首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[1-14C]Arachidonic acid was incubated with isolated bovine adrenal fasciculata cells for 15 min at 37gC. The metabolites were separated and purified by reverse- and straight-phase high performance liquid chromatography, and identified by gas chromatography-mass spectrometry or radioimmunoassay. Identified metabolites were 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE), 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE), leukotriene B4 and 11,14,15-trihydroxy-5,8,12-eicosatrienoic acid (11,14,15-THET). Addition of 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE), an intermediate metabolite of 15-lipoxygenase pathway to microsomes of bovine adrenal fasciculata cells resulted in the formation of 11,14,15-THET. The formation of 11,14,15-THET by microsomes was not dependent on the presence of NADPH, while it was dose-dependently suppressed by ketoconazole, a potent inhibitor of cytochrome P-450 dependent enzymes. These results indicate that 5- and 15-lipoxygenase pathways of arachidonic acid may exist in bovine adrenal fasciculata cells and that 15-HPETE is further metabolized to 11,14,15-THET by adrenal microsomal cytochrome P-450.  相似文献   

2.
Glucose (16.7 mM)-induced insulin secretion from isolated pancreatic islets of rats was inhibited by nordihydroguaiaretic acid (NDGA), 1-phenyl-3-pyrazolidinone (phenidone), 3-amino-1-(3-trifluoromethylphenyl)-2-pyrazoline (BW755C), 2,3,5-trimethyl-6-(12-hydroxy-5,10-dodecadiynyl)-1,4-benzoquinone (AA861), and 2,6-di-tert-butyl-4-methylphenol (BHT). Indomethacin and aspirin, however, failed to inhibit the glucose-induced insulin secretion but rather tended to enhance it. The glucose-induced insulin secretion was inhibited by 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE) (50 microM), 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE) (100 microM), and 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) (100 microM), but not by 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) (100 microM). Exogenous 5-HETE (10 microM) induced significant insulin secretion in a low glucose (3.3 mM) medium. Racemic 5-HETE also showed insulinotropic effect in a concentration-dependent manner with the concentrations 20 microM or above, whereas 12-HETE, 15-HETE, 15-HPETE, 5,12-dihydroxy-6,8,10,14-eicosatetraenoic acid, 5-hydroxy-6-glutathionyl-7,9,11,14-eicosatetraenoic acid, 5-hydroxy-6-cysteinylglycinyl-7,9,11,14-eicosatetraenoic acid, prostaglandin E2, and prostaglandin F2 alpha failed to induce insulin secretion. Although significant insulin release was observed with arachidonic acid (greater than or equal to 100 microM), reduce cell viability was evident at 200 microM. When the 10,000 X g supernatant of isolated pancreatic islet homogenate was incubated with [3H]arachidonic acid at 37 degrees C in the presence of GSH and Ca2+, and the labeled metabolites then extracted with ethyl acetate and subjected to reverse phase high pressure liquid chromatography, several radioactive peaks, coeluted with authentic 15-, 12-, and 5-HETE, were observed. The radioactive peaks were completely suppressed by the addition of either NDGA, BW755C, or phenidone into the medium. The results support our contention i.e. the involvement of lipoxygenase product(s) in the secretory mechanism of insulin, and further suggest that 5-lipoxygenase system may play a role.  相似文献   

3.
Incubation of cultured human umbilical vein endothelial cells with [1-14C]arachidonic acid, followed by reverse-phase high-pressure liquid chromatography analysis, results in the appearance of two principal radioactive products besides 6-keto-prostaglandin F1 alpha. The first peak is 12-L-hydroxy-5,8,10-heptadecatrienoic acid, a hydrolysis product of the prostaglandin endoperoxide. The second peak was esterified, converted to the trimethylsilyl ether derivative, and analyzed by gas chromatography-mass spectrometry and shown to be the lipoxygenase product 15(S)-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE). Incubation of the 15-HETE precursor 15(S)-hydroperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE) with endothelial cells results in the formation of four distinct UV absorbing peaks. UV and gas chromatography-mass spectrometry analysis showed these peaks to be 8,15(S)-dihydroxy-5,8,11,13-eicosatetraenoic acids (8,15-diHETE) differing only in their hydroxyl configuration and cis trans double-bond geometry. Formation of 8,15-diHETE molecules suggests the prior formation of the unstable epoxide molecule 14(S),15(S)-trans-oxido-5,8-Z-14,15-leukotriene A4 or an attack at C-10 of 15-HPETE by an enzyme with mechanistic features in common with a 12-lipoxygenase. The observation that endothelial cells can synthesize both 15-HETE and 8,15-diHETE molecules suggests that this cell type contains both a 15-lipoxygenase and a system that can synthesize 14,15-leukotriene A4.  相似文献   

