首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non-toxic derivatives of botulinum neurotoxin A (BoNT/A) have potential use as neuron-targeting delivery vehicles, and as reagents to study intracellular trafficking. We have designed and expressed an atoxic derivative of BoNT/A (BoNT/A ad) as a full-length 150 kDa molecule consisting of a 50 kDa light chain (LC) and a 100 kDa heavy chain (HC) joined by a disulfide bond and rendered atoxic through the introduction of metalloprotease-inactivating point mutations in the light chain. Studies in neuronal cultures demonstrated that BoNT/A ad cannot cleave synaptosomal-associated protein 25 (SNAP25), the substrate of wt BoNT/A, and that it effectively competes with wt BoNT/A for binding to endogenous neuronal receptors. In vitro and in vivo studies indicate accumulation of BoNT/A ad at the neuromuscular junction of the mouse diaphragm. Immunoprecipitation studies indicate that the LC of BoNT/A ad forms a complex with SNAP25 present in the neuronal cytosolic fraction, demonstrating that the atoxic LC retains the SNAP25 binding capability of the wt toxin. Toxicity of BoNT/A ad was found to be reduced approximately 100,000-fold relative to wt BoNT/A.  相似文献   

2.
Botulinum neurotoxin serotype A (BoNT/A, 1296 residues) is a zinc metalloprotease that cleaves SNAP25 to inhibit the fusion of neurotransmitter-carrying vesicles to the plasma membrane of peripheral neurons. BoNT/A is a disulfide-linked di-chain protein composed of an N-terminal, thermolysin-like metalloprotease light chain domain (LC/A, 448 residues) and a C-terminal heavy chain domain (848 residues) that can be divided into two subdomains, a translocation subdomain and a receptor binding subdomain. LC/A cleaves SNAP25 between residues Gln197-Arg198 and, unlike thermolysin, recognizes an extended region of SNAP25 for cleavage. The structure of a recombinant LC/A (1-425) treated with EDTA (No-Zn LC/A) was determined. The overall structure of No-Zn LC/A is similar to that reported for the holotoxin, except that it lacks the Zn ion, indicating that the role of Zn is catalytic not structural. In addition, structures of a noncatalytic mutant LC/A (Arg362Ala/Tyr365Phe) complexed with and without an inhibitor, ArgHX, were determined. The overall structure and the active site conformation for the mutant are the same as wild type. When the inhibitor binds to the active site, the carbonyl and N-hydroxyl groups form a bidentate ligand to the Zn ion and the arginine moiety binds to Asp369, suggesting that the inhibitor-bound structure mimics a catalytic intermediate with the Arg moiety binding at the P1' site. Consistent with this model, mutation of Asp369 to Ala decreases the catalytic activity of LC/A by approximately 600-fold, and the residual activity is not inhibited by ArgHX. These results provide new information on the reaction mechanism and insight into the development of strategies for small molecule inhibitors of BoNTs.  相似文献   

3.
Botulinum neurotoxins (BoNTs) are highly potent toxins that inhibit neurotransmitter release from peripheral cholinergic synapses. BoNTs consist of a toxifying light chain (LC; 50 kDa) and a binding-translocating heavy chain (HC; 100 kDa) linked through a disulfide bond. The complete sequence of BoNT/A consists of 1296 amino acid residues. The beta-trefoil domain for BoNT/A to which gangliosides bind starts at Ser 1092 and this fragment represents the C-half of the C-terminus of the heavy chain (C-quarter HC or HCQ). The recombinant HCQ DNA was successfully cloned into an expression vector (pET15b), which was used to transform Escherichia coli strain BL21-Star (DE3) for expression. Expression of HCQ was obtained by an extended post-induction time of 15 h at 30 degrees C. The recombinant histidine tagged HCQ protein was isolated and purified by nickel affinity gel column chromatography and its molecular weight was verified by gel electrophoresis. The HCQ was positively identified by antibodies raised against BoNT/A employing immunological dot-blot and Western blot assays. HCQ was shown to bind with synaptotagmin (a known BoNT/A receptor) and gangliosides, indicating that the expressed and purified HCQ protein retains a functionally active conformation.  相似文献   

