首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
植物对植食性哺乳动物的化学防卫   总被引:2,自引:1,他引:2  
综述植物次生合物防卫植食性哺乳动物食的研究进展,植物组织的次生化合物主要为酚类、萜类及含N类化合物,植物对动物觅食的化学防卫对策以次生化合物的各类而有差异,次生化合物通过对动物的食物摄入、消化、代谢,以及敏殖活动的效应,以抵御动物的觅食。将植物化学防卫与动物适应对策相结合,探讨动物-植物协同进化模式,是该研究领域的主要发展趋势。  相似文献   

2.
植物化学防卫与植食性哺乳动物的适应对策   总被引:4,自引:1,他引:3  
李俊年  刘季科 《兽类学报》2000,20(3):225-232
植物化学防卫与植食性哺乳动物的适应是动物—植物系统协同进化研究的重要内容。植物次生化合物可降低动物的食物摄入量及消化率、蛋白质可利用率。某些次生化合物还影响植食性哺乳动物的正常繁殖活动。单宁是动物的重要觅食阻遏剂之一。动物在学习食物选择的过程中,通过认知过程和感知过程处理食物信息,选择食物项目。幼体在胚胎期和哺乳期能从母体获得食物信息,或向有觅食经验的同胞伙伴学习处理食物的经验。动物亦可通过形成络和物,改变体内环境,通过微生物降解、氧化还原、基础代谢率等降低生理对策,以降低植物次生化和物的影响。  相似文献   

3.
植物次生代谢物对植食性哺乳动物的营养和生理生态效应是动植物相互关系研究中的一个重要方面。本文简要介绍了植食性哺乳动物处理植物次生代谢物的一般途径,着重阐述了植物次生代谢物对植食性哺乳动物的营养和生理特征的限制方式,并对决定植食性哺乳动物处理植物次生代谢物能力差异性的相关因素进行了探讨。最后,结合国际上的研究趋势,论述了国内开展此类研究的方向和重点。  相似文献   

4.
不同供硼水平对绿豆植株形态及其叶片生长特征的影响   总被引:2,自引:0,他引:2  
利用水培以绿豆为材料,研究不同供硼水平对绿豆植株形态和叶片生长特征的影响。结果表明缺硼抑制绿豆生长,但对根的影响较对冠的影响更大,表现在缺硼导致冠根比增大;缺硼明显抑制叶面积;降低特定叶面积(SLA),这可能是由于缺硼影响细胞伸展的缘故,造成叶片密度增加,缺硼也提高叶片重量比(LWR)并导致叶脉间失绿,说明缺硼叶片可能过量碳水化合物积累,引起叶绿素降解,与适量供硼比较,过量供硼也影响绿豆的生长,但对冠根比没有影响,表明过量供硼对根和冠具有相同的抑制作用,硼中毒导致成熟叶片脱落,从而影响叶面积,但对特定叶面积(SLA)和叶片重量比(LWR)没有影响。  相似文献   

5.
为探讨真菌诱导子以及硝酸银等非生物诱导子对雷公藤不定根生长及次生代谢产物含量的影响。以雷公藤不定根为材料,通过向培养基中添加不同种类的真菌诱导子以及硝酸银等非生物诱导子,采用高效液相色谱检测不定根中雷公藤甲素和生物碱含量。结果表明:各种真菌诱导子不影响不定根的生长,但对次生代谢产物含量有显著影响,其中,苹果炭疽和柿子炭疽诱导子的加入不仅使不定根中雷公藤甲素的含量分别提高了2.24和1.93倍,生物碱的含量也各提高了2.02和2.07倍。苹果炭疽诱导子浓度为50μg/m L时比较适合雷公藤不定根生长及雷公藤甲素和生物碱的积累。硝酸银抑制不定根的生长和生物碱的积累,但促进雷公藤甲素的积累。硝酸银浓度为25μmol/L时雷公藤甲素含量为对照的1.71倍。茉莉酸甲酯浓度为50μmol/L时,不定根增长量为对照的1.04倍,雷公藤甲素和生物碱含量分别为对照的1.64倍和2.12倍。酵母提取物浓度为2 g/L时,雷公藤甲素含量为对照的1.48倍。表明培养基中添加硝酸银和酵母提取物对不定根中雷公藤甲素的合成具有明显的促进作用,苹果炭疽和茉莉酸甲酯的协同作用既能促进雷公藤甲素的合成又能促进雷公藤生物碱的合成。  相似文献   