4.
When human neutrophils, previously labeled in their phospholipids with [14C]arachidonate, were stimulated with the Ca2+-ionophore, A23187, plus Ca2+ in the presence of [3H]acetate, these cells released [14C]arachidonate from membrane phospholipids, produced 5-hydroxy-6,8,11,14-[14C]eicosatetraenoic acid (5-HETE) and 14C-labeled 5S,12R-dihydroxy-6-cis,8,10-trans, 14-cis-eicosatetraenoic acid ([14C]leukotriene B4), and incorporated [3H]acetate into platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine). Ionophore A23187-induced formation of these radiolabeled products was greatly augmented by submicromolar concentrations of exogenous 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE), 5-HETE, and leukotriene B4. In the absence of ionophore A23187, these arachidonic acid metabolites were virtually ineffective. Nordihydroguaiaretic acid (NDGA) and several other lipoxygenase/cyclooxygenase inhibitors (butylated hydroxyanisole, 3-amino-1-(3-trifluoromethylphenyl)-2-pyrazoline and 1-phenyl-2-pyrazolidinone) caused parallel inhibition of [14C]arachidonate release and [3H]PAF formation in a dose-dependent manner. Specific cyclooxygenase inhibitors, such as indomethacin and naproxen, did not inhibit but rather slightly augmented the formation of these products. Furthermore, addition of 5-HPETE, 5-HETE, or leukotriene B4 (but not 8-HETE or 15-HETE) to neutrophils caused substantial relief of NDGA inhibition of [3H]PAF formation and [14C]arachidonate release. As opposed to [3H]acetate incorporation into PAF, [3H]lyso-PAF incorporation into PAF by activated neutrophils was little affected by NDGA. In addition, NDGA had no effect on lyso-PAF:acetyl-CoA acetyltransferase as measured in neutrophil homogenate preparations. It is concluded that in activated human neutrophils 5-lipoxygenase products can modulate PAF formation by enhancing the expression of phospholipase A2.  相似文献   

5.
Arachidonic acid 15-lipoxygenase was purified from rabbit peritoneal polymorphonuclear leukocytes. The enzyme was recovered in the cytosol fraction after sonication and purified about 250-fold by acetone precipitation, column chromatography on CM52, Sephadex G-150, and hydroxyapatite. The enzyme catalyzed the conversion of arachidonic acid to 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE), which then decomposed to a mixture of 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE), 15-keto-5,8,11,13-eicosatetraenoic acid, 13-hydroxy-14,15-epoxy-5,8,11-eicosatrienoic acid, and 11,14,15-trihydroxy-5,8,12-eicosatrienoic acid. The enzyme was specific for oxygenation at carbon 15 of arachidonic acid. The apparent molecular weight of the enzyme was about 61,000 as measured by Sephadex G-150 gel filtration chromatography. The enzyme was sensitive to sulfhydryl-blocking reagents such as p-chloromercuribenzoic acid. The enzyme activity was inhibited by eicosatetraynoic acid (ETYA) or 3-amino-1-(m-(trifluoromethyl)-phenyl)2-pyrazoline (BW755C), but not by indomethacin up to 200 micrograms/ml.  相似文献   