4.
The light chain of botulinum neurotoxin A (BoNT/A‐LC) is a Zn‐dependent protease that specifically cleaves SNAP25 of the SNARE complex, thereby impairing vesicle fusion and neurotransmitter release at neuromuscular junctions. The C‐terminus of SNAP25 (residues 141–206) retains full activity for BoNT/A‐LC‐catalyzed cleavage at P1‐P1' (Gln197‐Arg198). Using the structure of a complex between the C‐terminus of SNAP25 and BoNT/A‐LC as a model to design SNAP25‐derived pseudosubstrate inhibitors (SNAPIs) that prevent presentation of the scissile bond to the active site, we introduced multiple His residues to replace Ala‐Asn‐Gln‐Arg (residues 195–198) at the substrate cleavage site, with the intent to identify possible side‐chain interactions with the active site Zn. We also introduced multiple Gly residues between the P1‐P1' residues to explore the spatial tolerance within the active‐site cleft. Using a FRET substrate YsCsY, we compared a series of SNAPIs for inhibition of BoNT/A‐LC. Among the SNAPIs tested, several known cleavage‐resistant, single‐point mutants of SNAP25 were poor inhibitors, with most of the mutants losing binding affinity. Replacement with His at the active site did not improve inhibition over wildtype substrate. In contrast, Gly‐insertion mutants were not only resistant to cleavage, but also surprisingly showed enhanced affinity for BoNT/A‐LC. Two of the Gly‐insertion mutants exhibited 10‐fold lower IC50 values than the wildtype 66‐mer SNAP25 peptide. Our findings illustrate a scenario, where the induced fit between enzyme and bound pseudosubstrate fails to produce the strain and distortion required for catalysis to proceed.  相似文献   

5.
Botulinum neurotoxins (BoNTs) are zinc proteases that cleave SNARE proteins to elicit flaccid paralysis by inhibiting the fusion of neurotransmitter-carrying vesicles to the plasma membrane of peripheral neurons. There are seven serotypes of BoNT, termed A-G. BoNT serotype A and serotype E cleave SNAP25 at residues 197-198 and 180-181, respectively. Unlike other zinc proteases, the BoNTs recognize extended regions of SNAP25 for cleavage. The basis for this extended substrate recognition and specificity is unclear. Saturation mutagenesis and deletion mapping identified residues 156-202 of SNAP25 as the optimal cleavage domain for BoNT/A, whereas the optimal cleavage domain for BoNT/E was shorter, comprising residues 167-186 of SNAP25. Two sub-sites were resolved within each optimal cleavage domain, which included a recognition or active site (AS) domain that contained the site of cleavage and a binding (B) domain, which contributed to substrate affinity. Within the AS domains, the P1', P3, and P5 sites of SNAP25 contributed to scissile bond cleavage by LC/A, whereas the P1' and P2 sites of SNAP25 contributed to scissile bond cleavage by LC/E. These studies provide insight into the development of strategies for small molecule inhibitors of the BoNTs.  相似文献   

