共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition of ethylene biosynthesis by antisense ACC oxidase RNA prevents chilling injury in Charentais cantaloupe melons 总被引:4,自引:0,他引:4
M. Ben-Amor B. Flores A. Latché M. Bouzayen J. C. Pech & F. Fomojaro 《Plant, cell & environment》1999,22(12):1579-1586
Non-freezing low temperature storage causes injury to melons and most other fruit and vegetables of tropical and subtropical origin. We demonstrate here that ethylene suppression through an antisense ACC oxidase (ACO) gene considerably reduced the sensitivity of Charentais cantaloupe melons to chilling injury. In contrast to wild-type fruit, antisense ACO melons did not develop the characteristic chilling injury of pitting and browning of the rind neither when stored at low temperature (3 weeks at 2 °C) nor upon rewarming. Treating antisense melons with 10 p.p.m. ethylene for more than 1 d prior to cold storage resulted in the restoration of chilling sensitivity. When the ethylene treatment was performed after cold storage, the chilling injury symptoms did not appear. The tolerance to chilling was associated with a lower accumulation of ethanol and acetaldehyde, reduced membrane deterioration and higher capacity of the fruit to remove active oxygen species. The activities of catalase, superoxide dismutase and peroxidase were markedly increased in antisense ACO fruit in comparison with wild-type fruit, particulary upon rewarming and post-storage ethylene treatment. Severe chilling injury symptoms were correlated with a lower activity of activated oxygen scavenging enzymes. These results demonstrate that ethylene acts in conjunction with low temperature to induce metabolic shifts that participate in the development of chilling injury. 相似文献
2.
The use of ethylene-suppressed lines to assess differential sensitivity to ethylene of the various ripening pathways in Cantaloupe melons 总被引:2,自引:0,他引:2
F. Flores M. Ben Amor B. Jones J. C. Pech M. Bouzayen A. Latché F. Romojaro 《Physiologia plantarum》2001,113(1):128-133
Physiological characterization of ethylene-suppressed Cantaloupe Charentais melons ( Cucumis melo var. cantalupensis Naud cv. Védrantais) revealed that some ripening-associated events, like degreening of the rind and cell separation in the peduncular abscission zone, are totally dependent on ethylene. By contrast, some other ripening events, like softening and membrane deterioration, depend only partially on ethylene and display some ethylene-independent components. Application of increasing levels of exogenous ethylene on these antisense 1-aminocyclopropane-1-carboxylic acid oxidase fruits enabled the determination of the gradual sensitivity of various ripening pathways to the hormone. The threshold level of ethylene capable of physiological activity varied from 1 ppm for degreening of the rind to 2.5 ppm for softening, membrane deterioration and cell separation in the peduncular abscission zone. Up to a saturating dose of 5 ppm, the extent of rind degreening was proportionally related to the level of applied ethylene. The saturating levels of ethylene for flesh softening (2.5 ppm) and for membrane deterioration and cell separation in the peduncular abscission zone (5 ppm) were much lower than the internal ethylene found at the climacteric peak of wild-type fruit (over 100 ppm). The cessation of ethylene treatment resulted in a complete arrest of the rind degreening and peduncular cell separation indicating that both ripening pathways are completely dependent on ethylene. On the contrary, softening and membrane deterioration, though significantly slowed upon removal of ethylene treatment, continued to proceed in the absence of the hormone, thereby unmasking the ethylene-independent component of softening and membrane deterioration. The presence of ethylene-independent components in the regulation of individual pathways indicates that the ripening of climacteric fruit involves a substantial portion of non-climacteric regulation. 相似文献
3.
A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway 总被引:6,自引:0,他引:6
下载免费PDF全文

Schaffer RJ Friel EN Souleyre EJ Bolitho K Thodey K Ledger S Bowen JH Ma JH Nain B Cohen D Gleave AP Crowhurst RN Janssen BJ Yao JL Newcomb RD 《Plant physiology》2007,144(4):1899-1912
4.
5.
6.
7.