6.
Human peripheral blood polymorphonuclear leukocytes (PMNs) metabolized [14C]arachidonic acid predominantly by lipoxygenase pathways. The major products were 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) and 15-HETE. These and other lipoxygenase products, including their derived leukotrienes, have been implicated as mediators of inflammatory and allergic reactions. In human platelets, the nonsteroidal anti-inflammatory drug ibuprofen inhibited production of the cyclooxygenase product thromboxane B2 (I50 = 65 microM), whereas the lipoxygenase product 12-HETE was not appreciably affected even at 5 mM ibuprofen. The 5-lipoxygenase of human PMNs (measured by 5-HETE formation) was inhibited by ibuprofen but was about six times less sensitive (I50 = 420 microM) than the platelet cyclooxygenase. The unexpected observation was made that the human PMN 15-lipoxygenase/leukotriene pathway was selectively activated by 1-5 mM ibuprofen. Metabolites were identified by ultraviolet spectroscopy, by radioimmunoassay, or by retention times on high pressure liquid chromatography in comparison with authentic standards. The major product was 15-HETE; and in all of 19 donors tested, 15-HETE formation was stimulated up to 20-fold by 5 mM ibuprofen. Other identified products included 12-HETE and 15- and 12-hydroperoxyeicosatetraenoic acid. Activation of the 15-lipoxygenase by ibuprofen occurred within 1 min and was readily reversible. The effects of aspirin, indomethacin, and ibuprofen on the PMN 15-lipoxygenase were compared in six donors. Ibuprofen produced an average 9-fold stimulation of the enzyme, whereas aspirin and indomethacin resulted in an average 1.5- and 2-fold enhancement, respectively.  相似文献   

7.
(5Z,8Z,11Z,13E)-15-Hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE) is not well oxygenated by arachidonate 15-lipoxygenases because of two structural reasons: (i) it contains a hydrophilic OH-group in close proximity to its methyl end and (ii) it lacks the bisallylic methylene at C(13). We synthesized racemic (5Z,8Z,11Z,14Z)-16-hydroxy-5,8,11,14-eicosatetraenoic acid (16-HETE) which still contains the bisallylic C(13), separated the enantiomers reaching an optical purity of >99% and tested them as substrates for 5- and 15-lipoxygenases. Our synthetic pathway, which is based on stereospecific hydrogenation of a polyacetylenic precursor, yielded substantial amounts (30%) of 14,15-dehydro-16-HETE in addition to 16-HETE. When 16-HETE was tested as lipoxygenase substrate, we found that it is well oxygenated by the soybean 15-lipoxygenase and by the recombinant human 5-lipoxygenase. Analysis of the reaction products suggested an arachidonic acid-like alignment at the active site of the two enzymes. In contrast, the product pattern of 16-HETE methyl ester oxygenation by the soybean lipoxygenase (5-lipoxygenation) may be explained by an inverse head to tail substrate orientation.  相似文献   

8.
The oxygenation of arachidonic acid (AA) by guinea-pig neutrophil 5-lipoxygenase terminates prematurely at a substrate utilization of only 50%. In the presence of dithiothreitol (DTT), reaction progress continues longer but still terminates prematurely, at about 70% substrate turnover. The addition of more substrate during the first 60 seconds of the initial reaction resulted in continued product formation. However, at times after 120 seconds, the addition of more AA could not produce additional product formation. Together, these results indicate a time-dependent (t1/2 = 0.5-1.0 min), irreversible loss of enzyme activity. To determine if the product 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE) mediates the inactivation, it was tested for its ability to irreversibly inhibit the enzyme and found to inactivate 5-lipoxygenase with Ki = 0.05 +/- 0.01 microM and ki = 1.4 +/- 0.4 min-1. DTT changed the apparent affinity of 5-HPETE (Ki = 0.33 +/- 0.09 microM) but had no effect on the rate of inactivation (ki = 1.26 +/- 0.62 min-1). In contrast, the hydroxy derivative of 5-HPETE, 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE), is a reversible, time-independent inhibitor with Ki = 6.3 +/- 0.9 microM regardless of DTT. The ability of thiols to protect 5-lipoxygenase from production inactivation is due, at least in part, to a non-enzymatic reaction between DTT and 5-HPETE that converts the hydroperoxy acid to a material that can no longer inactivate the enzyme.  相似文献   