6.
The light chain (LC) of botulinum neurotoxin B (BoNT/B) is unable to enter target neuronal cells by itself. It is brought into the cell in association with the BoNT/B heavy chain (HC) through endocytosis. The BoNT HC‐LC subunits are held together by a single disulfide bond. Intracellular reduction of this bond and separation of the two subunits activates the endopeptidase activity of the LC. This requirement suggests a strategy to prevent uptake by prophylactic reduction to disrupt the disulfide bond prior to endocytosis of the complex. We examined the utility of tris‐(2‐carboxyethyl)‐phosphine hydrochloride (TCEP), a relatively non‐toxic, non‐sulfur containing disulfide bond reducing agent that lacks the undesirable properties of mercapto‐containing reducing agents. We found that TCEP was as effective as DTT with maximal LC endopeptidase activation occurring at 1 mM, a concentration not toxic to the human neuronal cell line, SHSY‐5Y. In these cells, 1 mM TCEP maximally protected against BoNT/B inhibition of [3H]‐NA release, achieving 72% of the release from un‐intoxicated controls. This effect appears to be due to the sparing of SNARE proteins as the levels of VAMP‐2, the specific target of BoNT/B, were protected. These results show that TCEP disrupts the structure of BoNT/B by reduction of the LC and HC bridging disulfide bond and prevents neuronal intoxication. Since disulfide bond coupling between toxin subunits is a general motif for many toxins, e.g., ricin, snake venom, and all BoNT serotypes, this suggests that TCEP is a promising means to protect against these toxins by preventing cell penetration. J. Cell. Biochem. 107: 1021–1030, 2009. Published 2009 Wiley‐Liss, Inc.  相似文献   

7.
Botulinum neurotoxins (BoNTs) are highly potent toxins that inhibit neurotransmitter release from peripheral cholinergic synapses. BoNTs consist of a toxifying light chain (LC; 50 kDa) and a binding/translocating heavy chain (HC; 100 kDa) linked through a disulfide bond. A DNA fragment encoding type A Clostridium botulinum heavy chain (BoNT/A HC) was amplified by polymerase chain reaction and cloned into an E. coli PET-15b vector. In vitro translated [35S]BoNT/A HC was identified by anti-BoNT/A polyclonal antibodies, and was used to investigate the binding of the toxin to rat synaptosomes. The binding of [35S]BoNT/A HC to synaptosomes was abolished by 500-fold excess of cold BoNT/A, and by incubation with trypsin. Treatment of BoNT/A HC with anti-BoNT/A or GT1b blocked its binding to synaptosomes. The radioactive BoNT/A HC recognized three proteins corresponding to a molecular mass of 150 (P150), 120 (P120), and 75 (P75) kDa in rat and bovine synaptosomal preparations. These results represent the first successful expression of functional full-length BoNT heavy chain.  相似文献   

8.
To define conserved domains within the light (L) chains of clostridial neurotoxins, we determined the sequence of botulinum neurotoxin type B (BoNT/B) and aligned it with those of tetanus toxin (TeTx) and BoNT/A, BoNT/C1, BoNT/D, and BoNT/E. The L chains of BoNT/B and TeTx share 51.6% identical amino acid residues whereas the degree of identity to other clostridial neurotoxins does not exceed 36.5%. Each of the L chains contains a conserved motif, HExxHxxH, characteristic for metalloproteases. We then generated specific 5'- and 3'-deletion mutants of the L chain genes of TeTx and BoNT/A and tested the biological properties of the gene products by microinjection of the corresponding mRNAs into identified presynaptic cholinergic neurons of the buccal ganglia of Aplysia californica. Toxicity was determined by measurement of neurotransmitter release, as detected by depression of postsynaptic responses to presynaptic stimuli (Mochida, S., Poulain, B., Eisel, U., Binz, T., Kurazono, H., Niemann, H., and Tauc, L. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 7844-7848). Our studies allow the following conclusions. 1) Residues Cys439 of TeTx and Cys430 of BoNT/A, both of which participate in the interchain disulfide bond, play no role in the toxification reaction. 2) Derivatives of TeTx that lacked either 8 amino- or 65 carboxyl-terminal residues are still toxic, whereas those lacking 10 amino- or 68 carboxyl-terminal residues are nontoxic. 3) For BoNT/A, toxicity could be demonstrated only in the presence of added nontoxic heavy (H) chain. A deletion of 8 amino-terminal or 32 carboxyl-terminal residues from the L chain had no effect on toxicity, whereas a removal of 10 amino-terminal or 57 carboxyl-terminal amino acids abolished toxicity. 4) The synergistic effect mediated by the H chain is linked to the carboxyl-terminal portion of the H chain, as demonstrated by injection of HC-specific mRNA into neurons containing the L chain. This finding suggests that the HC domain of the H chain becomes exposed to the cytosol during or after the putative translocation step of the L chain.  相似文献   