The respiratory climacteric is present in Charentais (Cucumis melo cv. Reticulatus F1 Alpha) melons ripened on or off the plant 总被引:1,自引:0,他引:1
Hadfield Kristen A.; Rose Jocelyn K.C.; Bennett Alan B. 《Journal of experimental botany》1995,46(12):1923-1925
Ripening of climacteric fruit is accompanied by an increasein respiration and autocatalytic ethylene synthesis. In harvestedmelons, there is variation in the magnitude and duration ofthe respiratory climacteric depending on the cultivar. It hasrecently been reported that, while the ripening-associated increasein ethylene production is present, the respiratory climactericis absent in ripening melon fruit attached to the plant, leadingto the suggestion that climacteric respiration is an artifactof harvest. To address the universality of this phenomenon,ripening behaviour in the melon cultivar Charentais (Cucumismelo cv. Reticulatus F1 Alpha), was investigated and the resultsshow that the respiratory climacteric occurs in fruit ripenedboth on and off the plant. Key words: Cucumis melo, ethylene, respiratory climacteric 相似文献
8.
A study of the enzymes of the orotate biosynthetic pathway in the kinetoplasid flagellate Crithidia fasciculata has revealed a number of differences between them and those of other organisms, either prokaryotic or eukaryotic. Carbamyl phosphate synthesis could not be demonstrated in cell-free extracts. However, the incorporation of both CO2 and the ureide carbon of citrulline into pyrimidines occurs in growing cells, the latter predominating over the former. The aspartate transcarbamylase of the flagellate has properties which are similar to those of this enzyme as it occurs in mammals rather than other microorganisms. Two enzymes, dihydroorotate synthetase and dihydroorotate hydrolase, are present, the former being responsible for the conversion of carbamylasparate to dihydroorotate. Dihydroorotate hydroxylase, a soluble enzyme requiring a reduced pteridine as a cofactor, converts dihydroorotate to orotate. The hydroxylase is inhibited by orotate, but not by pyrimidine or purine ribonucleotides. Thus orotate serves to control its own biosynthesis. 相似文献
9.
In Vitro Cellular & Developmental Biology - Plant - While the antimicrobial activity of silver nanoparticles (AgNPs) is well established, the phytostimulatory and/or phytotoxic influences of... 相似文献
10.
Biochemical and genetic data were obtained from a series of 51 Pyr- strains of Bacillus subtilis. The observed enzymatic deficiencies allowed the mutants to be placed into 12 clases, some of which represent defects in more than one of the six known pyrimidine biosynthetic enzymes. Mapping analysis by transformation has shown that all the Pyr- mutations are located in a single small area of the B. subtilis genome. A correlation of the biochemical defects and the genetic data has been made. Those mutations conferring similar enzymatic deficiencies were found to be contiguous on the B. subtilis map. Regulatory aspects of the pyrimidine pathway have also been investigated and are compared to previously reported results from other organisms. Evidence is presented which bears upon the possible physical association of the first three enzymes and the association of at least some of the enzymes of this pathway with particulate elements of the cell. A model for the organization of the enzymes is presented with dihydroorotate dehydrogenase as the central enzyme in a proposed aggregate. 相似文献
11.
12.
13.
C L Jacobs S Goon K J Yarema S Hinderlich H C Hang D H Chai C R Bertozzi 《Biochemistry》2001,40(43):12864-12874
Unnatural analogues of sialic acid can be delivered to mammalian cell surfaces through the metabolic transformation of unnatural N-acetylmannosamine (ManNAc) derivatives. In previous studies, mannosamine analogues bearing simple N-acyl groups up to five carbon atoms in length were recognized as substrates by the biosynthetic machinery and transformed into cell surface sialoglycoconjugates [Keppler, O. T., et al. (2001) Glycobiology 11, 11R-18R]. Such structural alterations to cell surface glycans can be used to probe carbohydrate-dependent phenomena. This report describes our investigation into the extent of tolerance of the pathway toward additional structural alterations of the N-acyl substituent of ManNAc. A panel of analogues with ketone-containing N-acyl groups that varied in the length or steric bulk was chemically synthesized and tested for metabolic conversion to cell surface glycans. We found that extension of the N-acyl chain to six, seven, or eight carbon atoms dramatically reduced utilization by the biosynthetic machinery. Likewise, branching from the linear chain reduced metabolic conversion. Quantitation of metabolic intermediates suggested that cellular metabolism is limited by the phosphorylation of the N-acylmannosamines by ManNAc 6-kinase in the first step of the pathway. This was confirmed by enzymatic assay of the partially purified enzyme with unnatural substrates. Identification of ManNAc 6-kinase as a bottleneck for unnatural sialic acid biosynthesis provides a target for expanding the metabolic promiscuity of mammalian cells. 相似文献
14.