9.
The purified lipoxygenase of rabbit reticulocytes converts arachidonic acid at 0 degrees C to 15-hydroperoxyeicosatetraenoic acid (15-HPETE) and to 12-hydroperoxyeicosatetraenoic acid (12-HPETE) via reactions which involve hydrogen abstraction at C-13 and C-10, respectively. At 37 degrees C the enzyme converts arachidonic acid to additional products which were identified as 13-hydroxy-14,15-epoxy-5,8,11-eicosatrienoic acid, 8,15-dihydroperoxy-5,9,11,13- and 5,15-dihydroperoxy-6, 6,8,11,13-eicosatetraenoic acids (8,15-diHPETE and 5,15-HPETE, respectively) and diastereoisomers of 8,15-dihydroxy-5,9,11,13-eicosatetraenoic acid (8,15-diHPETEs). The 8,15- and 5,15-diHPETEs were formed by double lipoxygenation since each incorporated 2 molecules of 18O2 and since their synthesis from 15-HPETE was blocked under anaerobic conditions. The 8,15-diHETEs each incorporated 18O from 18O2 at C-15 and were found to arise from nonenzymatic hydrolysis of an epoxytriene which was identified as 14,15-leukotriene A4 by trapping in acidic methanol. This compound was a major product of 15-HPETE in anaerobic incubations. The conversion of 15-HPETE to 14,15-leukotriene A4 was inhibited by the lipoxygenase inhibitors nordihydroguairetic acid and 5,8,11,14-eicosatetraynoic acid. The 14,15-leukotriene A4 synthase and 15-lipoxygenase activities were inhibited by 5,8,11,14-eicosatetraynoic acid in a similar time-dependent manner. The results support a mechanism whereby 14,15-leukotriene A4 is synthesized from 15-HPETE by a further enzymatic step carried out by the reticulocyte 15-lipoxygenase via hydrogen abstraction at C-10 and a redox cycle of the non-heme iron atom of the enzyme.  相似文献   

10.
The sensitivity of the 5-lipoxygenase to inhibition by 5,8,11,14-eicosatetraynoic acid (ETYA) is species- and/or tissue-dependent. Guinea pig peritoneal polymorphonuclear leukocytes prelabeled with [3H]arachidonic acid and stimulated with ionophore A23187 formed 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE), as well as several dihydroxy fatty acids, including 5(S),12(R)-dihydroxy-6,8,10-(cis/trans/trans)-14-(cis)-eicosatetraenoic acid. ETYA (40 microM) did not inhibit, but, rather, increased the incorporation of 3H label into 5-HETE. In contrast, ETYA markedly inhibited the formation of radiolabeled dihydroxy acid metabolites by the A23187-stimulated cells. Assay of products from polymorphonuclear leukocytes incubated with exogenous arachidonic acid plus A23187, by reverse phase high performance liquid chromatography combined with ultraviolet absorption, showed a concentration-dependent inhibition of the formation of dihydroxy acid metabolite by ETYA (1-50 microM) and an increase in 5-HETE levels (maximum of 2- to 3-fold). The latter finding was verified by stable isotope dilution assay with deuterated 5-HETE as the internal standard. Another lipoxygenase inhibitor, nordihydroguaiaretic acid, potently inhibited the formation of both 5-HETE and dihydroxy acids, with an IC50 of 2 microM. The data suggest that ETYA can inhibit the enzymatic step whereby 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid is converted to leukotriene A4 in guinea pig polymorphonuclear leukocytes.  相似文献   