6.
以NT为基本培养基,雷公藤(Tripterygium wilfordii)不定根为材料,研究了肌醇、VB1、烟酸、VB6、甘氨酸、叶酸、生物素等有机物质对雷公藤不定根生长及其次生代谢产物雷公藤甲素和总生物碱含量的影响。结果表明:NT培养基中原有浓度的肌醇、VB1含量即可使雷公藤不定根生长量、雷公藤甲素含量、总生物碱含量及产量达到最大值。在添加的其他有机物中,添加1 mg/L烟酸、1 mg/L VB6和5 mg/L甘氨酸适合不定根的生长;添加0.5 mg/L烟酸、0.5 mg/L生物素、1 mg/L VB6、1 mg/L甘氨酸和1 mg/L叶酸适合雷公藤甲素的积累;添加0.5 mg/L甘氨酸、1 mg/L VB6、1 mg/L叶酸和1 mg/L生物素则适合不定根中雷公藤总生物碱的合成。  相似文献   

7.
采用实验生态学的方法研究了外界支持直径变化对苦瓜植株生长和觅食行为的影响。结果表明,支持物直径变化对主茎节间、叶片、叶柄和卷须的发育进程无明显影响。苦瓜植株的攀援生长显著受到支持物直径大小的影响,当支持物直径小于8mm时,植株能较好地自主攀援生长。生长于直径支持物上的植株比生长于小直径支持物上的植株表现出较高的分枝率、较短的主茎、较长的分枝、较大的比茎长和比叶柄长。相关分析表明,节间长度和叶柄长度同植株自主攀援程度成显著正相关关系,而单叶面积、分枝数量和比叶柄长同植株自主攀援程度成显著负相关关系。作为攀援植物的一种重要资源,外界支持物的特征和存在状况将对植物的生长和行为产生重要影响。  相似文献   

8.
支持物倾角对攀援植物栝楼形态和生长的影响   总被引:28,自引:2,他引:28  
支持物倾角的变化将引起攀援植物“自遮荫”程度的改变 ,从而影响植物的生长和行为。以攀援植物栝楼 ( Trichosantheskirilowii)为材料 ,通过实验生态学的方法 ,研究了 4种支持物倾角下植株的生长和觅食行为的差异。结果表明 :( 1 )不同生长发育期栝楼植株形态对自遮荫差异的可塑性反应程度不一 ,不同角度攀援生长植株在生长前期均比生长后期有较敏感的形态可塑性反应。 ( 2 )自遮荫程度随支持物倾角的增大而增强 ,较强自遮荫环境下植株比较弱自荫环境下的植株有更大的形态可塑性。 ( 3)比主茎长、比叶面积、生物量对叶片和叶柄的配置在 4种攀援生长形式间差异均不显著。不同角度攀援植株主要通过改变分枝数量、分枝形态和分枝生物量配置以适应支持物倾角的变化 ,这说明 ,自遮荫对植株形态和生物量配置仅产生有限的影响。 ( 4 )分枝能力、分枝数量以及分枝生物量配置均在大角度攀援生长中最大 ,且与小角度攀援生长植株间有显著差异。 ( 5 )水平攀援生长植株主要通过增大主茎生物量投资以充分占有生境 ,而大角度攀援生长植株则主要通过分枝茎扩展以占据有利生境 ,不同攀援生长植株有不同的觅食行为。  相似文献   

9.
10-3-10-2mol/β-环糊精能明显促进绿豆插条不定根根原基形成,增加不定根数目和总根长.10-4-10-2mol/Lβ-环糊精能提高不定根的鲜重、干重和可溶性蛋白质含量,降低IAA氧化酶活性,减少不定根的平均根长,但对下胚轴的鲜重和干重影响不明显.10-3mol/Lβ-环糊精能提高插条的不定根活力.  相似文献   

10.
以10-4 mol/L脱落酸(ABA)处理绿豆种子24 h,在幼苗下胚轴长6 cm时,切除根部作为插条,研究ABA对插条不定根发生及插条基部细胞周期时相的影响。结果表明,ABA可促进下胚轴插条不定根发生,增加生根数和生根范围;ABA提高插条基部细胞色氨酸转氨酶、吲哚丙酮酸脱羧酶和吲哚乙醛脱氢酶的比活性,增加吲哚乙酸含量,同时进入细胞周期S期的基部细胞数目增加,促进DNA合成,有利于不定根的发生。  相似文献   

11.
Abstract Seedlings of Pinus sylvestris L. were grown under controlled conditions (temperature 20°C, photoperiod 17 h) at two irradiances, 8 or 40 W m-2. Hypocotyl cuttings were excised and rooted at different irradiances in tap water solutions of indolebutyric acid (IBA). The fastest rooting and highest rooting percentage were obtained with cuttings from stock plants grown at 8 W m-2 and treated with 10-5M IBA for 21 days. The concentration of 10-4M IBA inhibited root formation. In comparable treatments rooting was always better in cuttings from stock plants grown at 8 W m-2 than in cuttings from stock plants grown at 40 W m-2. The irradiance during the rooting period had only a minor influence on rooting. When cuttings from plants irradiated with 40 W m-2 were treated with 10-5M IBA for 21 days the rooting percentage almost reached the same level as in untreated cuttings from stock plants given 8 W m-2. In cuttings treated with IBA during the whole rooting period, rooting was depressed in comparison to untreated cuttings. Aeration of the 10-4M IBA solution increased the rooting percentage, but aeration had no effect on untreated cuttings and on cuttings treated with lower IBA concentrations.  相似文献   