A J Biel 《Journal of bacteriology》1992,174(16):5272-5274
The effect of exogenous aminolevulinate and porphobilinogen on protoporphyrin accumulation in Rhodobacter capsulatus was measured. Oxygen inhibited protoporphyrin accumulation in strain AJB456, a bchH mutant, even in the presence of exogenous aminolevulinate, suggesting that some step in the formation of protoporphyrin from aminolevulinate is regulated by oxygen. In contrast, in the presence of exogenous porphobilinogen, oxygen did not inhibit protoporphyrin accumulation. The results presented in this study indicate that oxygen regulates the formation of porphobilinogen from aminolevulinate. 相似文献
15.
Dormancy removal in apple embryos by nitric oxide or cyanide involves modifications in ethylene biosynthetic pathway 总被引:1,自引:0,他引:1
The connection between classical phytohormone-ethylene and two signaling molecules, nitric oxide (NO) and hydrogen cyanide
(HCN), was investigated in dormancy removal and germination “sensu stricto” of apple (Malus domestica Borkh.) embryos. Deep dormancy of apple embryos was removed by short-term (3–6 h) pre-treatment with NO or HCN. NO- or HCN-mediated
stimulation of germination was associated with enhanced emission of ethylene by the embryos, coupled with transient increase
in ROS concentration in embryos. Ethylene vapors stimulated germination of dormant apple embryos and eliminated morphological
anomalies characteristic for young seedlings developed from dormant embryos. Inhibitors of ethylene receptors completely impeded
beneficial effect of NO and HCN on embryo germination. NO- and HCN-induced ethylene emission by apple embryo was only slightly
reduced by inhibitor of 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase activity during first 4 days of germination. Short-term pre-treatment of
the embryos with NO and HCN modified activity of both key enzymes of ethylene biosynthetic pathway: ACC synthase and ACC oxidase.
Activity of ACC synthase declined during first 4 days of germination, while activity of ACC oxidase increased markedly at
that time. Additional experiments point to non-enzymatic conversion of ACC to ethylene in the presence of ROS (H2O2). The results indicate that NO and HCN may alleviate dormancy of apple embryos “via” transient accumulation of ROS, leading
to enhanced ethylene emission which is required to terminate germination “sensu stricto”. Therefore, ethylene seems to be
a trigger factor in control of apple embryo dormancy removal and germination. 相似文献
16.
Organization and control in the arginine biosynthetic pathway of Neurospora. 总被引:5,自引:11,他引:5
下载免费PDF全文

Eight enzymes involved in the conversion of acetylglutamate to arginine in Neurospora crassa were studied. The data indicate that of three enzymes early in the sequence, only the first, acetylglutamate kinase, is a nonorganellar enzyme. The next two, N-acetyl-gamma-glutamyl-phosphate reductase and acetylornithine aminotransferase, are in the mitochondrion, which was previously shown to contain the subsequent enzymes: acetylornithine-glutamate acetyltransferase, ornithine carbamyltransferase, and carbamyl-phosphate synthetase A (arginine specific). The last two enzymes of the pathway, argininosuccinate synthetase and argininosuccinate lyase, were previously shown to be cytosolic. All enzymes but one have low amplitudes or repression. Their levels respond little to arginine excess and are about twofold elevated (threefold for ornithine carbamyltransferase) as a result of arginine limitation in the arg-12-8 strain. No restriction of the incorporation of mitochondrial enzymes into mitochondria could be detected when the levels of these enzymes were elevated. Two enzymes, acetylglutamate kinase and carbamyl-phosphate synthetase A, which initiate the synthesis of the ornithine and guanidino moieties of arginine, respectively, show the lowest specific activities in crude extract. These enzymes display special regulatroy features. Acetylglutamate kinase, which has a typically low amplitude of repression, is subject to feedback inhibition. Carbamyl-phosphate synthetase A is wholly insensitive to arginine or citrulline in vitro or in vivo, but displays a very large amplitude of repression (about 60-fold). It is unique in that it can be almost completely repressed by growth of mycelia in excess arginine. These data suggest that mitochondrial localization may be incompatible with a mechanism of feedback inhibition by a cytosolic effector, arginine. Further, they suggest that the high repressibility of carbamyl-phosphate synthetase A compensates for its feedback insensitivity. 相似文献
17.