9.
Botulinum neurotoxins (BoNTs) are zinc proteases that cleave SNARE proteins to elicit flaccid paralysis by inhibiting the fusion of neurotransmitter-carrying vesicles to the plasma membrane of peripheral neurons. There are seven serotypes of BoNT, termed A-G. The molecular basis for SNAP25 recognition and cleavage by BoNT serotype E is currently unclear. Here we define the multiple pocket recognition of SNAP25 by LC/E. The initial recognition of SNAP25 is mediated by the binding of the B region of SNAP25 to the substrate-binding (B) region of LC/E comprising Leu166, Arg167, Asp127, Ala128, Ser129, and Ala130. The mutations at these residues affected substrate binding and catalysis. Three additional residues participate in scissile bond cleavage of SNAP25 by LC/E. The P3 site residues, Ile178, of SNAP25 interacted with the S3 pocket in LC/E through hydrophobic interactions. The S3 pocket included Ile47, Ile164, and Ile182 and appeared to align the P1' and P2 residues of SNAP25 with the S1' and S2 pockets of LC/E. The S1' pocket of LC/E included three residues, Phe191, Thr159, and Thr208, which contribute hydrophobic and steric interactions with the SNAP25 P1' residue Ile181. The S2 pocket residue of LC/E, Lys224, binds the P2 residue of SNAP25, Asp179, through ionic interactions. Deletion mapping indicates that main chain interaction(s) of residues 182-186 of SNAP25 contribute to substrate recognition by LC/E. Understanding the mechanism for substrate specificity provides insight for the development of inhibitors against the botulinum neurotoxins.  相似文献   

10.
Clostridial botulinum neurotoxins (BoNTs) exert their neuroparalytic action by arresting synaptic exocytosis. Intoxication requires the disulfide-linked, di-chain protein to undergo conformational changes in response to pH and redox gradients across the endosomal membrane with consequent formation of a protein-conducting channel by the heavy chain (HC) that translocates the light chain (LC) protease into the cytosol. Here, we investigate the role of the disulfide bridge in the dynamics of protein translocation. We utilize a single channel/single molecule assay to characterize in real time the BoNT channel and chaperone activities in Neuro 2A cells under conditions that emulate those prevalent across endosomes. We show that the disulfide bridge must remain intact throughout LC translocation; premature reduction of the disulfide bridge after channel formation arrests translocation. The disulfide bridge must be on the trans compartment to achieve productive translocation of LC; disulfide disruption on the cis compartment or within the bilayer during translocation aborts it. We demonstrate that a peptide linkage between LC and HC in place of a disulfide bridge is insufficient for productive LC translocation. The disulfide linkage, therefore, dictates the outcome of translocation: productive passage of cargo or abortive channel occlusion by cargo. Based on these and previous findings we suggest a sequence of events for BoNT LC translocation to be HC insertion, coupled LC unfolding, and protein conduction through the HC channel in an N to C terminus orientation and ultimate release of the LC from the HC by reduction of the disulfide bridge concomitant with LC refolding in the cytosol.  相似文献   

11.
目的:克隆突触小体相关蛋白(SNAP25)基因,原核表达、纯化并鉴定SNAP25蛋白。方法:PCR扩增SNAP25基因,克隆至表达质粒pTIG-Trx,转化大肠杆菌BL21(DE3)感受态细胞,IPTG诱导表达,Ni2+-NTA亲和层析纯化目的蛋白,SDS-PAGE及Western印迹分析肉毒神经毒素BoNT/A轻链对该蛋白的裂解情况。结果:构建了pTIG-SNAP25表达质粒,经IPTG诱导表达,目的蛋白占全菌蛋白的26.2%,表达形式为可溶性表达,表达量达115.4mg/L,纯化后蛋白纯度达95%以上;经SDS-PAGE及Western印迹分析,SNAP25蛋白可被BoNT/A轻链特异降解。结论:克隆了SNAP25基因,在原核系统中表达、纯化并鉴定了重组SNAP25蛋白。  相似文献   

