首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Powl AM  Wright JN  East JM  Lee AG 《Biochemistry》2005,44(15):5713-5721
The hydrophobic thickness of a membrane protein is an important parameter, defining how the protein sits within the hydrocarbon core of the lipid bilayer that surrounds it in a membrane. Here we show that Trp scanning mutagenesis combined with fluorescence spectroscopy can be used to define the hydrophobic thickness of a membrane protein. The mechanosensitive channel of large conductance (MscL) contains two transmembrane alpha-helices, of which the second (TM2) is lipid-exposed. The region of TM2 that spans the hydrocarbon core of the bilayer when MscL is reconstituted into bilayers of dioleoylphosphatidylcholine runs from Leu-69 to Leu-92, giving a hydrophobic thickness of ca. 25 A. The results obtained using Trp scanning mutagenesis were confirmed using Cys residues labeled with the N-methyl-amino-7-nitroben-2-oxa-1,3-diazole [NBD] group; both fluorescence emission maxima and fluorescence lifetimes for the NBD group are sensitive to solvent dielectric constant over the range (2-40) thought to span the lipid headgroup region of a lipid bilayer. Changing phospholipid fatty acyl chain lengths from C14 and C24 results in no significant change for the fluorescence of the interfacial residues, suggesting very efficient hydrophobic matching between the protein and the surrounding lipid bilayer.  相似文献   

2.
In this study, we have investigated the effect of hydrophobic mismatch between the thickness of the membrane and a transmembrane segment of a protein that directly inserts into the membrane bilayer. For this purpose we used mutants of the single-spanning Pf3 coat protein that can spontaneously insert into Escherichia coli membrane vesicles and large unilamellar vesicles (LUVs). The thickness of the liposomal bilayer could be altered by using lipids with different acyl chain lengths or by incorporation of cholesterol. The insertion efficiency of the protein clearly depended on the bilayer thickness, with most efficient insertion under hydrophobic matching conditions. To discriminate between effects of length and hydrophobicity, mutants with different synthetic transmembrane segments were constructed. These mutants inserted into LUVs in a mismatch-dependent manner. However, in particular for longer and less hydrophobic mutants, most efficient insertion was generally observed in thinner bilayers than expected on the basis of hydrophobic matching.  相似文献   

3.
The conductances of the lipophilic ions tetraphenylboride and tetraphenylphosphonium across a lipid bilayer can be increased or decreased, i.e., gated, by the photoformation of closed-shell metalloporphyrin cations within the bilayer. The gating can be effected by pulsed or continuous light or by chemical oxidants. At high concentrations of lipophilic anions where the dark conductance is saturated due to space charge in the bilayer, the photogated conductance can increase 15-fold. The formation of porphyrin cations allows the conductance to increase to its nonspace charge limited value. Conversely, the decrease of conductance in the light of phosphonium cations diminishes toward zero as the dark conductance becomes space charge limited. We present electrostatic models of the space charge limited conductance that accurately fit the data. One model includes an exponentially varying dielectric constant for the polar regions of the bilayer that allows an analytical solution to the electrostatic problem. The exponential variation of the dielectric constant effectively screens the potential and implies that the inside and outside of real dielectric interfaces can be electrically isolated from one another. The charge density, the distance into the membrane of the ions, about one-quarter of its thickness, and the dielectric constant at that position are determined by these models. These calculations indicate that there is insufficient porphyrin charge density to cancel the boride ion space charge and the following article proposes a novel ion chain mechanism to explain these effects. These models indicate that the positive potential arising from oriented carbonyl ester groups, previously used to explain the 10(3)-fold larger conductance of hydrophobic anions over cations, is smaller than previously estimated. However, the synergistic movement of the positive choline group into the membrane can account for the large positive potential.  相似文献   

