 147 +/- 24 fmol/mg protein). These data suggest that the binding sites described in this study are specific receptors through which inositol 1,4,5-trisphosphate mobilizes Ca2+ in target tissues for angiotensin II and other calcium-dependent hormones.  相似文献   

9.
Using 3H-leukotriene D4, a specific receptor assay has been developed for human alveolar macrophages, obtained by broncho-alveolar lavage of patients undergoing fiberoptic bronchoscopy because of suspected bronchial carcinoma. Lavage was performed in a carcinoma-free lobe of the lung and alveolar macrophages were subsequently isolated and incubated for binding studies. 3H-Leukotriene D4 was found to bind specifically with high affinity (Kd = 3.8 nM), in a saturable manner (Bmax = 90 fmol/10(6) cells), reversible and selective. Specific binding was linear with protein concentration and equilibrium binding at 4 degrees C was reached at 50 min. Scatchard and Hill analysis revealed a single class of binding sites with no cooperativity among the sites. Displacement studies with LTD4, the selective SRS-A antagonist FPL 55712 and with leukotriene C4 revealed respective Ki values of 3.4; 16; and 110 nM. The data suggest that human alveolar macrophages may contain a specific receptor type for LTD4, which has a relatively low affinity for LTC4, and are discussed in relation to modulatory processes in the lung, apart from direct actions of LTD4 on smooth muscle receptors. From the data here acquired, it may be apparent that the study of characteristics of receptors specific for a broncho-active substance like LTD4 on human alveolar macrophages, which play an important role in immuno-inflammatory processes seen in many chronic lung diseases, may yield major insights into the pathogenesis and therapy decisions involved in these diseases.  相似文献   

10.
We have demonstrated specific, high affinity binding of a biologically active Tyr23-monoiodinated derivative of ACTH, [125I][Phe2,Nle4]ACTH 1-24, in rat brain homogenates. Similarly, in metabolically inhibited and noninhibited rat whole brain slices there is a specific "binding-sequestration" process that is dependent on time, protein concentration, and pH. In homogenates, binding curves were best described by a two-site model and provided the following parameters: Kd1 = 0.65 +/- 0.47 nM, Bmax1 = 21 +/- 41 fmol/mg protein; Kd2 = 97 +/- 48 nM, Bmax2 = 3.5 +/- 1.8 pmol/mg protein. In metabolically viable brain slices, concentration-competition curves of [125I][Phe2,Nle4]ACTH 1-24 binding-sequestration can be described by three components (Kd1 = 14 +/- 24 nM, Bmax1 = 50 +/- 95 fmol/mg protein; Kd2 = 2.4 +/- 1.9 microM, Bmax2 = 44 +/- 49 pmol/mg protein; Kd3 = 0.16 +/- 1.0 mM, Bmax3 = 5.3 +/- 54 nmol/mg protein). Metabolic inhibition, by removal of glucose and addition of 100 microM ouabain, abolishes the lowest affinity, highest capacity binding-sequestrian component only (Kd1 = 7.1 +/- 14 nM, Bmax1 = 8.7 +/- 16 fmol/mg protein; Kd2 = 7.4 +/- 4.49 microM, Bmax2 = 37 +/- 27 pmol/mg protein). The two binding-sequestration parameter estimates obtained from metabolically inhibited tissue slices are not significantly different from those of the two higher affinity components obtained with noninhibited tissue. Thus, metabolic inhibition permits demonstration of ACTH receptor binding only, unconfounded by sequestration or internalization of ligand:receptor complexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Recent data suggest that prostaglandins (PGs) are involved in the regulation of basophil activation. The aim of this study was to characterize the basophil PG-binding sites by means of radioreceptor assays using 3H-labeled PGs. Scatchard analysis for pure (greater than 95%) chronic myeloid leukemia (CML) basophils revealed two classes of PGE1-binding sites differing in their affinity for the natural ligand (Bmax1 = 217 +/- 65 fmol/10(8) cells; Kd1 = 0.5 +/- 0.2 nM; Bmax2 = 2462 +/- 381 fmol/10(8) cells; Kd2 = 47 +/- 20 nM; IC50 = PGE1 less than PGI2 less than PGD2 less than PGE2 less than PGF2 alpha) as well as two classes of PGI2 (iloprost)-binding sites (Bmax1 = 324 +/- 145 fmol/10(8) cells; Kd1 = 0.5 +/- 0.3 nM; Bmax2 = 2541 +/- 381; Kd2 = 27 +/- 6 nM; IC50 = PGI2 less than PGE1 less than PGD2 less than PGE2 less than PGF2 alpha. In addition, CML basophils exhibited a single class of PGD2-binding sites (Bmax = 378 +/- 98 fmol/10(8) cells; Kd = 13 +/- 4 nM; IC50: PGD2 less than PGI2 less than PGE1 less than PGE2 less than PGF2 alpha). In contrast, we were unable to detect specific saturable PGE2-binding sites. Primary and immortalized (KU812) CML basophils revealed an identical pattern of PG receptor expression. Basophils (KU812) expressed significantly (p less than 0.001) lower number of PGE1 (PGI2)-binding sites (Bmax1: 9% (20%) of control; Bmax2: 36% (50%) of control) when cultured with recombinant interleukin 3 (rhIL-3), a basophil-activating cytokine, whereas rhIL-2 had no effect on PG receptor expression. Functional significance of binding of PGs to basophils was provided by the demonstration of a dose-dependent increase in cellular cAMP upon agonist activation, with PGE1 (ED50 = 1.7 +/- 1.1 nM) and PGI2 (ED50 = 2.8 +/- 2.3 nM) being the most potent compounds. These findings suggest that human basophils express specific receptors for PGE1, PGI2 as well as for PGD2.  相似文献   