12.
Botulinum neurotoxins (BoNTs) are highly potent toxins that inhibit neurotransmitter release from peripheral cholinergic synapses and associate with infant botulism. BoNT is a approximately 150kDa protein, consisting of a binding/translocating heavy chain (HC; 100kDa) and a toxifying light chain (LC; 50kDa) linked through a disulfide bond. C-terminal half of the heavy chain is binding domain, and N-terminal half of the heavy chain is translocation domain that includes transmembrane domain. A functional botulinum neurotoxin type B heavy chain transmembrane and binding domain (Ile 624-Glu 1291) has been cloned into a bacterial expression vector pET 15b and produced as an N-terminally six-histidine-tagged fusion protein (BoNT/B HC TBD). (His(6))-BoNT/B HC TBD was highly expressed in Escherichia coli BL21-CodonPlus (DE3)-RIL and isolated from the E. coli inclusion bodies. After solubilizing the purified inclusion bodies with 6M guanidine-HCl in the presence of 10mM beta-mercaptoethanol, the protein was purified and refolded in a single step on Ni(2+) affinity column by removing beta-mercaptoethanol first, followed by the removal of urea. The purified protein was determined to be 98% pure as assessed by SDS-polyacrylamide gel. (His(6))-BoNT/B HC TBD retained binding to synaptotagmin II, the receptor of BoNT/B, which was confirmed by immunological dot blot assay, also to ganglioside, which was investigated using enzyme-linked immunosorbent assay.  相似文献   

13.
Botulinum neurotoxin A (BoNT A) is a substrate of the Src family of tyrosine kinases. Here, we report that the BoNT A light chain (LC) is phosphorylated in the tyrosine-71 located at N-terminus. Covalent modification of this residue notably increases the thermal stability of the endopeptidase activity, without affecting its catalytic efficacy. Similarly, mutation of this residue specifically affected the protein stability but not its endopeptidase function. Fusion of the Tat-translocating domain to the N-terminus of the enzyme produced a cell permeable, functional enzyme, as evidenced by immunocytochemistry and by the cleavage of cytosolic SNAP25 in intact PC12 cells. Noteworthy, truncation of cellular SNAP25 was reduced in cells when the Src kinase activity was inhibited with a specific antagonist, implying that tyrosine phosphorylation of BoNT A LC modulates the in vivo proteolytic activity of the neurotoxin. Taken together, these findings substantiate the tenet that tyrosine phosphorylation of BoNT A LC could be an important modulatory strategy of the neurotoxin stability and suggest that the phosphorylated neurotoxin may be a relevant molecule in vivo.  相似文献   

14.
The Clostridium botulinum neurotoxins (BoNTs) cleave SNARE proteins, which inhibit binding and thus fusion of neurotransmitter vesicles to the plasma membrane of peripheral neurons. BoNTs comprise an N-terminal light chain (LC) and C-terminal heavy chain, which are linked by a disulfide bond. There are seven serotypes (A-G) of BoNTs based upon immunological neutralization. Although the binding and entry of BoNT/A into neurons has been subjected to considerable investigation, the intracellular events that allow BoNT/A to efficiently cleave SNAP-25 within neurons is less well understood. Earlier studies showed that intracellular LC/A bound to the plasma membrane of neurons. In this study, intracellular LC/A is shown to directly bind SNAP-25 on the plasma membrane. Solid phase binding showed that the N-terminal residues of LC/A bound residues 80-110 of SNAP-25, which was also observed in cultured neurons. Association of the N-terminal 8 amino acids of LC/A and residues 80-110 of SNAP-25 also enhanced substrate cleavage. These findings explain how LC/A associates with SNAP-25 on the plasma membrane and provide a basis for LC/A cleavage of SNAP-25 within the SNARE complex.  相似文献   