4.
Despite intense study over many years, the mechanisms by which water and small nonelectrolytes cross lipid bilayers remain unclear. While prior studies of permeability through membranes have focused on solute characteristics, such as size, polarity, and partition coefficient in hydrophobic solvent, we focus here on water permeability in seven single component bilayers composed of different lipids, five with phosphatidylcholine headgroups and different chain lengths and unsaturation, one with a phosphatidylserine headgroup, and one with a phosphatidylethanolamine headgroup. We find that water permeability correlates most strongly with the area/lipid and is poorly correlated with bilayer thickness and other previously determined structural and mechanical properties of these single component bilayers. These results suggest a new model for permeability that is developed in the accompanying theoretical paper in which the area occupied by the lipid is the major determinant and the hydrocarbon thickness is a secondary determinant. Cholesterol was also incorporated into DOPC bilayers and X-ray diffuse scattering was used to determine quantitative structure with the result that the area occupied by DOPC in the membrane decreases while bilayer thickness increases in a correlated way because lipid volume does not change. The water permeability decreases with added cholesterol and it correlates in a different way from pure lipids with area per lipid, bilayer thickness, and also with area compressibility.  相似文献   

5.
Understanding the physicochemical basis of the interaction of molecules with lipid bilayers is fundamental to membrane biology. In this study, a new, three-dimensional numerical solution of the full Poisson equation including local dielectric variation is developed using finite difference techniques in order to model electrostatic interactions of charged molecules with a non-uniform dielectric. This solution is used to describe the electric field and electrostatic potential profile of a charged molecule interacting with a phospholipid bilayer in a manner consistent with the known composition and structure of the membrane. Furthermore, the Born interaction energy is then calculated by appropriate integration of the electric field over whole space. Numerical computations indicate that the electrostatic potential profile surrounding a charge molecule and its resultant Born interaction energy are a function of molecular position within the membrane and change most significantly within the polar region of the bilayer. The maximum interaction energy is observed when the charge is placed at the center of the hydrophobic core of the membrane and is strongly dependent on the size of the charge and on the thickness of the hydrocarbon core of the bilayer. The numerical results of this continuum model are compared with various analytical approximations for the Born energy including models established for discontinuous slab dielectrics. The calculated energies agree with the well-known Born analytical expression only when the charge is located near the center of a hydrocarbon core of greater than 60 A in thickness. The Born-image model shows excellent agreement with the numerical results only when modified to include an appropriate effective thickness of the low dielectric region. In addition, a newly derived approximation which considers the local mean dielectric provides a simple and continuous solution that also agrees well with the numerical results.  相似文献   

6.
7.
A Percot  X X Zhu  M Lafleur 《Biopolymers》1999,50(6):647-655
In an effort to develop a polymer/peptide assembly for the immobilization of lipid vesicles, we have made and characterized four water-soluble amphiphilic peptides designed to associate spontaneously and strongly with lipid vesicles without causing significant leakage from anchored vesicles. These peptides have a primary amphiphilic structure with the following sequences: AAAAAAAAAAAAWKKKKKK, AALLLAAAAAAAAAAAAAAAAAAAWKKKKKK, and KKAALLLAAAAAAAAAAAAAAAAAAAWKKKKKK and its reversed homologue KKKKKKWAAAAA AAAAAAAAAAAAAALLLAAKK. Two of the four peptides have their hydrophobic segments capped at both termini with basic residues to stabilize the transmembrane orientation and to increase the affinity for negatively charged vesicles. We have studied the secondary structure and the membrane affinity of the peptides as well as the effect of the different peptides on the membrane permeability. The influence of the hydrophobic length and the role of lysine residues were clearly established. First, a hydrophobic segment of 24 amino acids, corresponding approximately to the thickness of a lipid bilayer, improves considerably the affinity to zwitterionic lipids compared to the shorter one of 12 amino acids. The shorter peptide has a low membrane affinity since it may not be long enough to adopt a stable conformation. Second, the presence of lysine residues is essential since the binding is dominated by electrostatic interactions, as illustrated by the enhanced binding with anionic lipids. The charges at both ends, however, prevent the peptide from inserting spontaneously in the bilayer since it would involve the translocation of a charged end through the apolar core of the bilayer. The direction of the amino acid sequence of the peptide has no significant influence on its behavior. None of these peptides perturbs membrane permeability even at an incubation lipid to peptide molar ratio of 0.5. Among the four peptides, AALLLAAAAAAAAAAAAAAAAAAAWKKKKKK is identified as the most suitable anchor for the immobilization of lipid vesicles.  相似文献   