11.
Arachidonate 12-lipoxygenase was purified to near homogeneity from the cytosol fraction of porcine leukocytes by ammonium sulfate fractionation, DEAE-cellulose chromatography, and immunoaffinity chromatography using a monoclonal antibody against the enzyme. The purified enzyme was unstable (half-life of about 24 h at 4 degrees C) but was markedly protected from the inactivation by storage in the presence of ferrous ion or in the absence of air. The lag phase which was observed before the start of the enzyme reaction was abolished by the presence of 12-hydroperoxy-5,8,10,14-eicosatetraenoic acid. An apparent substrate inhibition was observed with arachidonic acid and other active substrates; however, the substrate concentration curve was normalized by the presence of 0.03% Tween 20. Arachidonic acid was transformed to the omega-9 oxygenation product 12-hydroperoxy-5Z,8Z,10Z,14Z-eicosatetraenoic acid. C-12 oxygenation also occurred with 5-hydroxy- and 5-hydroperoxyeicosatetraenoic acids; the respective maximal velocities were 60 and 150% of the rate with arachidonic acid. Octadecaenoic acids were also good substrates. gamma-Linolenic acid was oxygenated in the omega-9 position (C-10), while linoleic and alpha-linolenic acids were subject to omega-6 oxygenation (C-13). A far more complex reaction was observed using 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid as substrate. Reaction occurred at 70% of the rate with arachidonic acid. The dihydroperoxy and dihydroxy products were identified by their UV absorption spectra, high performance liquid chromatography, and gas chromatography-mass spectrometry. Among these products, (8S,15S)-dihydroperoxy-5Z,9E,11Z,13E-eicos atetraenoic acid and (14R,15S)-erythro-dihydroperoxy-5Z,8Z,10E, 12E-eicosatetraenoic acid were produced in larger amounts than the (8R)- and (14S,15S)-threo isomers, respectively; these products were attributed to 8- and 14-oxygenation of the 15-hydroperoxy acid. Furthermore, formation of 14,15-leukotriene A4 was inferred from the characteristic pattern of its hydrolysis products comprised of equal amounts of (8R,15S)- and (8S,15S)-dihydroxy-5Z,9E,11E,13E-eicosatetraenoi c acids together with smaller amounts of (14R,15S)-erythro- and (14S,15S)-threo-dihydroxy-5Z,8Z,10E,12E-eicosate traenoic acids. Thus, both lipoxygenase and leukotriene synthase activities were demonstrated with the homogeneous preparation of porcine leukocyte 12-lipoxygenase.  相似文献   

12.
Arachidonic acid metabolism in ionophore A23187-activated human polymorphonuclear leukocytes (PMNs) proceeds predominantly via the 5-lipoxygenase pathway in comparison to metabolism by the 15-lipoxygenase route. Products of both lipoxygenase pathways appear to be involved in the mediation of inflammatory reactions. Pretreatment of polymorphonuclear leukocytes with micromolar amounts of the platelet-derived 12-lipoxygenase product 12-hydroxy-5,8,10,14- eicosatetraenoic acid (12-HETE) prior to the addition of A23187 and [14C]arachidonic acid resulted in the unexpected dose-dependent stimulation of the 15-lipoxygenase pathway, as evidenced by the formation of [14C]15-HETE. A concomitant inhibition of the 5-lipoxygenase pathway was also observed. The structural identity of 15-HETE was confirmed by retention times on straight-phase and reverse-phase high pressure liquid chromatography in comparison with an authentic standard, radioimmunoassay, and chemical derivatization. When other isomeric HETEs were tested, the order of stimulatory potencies was 15-HETE greater than 12-HETE greater than 5-HETE. When arachidonic acid metabolism via the 5-lipoxygenase route was inhibited by nordihydroguaiaretic acid, previously ineffective concentrations of exogenous 12-HETE were now able to stimulate the polymorphonuclear leukocyte 15-lipoxygenase. Thus, blockade of the 5-lipoxygenase pathway appeared to be a prerequisite for the activation of the 15-lipoxygenase. The HETE-induced activation of the 15-lipoxygenase occurred within 1-2 min, was a reversible process, and was enhanced in the presence of A23187. In nine donors tested, up to 14-fold stimulation of [14C]15-HETE production was observed. Our results indicate that endogenous HETEs can have a dual role in the post-phospholipase regulation of arachidonic acid metabolism since they can act as physiological stimulators of the 15-lipoxygenase as well as inhibitors of the 5-lipoxygenase.  相似文献   