15.
Botulinum neurotoxin (BoNT) serotype B (BoNT/B) is one of the serotypes of BoNT that causes deadly human botulism, though it is used clinically for treatment of many neuromuscular diseases. BoNT/B is produced by Clostridium botulinum, and it is secreted along with a group of neurotoxin-associated proteins (NAPs) in the form of a BoNT/B complex. The complex dissociates into a 150-kDa holotoxin and NAPs at alkaline pHs. The 150-kDa BoNT/B holotoxin can be nicked to produce a 50-kDa domain referred to as the light chain (LC) and a 100-kDa heavy chain, with the former possessing a unique endopeptidase activity. The two chains remain linked through a disulfide bond that can be reduced to separate the two chains. The endopeptidase activity is present in all three forms of the toxin (complex, purified BoNT/B holotoxin, and separated light chain), which are used by different researchers to develop detection methods and screen for inhibitors. In this research, the endopeptidase activities of the three forms, for the first time, were compared under the same conditions. The results show that enzyme activities of the three forms differ significantly and are largely dependent on nicking and disulfide reduction conditions. Under the conditions used, LC had the highest level of activity, and the complex had the lowest. The activity was enhanced by nicking of BoNT/B holotoxin and was enhanced even more by dithiothreitol (DTT) reduction after nicking. This information is useful for understanding the properties of BoNT endopeptidases and for comparing the efficacies of different inhibitors when they are tested with different forms of BoNT endopeptidase.Botulinum neurotoxins (BoNTs) produced by Clostridium botulinum are the most toxic substances known to humans and block the release of neurotransmitters, resulting in flaccid muscle paralysis. There are seven serotypes of BoNT, designated A to G, which are serologically distinct. An antitoxin against one serotype does not work on other serotypes. Different BoNT serotypes differ in their amino acid sequences, their substrates, or cleavage sites on the same substrate. Of the seven serotypes, BoNT type A (BoNT/A), BoNT/B, BoNT/E, and BoNT/F are known to cause human botulism (9). The extreme lethality of BoNTs makes them potent bioterror agents. BoNT/A and BoNT/B are two serotypes which have been approved by the Food and Drug Administration (FDA) for cosmetic purposes and for treatment of a wide range of neuromuscular diseases, including cervical dystonia (3).Like other BoNT serotypes, BoNT/B is secreted by the bacteria as a complex of the holotoxin and several nontoxic proteins called neurotoxin-associated proteins (NAPs). The NAPs protect the holotoxin from harsh environmental conditions, such as the high temperature, low pH, and multiple proteases present in the gastrointestinal tract (14, 17). The holotoxin, of about 150 kDa, can be obtained by removing the non-covalently bound accessory proteins with ion-exchange chromatography. The 150-kDa polypeptide chain consists of a 100-kDa heavy chain (HC) and a 50-kDa light chain (LC), which are synthesized as a single polypeptide chain but nicked by endogenous or exogenous proteases and remain linked through a disulfide bond (Fig. (Fig.1).1). The HC binds the receptors on neuronal cells and helps translocate the LC into the cell. The BoNT/B LC cleaves the vesicle-associated membrane protein (VAMP), also called synaptobrevin. VAMP is necessary for the docking and fusion of synaptic vesicles to plasma membrane at the neuromuscular junctions for neurotransmitter release. Once the VAMP is cleaved, the neurotransmitters in synaptic vesicles cannot be released, resulting in flaccid paralysis that can be fatal.Open in a separate windowFIG. 1.Schematic diagram of BoNT/B pure toxin. Dark gray, light chain; light gray, heavy chain; hatch-marked box, the active site of the toxin. The 50-kDa light chain and 100-kDa heavy chain are linked through a disulfide bridge as well as a covalent bond. The latter is partially nicked by bacterial proteases before the toxin is secreted.Strains producing BoNT/B can be nonproteolytic or proteolytic (4). BoNT/B from nonproteolytic strains occurs as a single polypeptide chain of 150 kDa. BoNT/B secreted by proteolytic strains is a mixture of the single polypeptide chain and a dichain in which the peptide bond linking the HC and LC has been nicked by proteases produced by the bacteria (Fig. (Fig.1).1). The single polypeptide chain in both nonproteolytic and proteolytic cultures can be converted to the dichain form through in vitro trypsinization. The HC and LC in the dichain can be further separated by breaking the disulfide bond with a reducing agent such as dithiothreitol (DTT) and treating it with chaotropic reagents such as urea (10).The complex, holotoxin, and LC are three different forms of BoNT/B with endopeptidase activity, although LC is the only active unit in all three forms. The complex is the native form of the toxin, which causes botulism. It is also the main component of the only licensed drug with BoNT/B currently available (2). The complex, holotoxin, and LC of BoNT/B have all been extensively used to develop methods to detect this serotype or to screen for inhibitors against the toxin (1, 5, 7, 8, 13, 15, 16). Since different forms of the toxin were used by different researchers, it is difficult to compare the sensitivities of different detection methods or the efficacies of different inhibitors. Therefore, in this study, the activities of BoNT/B complex, holotoxin, and LC were compared under the same conditions for the first time. The results suggest that the endopeptidase activity with a peptide substrate varies substantially depending on whether BoNT/B is used in its native complex form, its isolated holotoxin form, or a separated LC form. The LC form was the most active form of the endopeptidase under the conditions used.  相似文献   