12.
Concentrations of 24-epibrassinolide as low as 0.1 μ M consistently inhibited adventitious root formation and elongation in both hypocotyl and epicotyl cuttings from mung bean ( Phaseolus aureus L.). Similar, but less pronounced, inhibitory effects on root elongation were also observed with estrone sulphate and estradiol sulphate. With regards to root number, estrone sulphate enhanced this in both types of cutting, whereas estradiol sulphate was stimulatory in hypocotyl cuttings but inhibitory in epicotyl cuttings. Brassinolide caused a marked stimulation of epicotyl (but not hypocotyl) elongation and a swelling and splitting of the epicotyl in both types of cutting, whereas estrogens varied in their effect from inhibition of epicotyl growth to no effect. Root-applied brassinolide and estrogen sulphates brought about similar morphological abnormalities in shoots viz. epinasty and inrolling of primary leaves and delayed expansion of the first trifoliate leaf.  相似文献   

13.
The relationship between ethylene and adventitious root formation in mung bean hypocotyl cuttings was studied.Ethephon, an ethylene-releasing compound, at 5 x 10 -5 M increased root number and root dry weight on hypo-cotyl cuttings. When ethephon was applied to hypocotyl at different times after excision, there were two effectivetimes for root production i.e. between 06 h and 18-24 h. These two time periods correspond to the induction phase and the late initiation phase of root development, respectively. After excision, three peaks of ethylene productionwere observed. The first peak commencing at 6 h started the sequence of reactions leading root formation, the second peak appearing at 12 h coincided with the beginning of the increase of the IAA level during primordia initiation, and the third peak showing at 48 h played a role in root differentiation and growth. Ethylene stimulated rooting by enhancing the increase in auxins. Thus it appears that the IAA-induced ethylene production may be a factor involved in the stimulation of adventitious root formation.  相似文献   

14.
在MS基本培养基上,黄瓜和绿豆幼苗的下胚轴切段培养4d时即可见不定根发生。下胚轴不同部位切段的发根能力不同。下胚轴切段反插时比正插时发根快1-2d,发根率也高于正插的;0.01-0.05mg/L的NAA还诱导下胚轴切段在形态学上端发根。TIBA对正插或反插的下胚轴切段的不定根发生都有抑制作用。结果提示,生长素极性运输活性对不定根形成起着重要作用。  相似文献   

15.
The adventitious roots of some plants will develop into tuberous roots which are widely used in many traditional Chinese medicines, including Pseudostellaria heterophylla. If adventitious root development is inhibited, the yield of Chinese medicinal materials will be reduced. Gibberellic acid is an important phytohormone that promotes plant growth and increases the resistance to drought, flood or disease. However, the effects of gibberellic acid on adventitious roots of Pseudostellaria heterophylla are not clear. Here, we reports GA3 suppressed adventitious root development of Pseudostellaria heterophylla by disturbing the balance of endogenesis hormones. By detecting the contents of various endogenous hormones, we found that the development of adventitious roots negatively correlated with the content of CA3 in tuberous roots. Exogenous GA3 treatment decreased the diameter of adventitious roots, but increased the length of adventitious roots of Pseudostellaria heterophylla. In contrast, blocking the biosynthesis of GA3 suppressed stem growth and promoted the xylem of tuberous roots development. Moreover, exogenous GA3 treatment resulted in imbalance of endogenesis hormones by regulating their synthesis-related genes expression in xylem of tuberous roots. These results suggest GA3 broke the established distribution of hormones by regulating synthesis, transport and biological activation of hormones to activate the apical meristem and suppress lateral meristem. Regulating GA3 signaling during adventitious roots development would be one of the possible ways to increase the yield of P. heterophylla.  相似文献   

