首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C L Jahn  M F Krikau  S Shyman 《Cell》1989,59(6):1009-1018
The E. crassus Tec1 element is present in greater than 10(4) copies in the micronuclear genome but is absent from the macronuclear genome. During formation of a macronucleus from a micronucleus, a majority of the Tec1 elements appear as extrachromosomal circles. The circular and integrated forms of Tec1 have been characterized by restriction mapping to produce consensus maps and by sequence analysis of the element's termini. The circular forms are resistant to BAL31 and have the restriction map expected if the element excises at the end of its inverted repeats. DNA sequence analysis of a circular form confirms that the inverted repeats are in a head-to-head configuration. Excision of Tec1 occurs very early during macronuclear development as the DNA begins to replicate to form polytene chromosomes.  相似文献   

2.
More than 100,000 interstitial segments of DNA (internal eliminated sequences [IESs]) are excised from the genome during the formation of a new macronucleus in Euplotes crassus. IESs include unique sequence DNA as well as two related families of transposable elements, Tec1 and Tec2. Here we describe a new class of E. crassus transposons, Tec3, which is present in 20 to 30 copies in the micronuclear genome. Tec3 elements have long inverted terminal repeats and contain a degenerate open reading frame encoding a tyrosine-type recombinase. One characterized copy of Tec3 (Tec3-1) is 4.48 kbp long, has 1.23-kbp inverted terminal repeats, and resides within the micronuclear copy of the ribosomal protein L29 gene (RPL29). The 23 bp at the extreme ends of this element are very similar to those in other E. crassus IESs and, like these other IESs, Tec3-1 is excised during the polytene chromosome stage of macronuclear development to generate a free circular form with an unusual junction structure. In contrast, a second cloned element, Tec3-2, is quite similar to Tec3-1 but lacks the terminal 258 bp of the inverted repeats, so that its ends do not resemble the other E. crassus IES termini. The Tec3-2 element appears to reside in a large segment of the micronuclear genome that is subject to developmental elimination. Models for the origins of these two types of Tec3 elements are presented, along with a discussion of how some members of this new transposon family may have come to be excised by the same machinery that removes other E. crassus IESs.  相似文献   

3.
After mating, hypotrichous ciliated protozoa transform a set of their micronuclear chromosomes into thousands of short, linear DNA molecules that form the macronuclear genome. To examine micronuclear genome organization in the hypotrich Euplotes crassus, we have analyzed two cloned segments of micronuclear DNA as well as the macronuclear DNA molecules that are derived from them. E. crassus was found to display a number of features characteristic of other hypotrich genomes, including (i) clustering and close spacing of the precursors of macronuclear DNA molecules, (ii) the frequent occurrence of internal eliminated sequences within macronuclear precursors, (iii) overlapping macronuclear precursors, (iv) lack of telomeric repeats at the ends of macronuclear precursors, and (v) alternative processing of the micronuclear chromosome to yield multiple macronuclear DNA molecules. In addition, a moderately repetitive, transposonlike element that interrupts the precursors of two macronuclear DNA molecules has been identified and characterized. This transposonlike element, designated Tec1, is shown to be reproducibly removed from one of the macronuclear precursors during independent episodes of macronuclear development.  相似文献   

4.
5.
6.
B O King  M C Yao 《Cell》1982,31(1):177-182
The linear extrachromosomal ribosomal DNA of Tetrahymena is generated from a single integrated copy during macronuclear development. The free ends of this extrachromosomal gene contain 20-70 tandem repeats of the hexanucleotide CCCCAA. We have determined the nucleotide sequence at the same (3') end of the single, integrated micronuclear gene. In contrast to the extrachromosomal gene, only a single CCCCAA sequence was found at this position. The same result was obtained from two independently isolated DNA clones, and was therefore not likely an artifact of cloning. Comparisons of the genomic DNA with the cloned fragment by Southern hybridization also supported this argument. Thus the tandemly repetitive hexanucleotide at the free ends of the extrachromosomal rDNA is not an inherited feature, and must be generated during the development of the macronucleus.  相似文献   