16.
A targeted delivery vehicle (DV) was developed for intracellular transport of emerging botulinum neurotoxin (BoNT) antagonists. The DV consisted of the isolated heavy chain (HC) of BoNT/A coupled to a 10-kDa amino dextran via the heterobifunctional linker 3-(2-pyridylthio)-propionyl hydrazide. The HC served to target BoNT-sensitive cells and promote internalization of the complex, while the dextran served as a platform to deliver model therapeutic molecules to the targeted cells. To determine the ability of this chimeric glycoprotein to enter neurons, dextran and HC were labeled independently with the fluorescent dyes Oregon green 488 and Cy3, respectively. Internalization of DV was monitored in primary cortical cells using laser confocal microscopy. Incubation of cells for 24 h with DV resulted in discrete punctate labeling of both soma and processes. The Cy3 and Oregon green 488 signals were generally co-localized, suggesting that the complex remained in the same intracellular compartment during the initial 24 h. The DV-associated fluorescence was reduced progressively by co-application of increasing concentrations of unlabeled BoNT/A holotoxin. The results suggest that the BoNT/A HC is able to mediate internalization of a coupled dextran, even though the latter bears no resemblance to the BoNT/A light chain (LC). The HC of BoNT/A thus offers promise as a selective carrier to deliver BoNT antagonists to the nerve terminal cytoplasm for inhibiting the proteolytic activity of internalized BoNT/A LC.  相似文献   

17.

Background

Botulinum neurotoxins (BoNT) are a family of category A select bioterror agents and the most potent biological toxins known. Cloned antibody therapeutics hold considerable promise as BoNT therapeutics, but the therapeutic utility of antibodies that bind the BoNT light chain domain (LC), a metalloprotease that functions in the cytosol of cholinergic neurons, has not been thoroughly explored.

Methods and Findings

We used an optimized hybridoma method to clone a fully human antibody specific for the LC of serotype A BoNT (BoNT/A). The 4LCA antibody demonstrated potent in vivo neutralization when administered alone and collaborated with an antibody specific for the HC. In Neuro-2a neuroblastoma cells, the 4LCA antibody prevented the cleavage of the BoNT/A proteolytic target, SNAP-25. Unlike an antibody specific for the HC, the 4LCA antibody did not block entry of BoNT/A into cultured cells. Instead, it was taken up into synaptic vesicles along with BoNT/A. The 4LCA antibody also directly inhibited BoNT/A catalytic activity in vitro.