12.
Two immunostimulating peptides were isolated from human milk proteins by enzymatic digestion, the tripeptide GLF and the hexapeptide VEPIPY. These peptides increased the phagocytosis of human and murine macrophages and protected mice against Klebsiella pneumoniae infection. The present study showed that this activity may be correlated to the presence of specific binding sites on human blood phagocytic cells. The receptor molecules implicated were different for the two peptides. [3H]GLF specifically bound to PMNL and monocytes, whereas [3H]VEPIPY only bound to monocytes. The leukemic promyelocytic cell line HL-60 differentiated into granulocytes or into macrophages (depending on inducer used) coroborated these results. Specific binding of [3H]GLF on plasma membrane preparations of human PMNL (20 degrees C) was saturable and Scatchard analysis indicated two classes of binding sites: high-affinity sites of Kd 2.3 +/- 1.0 nM and Bm 60 +/- 9 fmol/mg protein and low-affinity sites of Kd 26.0 +/- 3.5 nM and Bm 208 +/- 45 fmol/mg protein. [3H]GLF binding was inhibited in a concentration-dependent manner by various analogous peptides, such as LLF, GLY, LLY and RGDGLF, but not by RGD, RGDS, VEPIPY and the chemotactic peptide f-Met-Leu-Phe (f-MLF). Only at high concentrations the direct analog MLF competed with labeled GLF. An important inhibitory effect was also observed with C1q component of the complement whereas C3 and BSA were uneffective. Specific binding of [3H]VEPIPY on monocyte membranes (20 degrees C) was saturable and Scatchard analysis was consistent with one class of binding sites of Kd 3.7 +/- 0.3 nM and Bm 150 +/- 6 fmol/mg protein.  相似文献   

13.
We utilized high specific activity, [32P]-labelled ligands to measure the binding of Ins(1,3,4,5)P4 and Ins(1,4,5)P3 to membranes prepared from bovine parathyroid glands. [32P]Ins(1,3,4,5)P4 bound rapidly and reversibly to parathyroid membranes, and the binding data could be fitted by the interaction of the ligand with two sites, one with Kd = 6.8 x 10(-9) M and Bmax = 26 fmol/mg protein and a second, lower affinity site, with Kd = 4.1 x 10(-7) M and Bmax = 400 fmol/mg protein. InsP5 was 10-20 fold less potent than InsP4, and Ins(1,3,4)P3 and Ins(1,4,5)P3 were nearly 1000-fold less potent in displacing [32P]Ins(1,3,4,5)P4. [32P]Ins(1,4,5)P3, on the other hand, bound to a single class of sites with Kd = 7.6 x 10(-9) M and Bmax = 34 fmol/mg. While the binding of [32P]Ins(1,4,5)P3 increased markedly on raising pH from 5 to 8, the binding of [32P]Ins(1,3,4,5)P4 decreased by 75% over this range of pH. Thus, [32P]-labelled Ins(1,3,4,5)P4 and Ins(1,4,5)P3 may be used to identify distinct binding sites which may represent physiologically relevant intracellular receptors for InsP3 and InsP4 in parathyroid cells.  相似文献   