13.
Lipoxygenases of bovine and human corneal epithelia were investigated. The bovine epithelium contained an arachidonate 12-lipoxygenase and a 15-lipoxygenase. The 12-lipoxygenase was found in the microsomal fraction, while the 15-lipoxygenase was mainly present in the cytosol (100 000 × g supernatant). 12S-Hydroxyeicosatetraenoic acid (12S-HETE) and 15S-hydroxyeicosa-tetraenoic acid (15S-HETE) were identified by GC-MS and chiral HPLC. BW A4C, an acetohydroxamic acid lipoxygenase inhibitor, reduced the biosynthesis of 12S-HETE and 15S-HETE by over 90% at 10 μ M. IC50 for the 12-lipoxygenase was 0.3 μM. The bovine corneal 12-lipoxygenase was compared with the 12-lipoxygenases of bovine platelets and leukocytes. All three enzymes metabolized 14C-labelled linoleic acid and α-linolenic acid poorly (5–16%) in comparison with [l4C]arachidonic acid. [14C]Docosahexaenoic acid and [14C]4,7,10,13,16-docosapentaenoic acid appeared to be less efficiently converted by the corneal enzyme than by the platelet and leukocyte enzymes. Immunohistochemical analysis of the bovine corneal epithelium using a polyconal antibody against porcine leukocyte 12-lipoxygenase gave positive staining. The cytosol of human corneal epithelium converted [14C]arachidonic acid to one prominent metabolite. The product co-chromatographed with 15S-HETE on reverse phase HPLC, straight phase HPLC and chiral HPLC. Our results suggest that human corneal epithelium contains a 15-lipoxygenase and that bovine corneal epithelium contains both a 15-lipoxygenase and a 12-lipoxygenase. The corneal 12-lipoxygenase appears to differ catalytically from earlier described bovine 12-lipoxygenases.  相似文献   

14.
In order to identify regulatory steps in leukotriene synthesis, the biochemical characteristics of a 5-lipoxygenase activity in the 100,000 xg supernatant from sonicates of cells of an IL-3 dependent murine mast cell clone, MC-9 were determined. Principal products from exogenous 14C-arachidonic acid were identified as leukotriene B4, diastereomeric 5,12-dihydroxy-eicossatetraenoic acids (5.12 diHETEs) 5-hydroperoxy and hydroxyeicosatetraenoic acids (5-HPETE and 5-HEYE) as well as a novel metabolite 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE). The lipoxygenase activity had a pH optimum of 6.9 and was highly dependent upon added Ca++. The effective Ca++ concentration for 50 per cent activation (EC50) was 3 uM. Activity was also stimulated by ATP (EC50 = 160 uM). The cytosolic 5-lipoxygenase activity exhibited a biphasic concentration dependence for arachidonic acid with maximum product formation occurring at 35 uM (ca. 20 nmole/mg/4 min). The lipoxygenase activity exhibited apparent lag phase kinetics which were more pronounced at low protein concentrations (0.3 mg/ml). In addition, the lag phase was greatly accentuated by the addition of a hydroperoxide scavenging system consisting of glutathione (1 mM) plus glutathione peroxidase (0.4 unit/ml). In contrast, addition of any several hydroperoxides, i.e. 5-,8-,9- or 15-HPETE (EC50 ca. 1 uM), but not the corresponding alcohols (5-HETE and 15-HETE), shortened the lag phase. These results show that the 5-lipoxygenase requires hydroperoxide for activation and that cellular level of hydroperoxides may be an important factor regulating leukotriene synthesis.  相似文献   

15.
Minced rabbit pericardium actively converts [1-14C]arachidonic acid into the known prostaglandins (6-[1-14C]ketoprostaglandin F1 alpha, [1-14C]prostaglandin E2 and [1-14C]prostaglandin F2 alpha) and into several unidentified metabolites. The major metabolite was separated by C18 reverse-phase high-pressure liquid chromatography (HPLC) and identified by gas chromatography-mass spectrometry (GC-MS) to be 6,15-[1-14C]diketo-13,14-dihydroprostaglandin F1 alpha. The other nonpolar metabolites were 15-[1-14C]hydroxy-5,8,11,13-eicosa-tetraenoic acid (15-HETE), 11-[1-14C]hydroxy-5,8,12,14-eicosatetraenoic acid (11-HETE) and 12-[1-14C]hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE). Arachidonic acid metabolites actively produced by the pericardium could influence the tone of surface blood vessels on the myocardium.  相似文献   

16.
Atherosclerosis was induced in New Zealand White rabbits through cholesterol feeding. Aortae were taken out from treated animals and incubated with arachidonic acid. Aortae from cholesterol-fed animals converted arachidonic acid into 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE). This conversion was not seen in aortae from control animals. The immediate precursor of 15-HETE, 15-HPETE, is an inhibitor of prostacyclin synthetase and might hamper prostacyclin production.  相似文献   