8.
Energetics of inclusion-induced bilayer deformations.   总被引:3,自引:2,他引:1       下载免费PDF全文
The material properties of lipid bilayers can affect membrane protein function whenever conformational changes in the membrane-spanning proteins perturb the structure of the surrounding bilayer. This coupling between the protein and the bilayer arises from hydrophobic interactions between the protein and the bilayer. We analyze the free energy cost associated with a hydrophobic mismatch, i.e., a difference between the length of the protein's hydrophobic exterior surface and the average thickness of the bilayer's hydrophobic core, using a (liquid-crystal) elastic model of bilayer deformations. The free energy of the deformation is described as the sum of three contributions: compression-expansion, splay-distortion, and surface tension. When evaluating the interdependence among the energy components, one modulus renormalizes the other: e.g., a change in the compression-expansion modulus affects not only the compression-expansion energy but also the splay-distortion energy. The surface tension contribution always is negligible in thin solvent-free bilayers. When evaluating the energy per unit distance (away from the inclusion), the splay-distortion component dominates close to the bilayer/inclusion boundary, whereas the compression-expansion component is more prominent further away from the boundary. Despite this complexity, the bilayer deformation energy in many cases can be described by a linear spring formalism. The results show that, for a protein embedded in a membrane with an initial hydrophobic mismatch of only 1 A, an increase in hydrophobic mismatch to 1.3 A can increase the Boltzmann factor (the equilibrium distribution for protein conformation) 10-fold due to the elastic properties of the bilayer.  相似文献   

9.
Past work has shown that general anesthetics perturb the membranes of isolated synaptic vesicles, thereby increasing permeability to protons and inhibiting the ability of the vesicles to take up catecholamines. It has been proposed that such effects may produce anesthesia through inhibition of synaptic transmission. The mechanisms of perturbation is unknown. Two possible explanations include alterations of dielectric constant or production of defects as anesthetics partition into the bilayer phase. In order to choose between these alternatives, we measured the effect of nine alcohols and two alkanes on liposome permeability to protons and potassium. Ionic permeability was increased by alcohols and alkanes to similar degrees, thereby ruling out direct effects on the membrane dielectric constant caused by partitioning of anesthetics into the bilayer. Other experiments confirmed earlier reports that the enhanced permeability caused by anesthetics is not specific for protons. We conclude that these membrane perturbants act by increasing the number of transient, ion-conducting defects normally present in the bilayer structure.  相似文献   

10.
A microscopic interaction model for a fully hydrated lipid bilayer membrane containing cholesterol is used to calculate, as a function of temperature and composition, the membrane area, the membrane hydrophobic thickness, and the average acyl-chain orientational order parameter, S. The order parameter, S, is related to the first moment, M1, of the quadrupolar magnetic resonance spectrum which can be measured for lipids with perdeuterated chains. On the basis of these model calculations as well as recent experimental measurements of M1 using magnetic resonance and of membrane area using micromechanical measurements, a discussion of the possible relationships between membrane area, hydrophobic thickness, and moments of nuclear magnetic resonance spectra is presented. It is pointed out that S under certain circumstances may be useful for estimating the hydrophobic membrane thickness. This is particularly advantageous for multicomponent membranes where structural data are difficult to obtain by using diffraction techniques. The usefulness of the suggested relationships is demonstrated for cholesterol-containing bilayers.  相似文献   

11.
The mechanism(s) underlying the sorting of integral membrane proteins between the Golgi complex and the plasma membrane remain uncertain because no specific Golgi retention signal has been found. Moreover one can alter a protein's eventual localization simply by altering the length of its transmembrane domain (TMD). M. S. Bretscher and S. Munro (SCIENCE: 261:1280-1281, 1993) therefore proposed a physical sorting mechanism based on the hydrophobic match between the proteins' TMD and the bilayer thickness, in which cholesterol would regulate protein sorting by increasing the lipid bilayer thickness. In this model, Golgi proteins with short TMDs would be excluded from cholesterol-enriched domains (lipid rafts) that are incorporated into transport vesicles destined for the plasma membrane. Although attractive, this model remains unproven. We therefore evaluated the energetic feasibility of a cholesterol-dependent sorting process using the theory of elastic liquid crystal deformations. We show that the distribution of proteins between cholesterol-enriched and cholesterol-poor bilayer domains can be regulated by cholesterol-induced changes in the bilayer physical properties. Changes in bilayer thickness per se, however, have only a modest effect on sorting; the major effect arises because cholesterol changes also the bilayer material properties, which augments the energetic penalty for incorporating short TMDs into cholesterol-enriched domains. We conclude that cholesterol-induced changes in the bilayer physical properties allow for effective and accurate sorting which will be important generally for protein partitioning between different membrane domains.  相似文献   