16.
Background and Aims Strigolactones (SLs) and their derivatives are plant hormones that have recently been identified as regulating root development. This study examines whether SLs play a role in mediating production of adventious roots (ARs) in rice (Oryza sativa), and also investigates possible interactions between SLs and auxin.Methods Wild-type (WT), SL-deficient (d10) and SL-insensitive (d3) rice mutants were used to investigate AR development in an auxin-distribution experiment that considered DR5::GUS activity, [3H] indole-3-acetic acid (IAA) transport, and associated expression of auxin transporter genes. The effects of exogenous application of GR24 (a synthetic SL analogue), NAA (α-naphthylacetic acid, exogenous auxin) and NPA (N-1-naphthylphalamic acid, a polar auxin transport inhibitor) on rice AR development in seedlings were investigated.Key Results The rice d mutants with impaired SL biosynthesis and signalling exhibited reduced AR production compared with the WT. Application of GR24 increased the number of ARs and average AR number per tiller in d10, but not in d3. These results indicate that rice AR production is positively regulated by SLs. Higher endogenous IAA concentration, stronger expression of DR5::GUS and higher [3H] IAA activity were found in the d mutants. Exogenous GR24 application decreased the expression of DR5::GUS, probably indicating that SLs modulate AR formation by inhibiting polar auxin transport. The WT and the d10 and d3 mutants had similar expression of DR5::GUS regardless of exogenous application of NAA or NPA; however, AR number was greater in the WT than in the d mutants.Conclusions The results suggest that AR formation is positively regulated by SLs via the D3 response pathway. The positive effect of NAA application and the opposite effect of NPA application on AR number of WT plants also suggests the importance of auxin for AR formation, but the interaction between auxin and SLs is complex.  相似文献   

17.
 In walnut (Juglans regia L.), an otherwise difficult-to-root species, explants of cotyledons have been shown to generate complete roots in the absence of exogenous growth regulators. In the present study, this process of root formation was shown to follow a pattern of adventitious, rather than primary or lateral, ontogeny: (i) the arrangement of vascular bundles in the region of root formation was of the petiole type; (ii) a typical root primordium was formed at the side of the procambium within a meristematic ring of actively dividing cells located around each vascular bundle; (iii) the developing root apical meristem was connected in a lateral way with the vascular bundle of the petiole. This adventitious root formation occurred in three main stages of cell division, primordium formation and organization of apical meristem. These stages were characterized by expression of LATERAL ROOT PRIMORDIUM-1 and CHALCONE SYNTHASE genes, which were found to be sequentially expressed during the formation of the primordium. Activation of genes related to root cell differentiation started at the early stage of primordium formation prior to organization of the root apical meristem. The systematic development of adventitious root primordia at a precise site gave indications on the positional and biochemical cues that are necessary for adventitious root formation. Received: 30 July 1999 / Accepted: 16 February 2000  相似文献   

18.
Summary Rapid formation of adventitious roots by walnut cotyledon fragments in vitro was traced by light microscopy. It was shown that this plant model is characterized by two major developmental processes: a) confined elongation of the cotyledon petiole caused by a limited number of cell divisions and b) formation of a morphogenetic zone around each initially wounded vascular bundle within 36 h after detachment of the embryonic axis. During the first phase of development, granular storage protein bodies dissolved, and starch grains were deposited mainly in the distal portion of the cotyledon fragments. Rapidly, new globular protein bodies were formed, and phenolic inclusions accumulated in the vacuoles of epidermal and subepidermal cells and of individual cells close to the vascular bundles. Each adventitious root was found to be in continuity with a single vascular bundle of the cotyledon petiole. A short auxin treatment suppressed the formation of large roots and induced numerous tiny rootlets dispersed all over the surface of the cotyledons.Abbreviations IBA indole-3-butyric acid  相似文献   

19.
Indole-3-butyric acid (IBA, 10−4 M ), spermine (7 × 10−5 M ) and vitamin D2 (6.3 × 10−5 M ), all of which enhance rooting in mung bean cuttings ( Phaseolus aureus Roxb. cv. Berkin), influence RNA metabolism. Total and poly (A)+-RNA synthesis within the hypocotyl is inhibited by each of these chemicals within 24 h. These changes precede induced cell division and are therefore associated with the so-called inductive period of regeneration during which some cells in the hypocotyl undergo dedifferentiation. However, following subsequent transfer of cuttings to borate, which is an essential prerequisite for development of root primordia in these cuttings, RNA synthesis is enhanced by pretreatments with IBA, spermine or vitamin D2. Furthermore, IBA inhibits synthesis and turnover of protein within the hypocotyl.  相似文献   

20.
Adventitious roots develop in stem cuttings of Phaseolus aureus Roxb. seedlings when treatment with indole-butyric acid (IBA) is followed by treatment with boron. Root development varies according to the age of seedlings from which cuttings are taken. Increased root number is associated with expansion of the first leaf pair but subsequently declines, whereas root growth increases with increasing seedling age. Removal of leaves furing the first 72 h of treatment impairs root initiation whereas root growth is diminished by removal of leaves at any time during the first 120 h of treatment. IBA stimulates movement of 14C-IAA out of leaves. Vitamin D2 and myo-inositol stimulate rooting of intact cuttings provided cuttings are subsequently supplied with boron. Hypocotyls excised from cuttings pretreated with IBA develop roots in response to myo-inositol in the absence of boron. It is proposed that endogenous auxin, arising in the leaves, and myo-inositol have roles in root initiation whilst the role of boron is suggested as one of initiating or maintaining transport from the leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号