14.
X J Wang  S G Fan  M F Ren  J S Han 《Life sciences》1989,45(2):117-123
Radio receptor assay (RRA) was adopted to analyse the influence of CCK-8 on 3H-etorphine binding to opiate receptors in rat brain synaptosomal membranes (P2). In the competition experiment CCK-8 (1pM to 1 microM) suppressed the binding of 3H-etorphine. This effect was completely reversed by proglumide at 1 microM. Rosenthal analysis for saturation revealed two populations of 3H-etorphine binding sites. CCK-8 (1pM to 1 microM) inhibited 3H-etorphine binding to the high affinity sites by an increase in Kd (up to +235%) and decrease in Bmax (up to -80%) without significant changes in the Kd and Bmax of the low affinity sites. This effect of CCK-8 (10nM) was also completely reversed by proglumide at 1 microM. Unsulfated CCK-8 (100pM to 1 microM) produced only a slight increase in Kd of the high affinity sites (+64%) without affecting Bmax. The results suggest that CCK-8 might be capable of suppressing the high affinity opioid binding sites via the activation of CCK receptor.  相似文献   

15.
Beta-Adrenergic receptors were studied in intact cells of chick, rat and mouse embryo brain in primary cultures, by the specific binding of [3H]dihydro-L-alprenolol ([3H]DHA). The results were compared to the receptor binding of broken cell preparations derived from the cell cultures or from the forebrain tissues used for the preparation of the cultures. Detailed analysis of [3H]DHA binding to living chick brain cells revealed a high-affinity, stereoselective, beta-adrenergic-type binding site. Equilibrium measurements indicated the apparent positive cooperativity of the binding reaction. By direct fitting of the Hill equation to the measured data, values of Bmax = 12.01 fmol/10(6) cells (7200 sites/cell), Kd = 60.23 pM and the Hill coefficient n = 2.78 were found. The apparent cooperative character of the binding was confirmed by the kinetics of competition with L-alprenolol, resulting in maximum curves at low ligand concentrations. The rate constants of the binding reaction were estimated as k+ = 8.31 X 10(7) M-1 X min-1 and k- = 0.28 min-1 from the association results, and k- = 0.24 min-1 from the dissociation data. The association kinetics supported the cooperativity of the binding, providing a Hill coefficient n = 1.76; Kd, as (k-/k+)1/n was found to be 101 pM. Analysis of the equilibrium binding of [3H]DHA to rat and mouse living brain cells resulted in values of Bmax = 13.04 fmol/10(6) cells (7800 sites/cell), Kd = 43.85 pM and n = 2.52, and Bmax = 8.08 fmol/10(6) cells (4800 sites/cell), Kd = 46.70 pM and n = 1.63, respectively, confirming the apparent cooperativity of the beta-receptor in mammalian objects, too. The [3H]DHA equilibrium binding to broken cell preparations of either chick, rat or mouse brain cultures or forebrain tissues was found to be non-cooperative, with a Hill coefficient n = 1, Kd in the range 1-2 nM, and a Bmax of 10(3) - 10(4) sites/cell. Our findings demonstrate that cell disruption causes marked changes in the kinetics of the beta-receptor binding and in the affinity of the binding site, although the number of receptors remains unchanged.  相似文献   

16.
[125I]ET-1 binding to vascular smooth muscle cells showed an apparent single class of high affinity recognition sites with a Kd of 2.12 +/- 0.46 nM and a Bmax of 81.2 +/- 5.2 fmol/10(6) cells. The specific binding was equally and totally displaced by ET-1 and ET-2 whereas ET-3 presented a different pattern. We investigated heterologous regulation of ET-1 binding sites by preincubating the cells with angiotensin II (AII), Arg-vasopressin, bradykinin, enkephalins, serotonin, norepinephrine and carbachol, for 18 h at 37 degrees C. Only AII pretreatment resulted in an important and dose-dependent decrease of ET-1 binding capacity. Sar1-Ile8-AII inhibited the regulatory effect of AII. Furthermore, preexposure of the cells with phorbol-12,13 dibutyrate but not with phorbol-12,13 didecanoate also resulted in a concentration-dependent diminution of ET-1 binding sites. These findings suggest that AII may selectively down-regulate ET-1 binding sites in vascular smooth muscle cells by a mechanism involving protein kinase C.  相似文献   