12.
Summary Aliphatic alcohols are found to stimulate the transmembrane fluxes of a hydrophobic cation (tetraphenylarsonium, TPA) and anion (AN-12) 5–20 times in red blood cells. The results are analyzed using the Born-Parsegian equation (Parsegian, A., 1969,Nature (London) 221:844–846), together with the Clausius-Mossotti equation to calculate membrane dielectric energy barriers. Using established literature values of membrane thickness, native membrane dielectric constant, TPA ionic radius, and alcohol properties (partition coefficient, molar volume, dielectric constant), the TPA permeability data is predicted remarkably well by theory. If the radius of AN-12 is taken as 1.9 Å, its permeability in the presence of butanol is also described by our analysis. Further, the theory quantitatively accounts for the data of Gutknecht and Tosteson (Gutknecht, J., Tosteson, D.C., 1970,J. Gen. Physiol. 55:359–374) covering alcohol-induced conductivity changes of 3 orders of magnitude in artificial bilayers. Other explanations including perturbations of membrane fluidity, surface charge, membrane thickness, and dipole potential are discussed. However, the large magnitude of the stimulation, the more pronounced effect on smaller ions, and the acceleration of both anions and cations suggest membrane dielectric constant change as the primary basis of alcohol effects.  相似文献   

13.
1. The effect of two series of hydrophilic and hydrophobic polymers on the stability, conductivity and permeability towards water and leucine of black lipid membranes and liposomes is reported. 2. The changes in properties of these membrane preparations is related to bulk phase viscosity and dielectric measurements together with monolayer studies. 3. The hydrophobic polymers dramatically increase membrane stability, had no effect on conductivity, but increased the permeability coefficient of leucine. 4. The hydrophilic polymers produced minor, but significant changes to membrane properties. 5. It is concluded that not only basic polymers but also neutral and acidic macromolecules can interact strongly with lipid membranes.  相似文献   

14.
The effect of the dipole potential field of extended membrane spanning alpha-helices on the redox potentials of b cytochromes in energy transducing membranes has been calculated in the context of a three phase model for the membrane. In this model, the membrane contains three dielectric layers; (i) a 40-A hydrophobic membrane bilayer, with dielectric constant em = 3-4, (ii) 10-20-A interfacial layers of intermediate polarity, ein = 12-20, that consist of lipid polar head groups and peripheral protein segments, and (iii) an external infinite water medium, ew = 80. The unusually positive midpoint potential, Em = +0.4 V, of the "high potential" cytochrome b-559 of oxygenic photosynthetic membranes, a previously enigmatic property of this cytochrome, can be explained by (i) the position of the heme in the positive dipole potential region near the NH2 termini of the two parallel helices that provide its histidine ligands, and (ii) the loss of solvation energy of the heme ion due to the low dielectric constant of its surroundings, leading to an estimate of +0.31 to +0.37 V for the cytochrome Em. The known tendency of this cytochrome to undergo a large -delta Em shift upon exposure of thylakoid membranes to proteases or damaging treatments is explained by disruption of the intermediate polarity (ein) surface dielectric layer and the resulting contact of the heme with the external water medium. Application of this model to the two hemes (bn and bp) of cytochrome b of the cytochrome bc1 complex, with the two hemes placed symmetrically in the low dielectric (em) membrane bilayer, results in Em values of hemes bn and bp that are, respectively, somewhat too negative (approximately -0.1 V), and much too positive (approximately +0.3 V), leading to a potential difference, Em(bp) - Em(bn), with the wrong sign and magnitude, +0.25 V instead of -0.10 to -0.15 V. The heme potentials can only be approximately reconciled with experiment, if it is assumed that the two hemes are in different dielectric environments, with that of heme bp being more polar.  相似文献   