18.
Isoprenyl diphosphate synthases catalyze addition of allylic diphosphate primers to the isoprene unit in isopentenyl diphosphate to produce polyisoprenoid diphosphates with well defined chain lengths. Phylogenetic correlations suggest that the synthases which catalyze formation of isoprenoid diphosphates with (E) double bonds have evolved from a common ancestor. X-ray crystallographic studies of farnesyl diphosphate synthase in conjunction with site-directed mutagenesis have provided important new information about the residues involved in binding and catalysis and the source of chain length selectivity for the enzymes that catalyze chain elongation. 相似文献
19.
Genetic determination of the meso-diaminopimelate biosynthetic pathway of mycobacteria. 总被引:2,自引:1,他引:2
下载免费PDF全文

J D Cirillo T R Weisbrod A Banerjee B R Bloom W R Jacobs Jr 《Journal of bacteriology》1994,176(14):4424-4429
The increasing incidence of multiple-drug-resistant mycobacterial infections indicates that the development of new methods for treatment of mycobacterial diseases should be a high priority. meso-Diaminopimelic acid (DAP), a key component of a highly immunogenic subunit of the mycobacterial peptidoglycan layer, has been implicated as a potential virulence factor. The mycobacterial DAP biosynthetic pathway could serve as a target for design of new antimycobacterial agents as well as the construction of in vivo selection systems. We have isolated the asd, dapA, dapB, dapD, and dapE genes involved in the DAP biosynthetic pathway of Mycobacterium bovis BCG. These genes were isolated by complementation of Escherichia coli mutations with an expression library of BCG DNA. Our analysis of these genes suggests that BCG may use more than one pathway for biosynthesis of DAP. The nucleotide sequence of the BCG dapB gene was determined. The activity of the product of this gene in Escherichia coli provided evidence that the gene may encode a novel bifunctional dihydrodipicolinate reductase and DAP dehydrogenase. 相似文献
20.
Isoprene synthase converts dimethylallyl diphosphate, derived from the methylerythritol 4-phosphate (MEP) pathway, to isoprene. Isoprene is made by some plants in substantial amounts, which affects atmospheric chemistry, while other plants make no isoprene. As part of our long-term study of isoprene synthesis, the genetics of the isoprene biosynthetic pathway of the isoprene emitter, kudzu (Pueraria montana), was compared with similar genes in Arabidopsis (Arabidopsis thaliana), which does not make isoprene. The MEP pathway genes in kudzu were similar to the corresponding Arabidopsis genes. Isoprene synthase genes of kudzu and aspen (Populus tremuloides) were cloned to compare their divergence with the divergence seen in MEP pathway genes. Phylogenetic analysis of the terpene synthase gene family indicated that isoprene synthases are either within the monoterpene synthase clade or sister to it. In Arabidopsis, the gene most similar to isoprene synthase is a myrcene/ocimene (acyclic monoterpenes) synthase. Two phenylalanine residues found exclusively in isoprene synthases make the active site smaller than other terpene synthase enzymes, possibly conferring specificity for the five-carbon substrate rather than precursors of the larger isoprenoids. Expression of the kudzu isoprene synthase gene in Arabidopsis caused Arabidopsis to emit isoprene, indicating that whether or not a plant emits isoprene depends on whether or not it has a terpene synthase capable of using dimethylallyl diphosphate. 相似文献