17.
J Wang  B H Yuen  P C Leung 《FEBS letters》1989,244(1):154-158
The role of several lipoxygenase metabolites of arachidonic acid in the action of luteinizing hormone-releasing hormone (LHRH) on ovarian hormone production was investigated. Like LHRH, treatment of rat granulosa cells with 5-HETE, 5-HPETE, 12-HETE, 15-HETE or 15-HPETE stimulated progesterone (P) and prostaglandin E2 (PGE2) production. 12-HEPE was most potent and stimulated P and PGE2 equally well. By contrast, 5-HETE stimulated P better than PGE2, while 15-HETE was a potent stimulator of PGE2 but not of P. Stimulation of P and PGE2 by LHRH or 12-O-tetradecanoylphorbol 13-acetate (TPA) was further augmented by several HETEs and HPETEs. Like protein kinase C, arachidonic acid metabolites appear to mediate the multiple actions of LHRH in the ovary.  相似文献   

18.
Nasal and bronchial epithelium from normal human nasal turbinates was isolated from surgical specimens and used to study arachidonic acid metabolism. High-performance liquid chromatography analysis of cell incubations in the presence of calcium ionophore, A23187, showed the formation of 15-lipoxygenase products. The major arachidonic acid metabolite with bronchial and nasal tissue was 15-HETE identified by uv spectroscopy, coelution with the authentic standards by HPLC, and GC-mass spectrometry. The second major metabolite, formed from either arachidonic acid or 15-HPETE, was identified as 13-hydroxy-14,15-epoxy-5,8,11-eicosatetraenoic acid (15-alpha-HEPA) by uv spectroscopy, coelution with the authentic standard, and GC-mass spectrometry. In addition, two 8,15-diHETEs and two 8,15-LTs were identified by uv spectroscopy and coelution with the authentic standards by HPLC on both reverse-phase and normal-phase HPLC. Also isolated and identified were 14,15-diHETEs, and 12-HETE. Nasal epithelial cells appear to be more active than nasal bronchial cells in oxidizing arachidonic acid. However, the profile of metabolites from these normal tissue preparations was similar. The addition of 15-lipoxygenase products to nasal epithelium weakly stimulated Cl- ion secretion. These studies indicate that human pulmonary epithelial cells selectively oxidize arachidonic acid to 15-lipoxygenase metabolites.  相似文献   

19.
Human reticulocytes obtained from patients suffering from various haemolytic disorders convert exogenous [1-14C]-arachidonic acid to 15-hydroxy-5,8,11,13(Z,Z,Z,E)-eicosatetraenoic acid (15-HETE). Immunological studies (dot blot, Western blot) indicated that human reticulocytes contain a lipoxygenase which cross-reacts with a polyclonal antiserum against the rabbit reticulocyte lipoxygenase. Northern blotting with a cloned lipoxygenase cDNA probe shows that the specific mRNA is also present. Reaction of the lipoxygenase with submitochondrial particles caused inactivation of respiratory enzymes. The occurrence of an erythroid cell specific lipoxygenase of similar type in reticulocytes of various mammals and man suggests the general role of this enzyme in the maturational degradation of mitochondria.  相似文献   

20.
Lipoxygenase Metabolism of Arachidonic Acid in Brain   总被引:14,自引:13,他引:1  
When blood-free mouse brain slices were incubated with exogenous radiolabeled arachidonic acid, gas chromatography/mass spectrometry confirmed that the major radioactive lipoxygenase enzyme product of arachidonic acid was 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE), with lesser amounts of 5-hydroxy-5,6,8,11,14-eicosatetraenoic acid and 15-hydroxy-5,8,11,13-eicosatetraenoic acid. When 12-[2H]HETE was used to measure endogenous 12-HETE in brain tissue frozen with liquid nitrogen, the level of 12-HETE was 41 +/- 6 ng/g of wet weight tissue. This frozen tissue level was not due to the presence of blood. When brain slices were incubated in vitro for 20 min, the 12-HETE level increased to 964 +/- 35 ng/g of wet weight tissue. Elimination of residual intravascular blood before tissue incubation reduced the brain slice 12-HETE concentration by one-half.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号