15.
The dielectric constant (epsilon) and refractive index (n) of a bilayer lipid membrane is determined from the known values of the polarizabilities of the carbon-carbon and carbon-hydrogen bonds. It is assumed that the hydrocarbon chains are hexagonally arranged in an all-trans conformation perpendicular to the plane of the membrane. The only variable in the calculation is the average separation between the chains and the theory relates epsilon to this separation. The calculation and results differ significantly from those presented in a 1968 publication by Ohki. It is shown that a thin membrane is not homogeneously polarized by the applied field. This effect is analysed and the dependence of epsilon on the membrane thickness is determined. The theoretical results are in good quantitative agreement with experimental measurements on bulk paraffins and on oriented multilayers of saturated fatty acids. The most important conclusion is that the dielectric constant for an applied field perpendicular to the membrane (which is the appropriate value for capacitance measurements) differs by only a few percent from the value for the macroscopic (bulk) liquid hydrocarbon. Thus the dielectric constant of a bilayer membrane can be approximated by the value for the appropriate bulk hydrocarbon.  相似文献   

16.
Cell-signaling peptides have been extensively used to transport functional molecules across the plasma membrane into living cells. These peptides consist of a hydrophobic sequence and a cationic nuclear localization sequence (NLS). It has been assumed that the hydrophobic region penetrates the hydrophobic lipid bilayer and delivers the NLS inside the cell. To better understand the transport mechanism of these peptides, in this study, we investigated the structure, orientation, tilt of the peptide relative to the bilayer normal, and the membrane interaction of two cell-signaling peptides, SA and SKP. Results from CD and solid-state NMR experiments combined with molecular dynamics simulations suggest that the hydrophobic region is helical and has a transmembrane orientation with the helical axis tilted away from the bilayer normal. The influence of the hydrophobic mismatch, between the hydrophobic length of the peptide and the hydrophobic thickness of the bilayer, on the tilt angle of the peptides was investigated using thicker POPC and thinner DMPC bilayers. NMR experiments showed that the hydrophobic domain of each peptide has a tilt angle of 15 +/- 3 degrees in POPC, whereas in DMPC, 25 +/- 3 degree and 30 +/- 3 degree tilts were observed for SA and SKP peptides, respectively. These results are in good agreement with molecular dynamics simulations, which predict a tilt angle of 13.3 degrees (SA in POPC), 16.4 degrees (SKP in POPC), 22.3 degrees (SA in DMPC), and 31.7 degrees (SKP in DMPC). These results and simulations on the hydrophobic fragment of SA or SKP suggest that the tilt of helices increases with a decrease in bilayer thickness without changing the phase, order, and structure of the lipid bilayers.  相似文献   

17.
The hormones of thyroid gland thyroxine and triiodothyronine were shown to increase the permeability of bilayer lipid membrane (BLM) and inner mitochondrial membrane for hydrophobic positively charged complex K+-nonactine and to decrease the permeability of these membranes for hydrophobic anion FCCP-. These facts imply that the thyroid hormones affect the phospholipid membranes like the dipole modifyers decreasing the positive potential of hydrophobic region of the membranes in respect to the water phase.  相似文献   

18.
A novel mechanism for membrane modulation of transmembrane protein structure, and consequently function, is suggested in which mismatch between the hydrophobic surface of the protein and the hydrophobic interior of the lipid bilayer induces a flexing or bending of a transmembrane segment of the protein. Studies on model hydrophobic transmembrane peptides predict that helices tilt to submerge the hydrophobic surface within the lipid bilayer to satisfy the hydrophobic effect if the helix length exceeds the bilayer width. The hydrophobic surface of transmembrane helix 1 (TM1) of lactose permease, LacY, is accessible to the bilayer, and too long to be accommodated in the hydrophobic portion of a typical lipid bilayer if oriented perpendicular to the membrane surface. Hence, nuclear magnetic resonance (NMR) data and molecular dynamics simulations show that TM1 from LacY may flex as well as tilt to satisfy the hydrophobic mismatch with the bilayer. In an analogous study of the hydrophobic mismatch of TM7 of bovine rhodopsin, similar flexing of the transmembrane segment near the conserved NPxxY sequence is observed. As a control, NMR data on TM5 of lacY, which is much shorter than TM1, show that TM5 is likely to tilt, but not flex, consistent with the close match between the extent of hydrophobic surface of the peptide and the hydrophobic thickness of the bilayer. These data suggest mechanisms by which the lipid bilayer in which the protein is embedded modulates conformation, and thus function, of integral membrane proteins through interactions with the hydrophobic transmembrane helices.  相似文献   