17.
Specific binding sites for (3H)-leukotriene D4 (LTD4) were identified on guinea-pig alveolar macrophages (GPAMs) using high specific activity (3H)-LTD4, in the presence or absence of unlabelled LTD4. The time required for (3H)-LTD4 binding to reach equilibrium was approximately 15 min at 0 degrees C. The binding was saturable, reversible and specific. The dissociation constant (Kd) and site density (Bmax) were found to be 2.33 +/- 0.38 nM and 560 +/- 48 fmol/10(6) cells, respectively, as determined from Scatchard analysis. In competition studies for the displacement of (3H)-LTD4 from binding sites, leukotrienes B4, C4, D4 and E4, and the peptidoleukotriene antagonist FPL-55712 revealed an order of potency of LTD4 (Ki 3.9 nM) greater than LTE4 (Ki 243.9 nM) greater than LTC4 (Ki 796.9 nM) greater than FPL-55712 (Ki 17.6 microM). Concentrations of LTB4 up to 10 microM did not displace the (3H)-LTD4 binding. Bioconversion of LTD4 by GPAMs, as determined by Reverse-Phase High-Performance Liquid Chromatography (RP-HPLC), was less than 3% in 30 min incubation periods. It is concluded that these binding sites may be receptors for LTD4 on GPAMs. Since LTD4 is produced by GPAMs, it is postulated that endogenous LTD4 may modulate thromboxane synthesis and lung constriction.  相似文献   

18.
S-Adenosyl-L-methionine (AdoMet) has been found to bind specifically to the plasma membrane of promyelocytic leukemia cells, HL-60. The Kd for AdoMet is 4.2.10(-6) M and the Bmax is 4.0.10(-12) mol/10(7) HL-60 cells. The binding is not related to the adenosine receptor since neither adenosine, ADP, nor ATP affect the ligand-receptor reaction. When HL-60 cells were incubated with physiological concentrations of [methyl-3H]AdoMet (20 microM) at 36 degrees C, AdoMet did not equilibrate with the intracellular pool, nor were any [3H]methyl groups incorporated into nucleic acids or proteins. In contrast, significant amounts of [3H]methyl groups were incorporated into membrane phospholipids. When cells were incubated with 20 microM [methyl-3H]AdoMet, [3H]methyl groups were transferred to phosphatidylethanolamine, -monomethylethanolamine, and -dimethylethanolamine yielding phosphatidylcholine. However, the rate of methyl transfer with AdoMet was only 22% of that observed when cells were incubated with a comparable amount of [methyl-3H]methionine. Both the binding of AdoMet and the methylation of phospholipids were inhibited by exogenous S-adenosyl-L-homocysteine. Therefore, the binding may be linked to a phospholipid methyltransferase.  相似文献   

19.
Harper JL  Daly JW 《Life sciences》2000,67(6):651-662
The effect of temperature on calcium release and influx has been compared in differentiated and undifferentiated HL-60 cells. Receptor-mediated release of intracellular calcium by ATP was little affected by temperature in HL-60 cells. In differentiated HL-60 cells the store-operated calcium (SOC) channel-dependent sustained elevation of calcium levels after ATP was maximal at 25-29 degrees C; at higher temperatures calcium levels returned relatively rapidly towards basal levels. In undifferentiated cells, a SOC channel-dependent sustained elevation of calcium levels was not observed with levels returning to basal levels much more rapidly than in differentiated cells. The initial thapsigargin-initiated elevation of calcium did not become maximal until about 25 degrees C in both differentiated and undifferentiated HL-60 cells. In differentiated cells, the SOC channel-dependent sustained elevation of calcium after thapsigargin was maximal at 30-37 degrees C, while in undifferentiated cells, the sustained elevation was maximal at 25-30 degrees C. Loperamide, which augments the SOC channel-dependent sustained elevation of calcium, showed a temperature-dependent response that was maximal at about 22 degrees C after either ATP or thapsigargin and was minimal at 37 degrees C. In contrast, inhibition of SOC channel-dependent elevation of calcium by miconazole or trifluoperazine was not greatly affected by temperature.  相似文献   

20.
Abstract

Endothelin (ET) is a long-lasting potent vasoconstrictor-peptide. Here we report different binding affinities of endothelin-1 (ET-1) to ET-receptors of various dog tissues. Crude microsomal fractions were prepared after homogenisation of dog tissues in 50 mM Tris/HCl, 20 mM MnCl2, 1 mM EDTA, pH 7.4 by differential centrifugation. Aliquots of microsomal fractions (70 u.g of protein) were incubated at 25°C for 180 min in the presence of 20 pM125I-ET-1 and various concentrations of cold ET-1. Four different ET-1 receptor binding affinities were found: adrenals, cerebrum, liver, heart, skeletal muscle and stomach microsomal membranes contained high affinity binding sites (Kd 50 – 80 pM, Bmax 60 – 250 fmol/mg). In cerebellum and spleen medium affinity ET-1 receptors (Kd 350 pM, Bmax 880 and 1200 fmol/mg respectively) were present. In comparison lung and kidney microsomes contained a low affinity ET-1 receptor (Kd 800 and 880 pM, Bmax 1600 and 350 fmol/mg). Receptors of even lower affinity were present in heart, intestine and liver microsomes with Kd values of 3 – 6 nM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号