Conclusions

An antibody specific for the BoNT/A LC can potently inhibit BoNT/A in vivo and in vitro, using mechanisms not previously associated with BoNT-neutralizing antibodies. Antibodies specific for BoNT LC may be valuable components of an antibody antidote for BoNT exposure.  相似文献   

18.
Botulinum neurotoxins (serotypes BoNT/A–BoNT/G) induce botulism, a disease leading to flaccid paralysis. These serotypes are highly specific in their proteolytic cleavage of SNAP-25 (synaptosomal-associated protein of 25 kDa), VAMP (vesicle associated membrane protein) or syntaxin. The catalytic domain (light chain, LC) of the neurotoxin has a Zn2+ dependent endopeptidase activity. In order to design drugs and inhibitors against these toxins, high level overexpression and characterization of LC of BoNTs along with the development of assays to monitor their proteolytic activity becomes important. Using the auto-induction method, we attained a high level expression of BoNT/C1(1–430) yielding more than 30 mg protein per 500 ml culture. We also developed an efficient assay to measure the activity of serotype C1 based on a HPLC method. SNAP-25 with varying peptide length has been reported in literature as substrates for BoNT/C1 proteolysis signifying the importance of remote exosites in BoNT/C1 required for activity. Here, we show that a 17-mer peptide corresponding to residues 187–203 of SNAP-25, which has earlier been shown to be a substrate for BoNT/A, can be used as a substrate for quantifying the activity of BoNT/C1(1–430). There was no pH dependence for the proteolysis, however the presence of dithiothreitol is essential for the reaction. Although the 17-mer substrate bound 110-fold less tightly to BoNT/C1(1–430) than SNAP-25, the optimal assay conditions facilitated an increase in the catalytic efficiency of the enzyme by about 5-fold.  相似文献   

19.
Botulinum neurotoxins (BoNTs), the most poisonous member of class A biothreat agent, cause neuroparalysis by blocking neurotransmitter release at the neuromuscular junctions. In its mechanism of action, the catalytic domain (light chain (LC) of BoNT) is transported to the cytosol by the heavy chain (HC) in order to reach its proteolytic substrates. The BoNT HC forms a membrane channel under acidic conditions encountered in endosomes to serve as a passageway for LC to enter into cytosol. We demonstrate here that BoNT/A LC undergoes unique structural changes under the low pH conditions, and adopts a molten globule state, exposing substantial number of hydrophobic groups. The flexibility of the molten globular structure combined with retention of the secondary structure and exposure of specific residues of LC for interaction with the HC, allows its translocation through the narrow endosomal membrane channel.  相似文献   

20.
Li L  Singh BR 《Biochemistry》2000,39(21):6466-6474
Clostridial botulinum neurotoxins (BoNTs) cause neuroparalysis by blocking neurotransmitter release at the neuromuscular junctions. While the toxin's heavy chain (HC) is involved in binding and internalization, the light chain (LC) acts as a unique Zn(2+)-endopeptidase against a target protein in the exocytotic docking/fusion machinery. During the translocation of the LC to the cytosol, it is exposed to the endosomal low pH. Low pH showed a dramatic change in the BoNT/A LC polypeptide folding as indicated by differential heat denaturation. Furthermore, binding of 1-anilinonaphthalenesulfonate (ANS) revealed exposure of hydrophobic domains of BoNT/A LC at low pH. Low-pH-induced structural (and by implication the endopeptidase activity) changes were completely reversible. Exposure of BoNT/A LC to low pH (4.7) did not, however, evoke the loss of Zn(2+) bound to its active site. Implications of these observations to the delivery of active BoNT/A LC to the nerve cell are discussed. We further analyzed the nature of low-pH-induced change in the polypeptide folding of BoNT/A LC by Trp fluorescence measurements. The Trp fluorescence peak was observed at 322 nm, and the two fluorescence lifetime components estimated at 2.1 ns (88%) and 0.6 ns (12%) did not change much at low pH. These observations suggested that the two Trp residues are buried and constrained in a hydrophobic environment, and it is likely that the core of the BoNT/A LC protein matrix does not participate in the low-pH-induced structural alteration. This conclusion was further supported by the near-UV circular dichroism spectra under two pH conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号