19.
We present a quantitative analysis of the effects of hydrophobic matching and membrane-mediated protein-protein interactions exhibited by gramicidin embedded in dimyristoylphosphatidylcholine (DMPC) and dilauroylphosphatidylcholine (DLPC) bilayers (Harroun et al., 1999. Biophys. J. 76:937-945). Incorporating gramicidin, at 1:10 peptide/lipid molar ratio, decreases the phosphate-to-phosphate (PtP) peak separation in the DMPC bilayer from 35.3 A without gramicidin to 32.7 A. In contrast, the same molar ratio of gramicidin in DLPC increases the PtP from 30.8 A to 32.1 A. Concurrently, x-ray in-plane scattering showed that the most probable nearest-neighbor separation between gramicidin channels was 26.8 A in DLPC, but reduced to 23.3 A in DMPC. In this paper we review the idea of hydrophobic matching in which the lipid bilayer deforms to match the hydrophobic surface of the embedded proteins. We use a simple elasticity theory, including thickness compression, tension, and splay terms to describe the membrane deformation. The energy of membrane deformation is compared with the energy cost of hydrophobic mismatch. We discuss the boundary conditions between a gramicidin channel and the lipid bilayer. We used a numerical method to solve the problem of membrane deformation profile in the presence of a high density of gramicidin channels and ran computer simulations of 81 gramicidin channels to find the equilibrium distributions of the channels in the plane of the bilayer. The simulations contain four parameters: bilayer thickness compressibility 1/B, bilayer bending rigidity Kc, the channel-bilayer mismatch Do, and the slope of the interface at the lipid-protein boundary s. B, Kc, and Do were experimentally measured; the only free parameter is s. The value of s is determined by the requirement that the theory produces the experimental values of bilayer thinning by gramicidin and the shift in the peak position of the in-plane scattering due to membrane-mediated channel-channel interactions. We show that both hydrophobic matching and membrane-mediated interactions can be understood by the simple elasticity theory.  相似文献   

20.
A novel mechanism for membrane modulation of transmembrane protein structure, and consequently function, is suggested in which mismatch between the hydrophobic surface of the protein and the hydrophobic interior of the lipid bilayer induces a flexing or bending of a transmembrane segment of the protein. Studies on model hydrophobic transmembrane peptides predict that helices tilt to submerge the hydrophobic surface within the lipid bilayer to satisfy the hydrophobic effect if the helix length exceeds the bilayer width. The hydrophobic surface of transmembrane helix 1 (TM1) of lactose permease, LacY, is accessible to the bilayer, and too long to be accommodated in the hydrophobic portion of a typical lipid bilayer if oriented perpendicular to the membrane surface. Hence, nuclear magnetic resonance (NMR) data and molecular dynamics simulations show that TM1 from LacY may flex as well as tilt to satisfy the hydrophobic mismatch with the bilayer. In an analogous study of the hydrophobic mismatch of TM7 of bovine rhodopsin, similar flexing of the transmembrane segment near the conserved NPxxY sequence is observed. As a control, NMR data on TM5 of lacY, which is much shorter than TM1, show that TM5 is likely to tilt, but not flex, consistent with the close match between the extent of hydrophobic surface of the peptide and the hydrophobic thickness of the bilayer. These data suggest mechanisms by which the lipid bilayer in which the protein is embedded modulates conformation, and thus function, of integral membrane proteins through interactions with the hydrophobic transmembrane helices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号