7.
The 2300 base-pair transposon-like human element, THE-1, has been identified in the extrachromosomal circular DNA of the established human cell line HeLa as a relatively homogeneous population of covalently closed 1900 base-pair molecules. THE-1, which has been classified tentatively as a retroviral-like transposable element (a retrotransposon), is present in the extrachromosomal circular DNA of African green monkey (BSC-1) and human lymphoblastoid (Jurkat) cell lines. The 1900 base-pair extrachromosomal elements isolated and cloned from HeLa cells (1) appear to contain only THE-1-specific nucleotide sequences, (2) are circularized versions of the linear chromosomal sequence, and (3) are related predominantly to a single, or single type of, family member.  相似文献   

8.
During macronuclear development in the ciliate Euplotes crassus, the highly repetitive, transposon-like Tec elements possess an unusual chromatin structure. We observed that the Tec element chromatin is highly resistant to salt extraction and behaves like a nuclear matrix/chromosome scaffold-associated structure. Standard matrix/scaffold extraction procedures identified two major proteins: 1) an ~140-kDa protein that seems to be topoisomerase II based on its reactivity with anti-topoisomerase II antibodies, and 2) an 85-kDa protein that we further purified by acid extraction and have shown to be a novel protein by sequence analysis of its gene. The 85-kDa protein (p85) is a developmental stage-specific protein and is located exclusively in the developing macronucleus. Immunolocalization studies of p85 show that it colocalizes with topoisomerase II in chromatin. In addition, in situ hybridization combined with immunofluorescence localization of the proteins indicates that 100% of the Tec elements colocalize with 70% of the p85, whereas no significant colocalization with a total macronuclear sequence-specific probe is observed. p85 is the first developmental stage-specific protein identified as being specifically associated with sequences undergoing elimination in E. crassus.  相似文献   

9.
S L Tausta  L A Klobutcher 《Cell》1989,59(6):1019-1026
Following their sexual cycle, hypotrichous ciliated protozoa transform a copy of a chromosomal micronucleus into a macronucleus containing small, linear DNA molecules. A frequent event during macronuclear development is the removal of short segments of DNA (internal eliminated sequences: IESs) by a process equivalent to DNA breakage and rejoining. In this study we used a polymerase chain reaction procedure to demonstrate that free circular forms of IESs are present in cells undergoing macronuclear development. Sequencing of the junctions of the free circular IESs suggests that they share 12 nucleotides with the macronuclear DNA molecules that are generated following IES removal. The results provide evidence that IESs are removed by an active DNA breakage and rejoining process, which may involve staggered cuts in the substrate DNA.  相似文献   

10.
A novel form of extrachromosomal rDNA has been identified in conjugating Tetrahymena cells. This rDNA consists of 11 kb linear double-stranded DNA molecules, each containing a single rRNA gene copy. The DNA sequence, tandemly repeated CCCCAA (Blackburn and Gall 1978) found at the termini of extrachromosomal palindromic rDNA (the macronuclear form found in vegetatively growing cells), is also present at the corresponding terminus of the 11 kb rDNA. The other end of this molecule has an extra 0.3 kb segment of DNA covalently attached to the DNA region corresponding to the center of the palindromic rDNA. The kinetics of appearance and synthesis of the 11 kb rDNA early in macronuclear development are consistent with its being an intermediate in rDNA amplification.  相似文献   

11.
N Junakovic  P Ballario 《Plasmid》1984,11(2):109-115
We find that in the circular extrachromosomal DNA from Drosophila tissue culture cells the transposable elements copia, 412, 297, and mdg 1 are present in variable amounts. There is no detectable circular DNA homologous to B104 . From the relationship between the intra- and extrachromosomal forms it appears that the amount of different circular elements is not related to the amount of the respective chromosomal elements.  相似文献   

12.
13.
Three independently derived antifolate-resistant Leishmania major cell lines overproduce the bifunctional protein thymidylate synthase-dihydrofolate reductase (TS-DHFR) by amplification of a region of DNA (R-region DNA) that contains the gene for TS-DHFR. On orthogonal-field-alteration gel electrophoresis (OFAGE), the extrachromosomal R-region DNAs are circular molecules, and different forms of R-region DNA within these cell lines are resolved. The R-region DNAs migrate aberrantly on OFAGE with respect to linear DNA and supercoiled plasmid standards. We describe a method for the isolation of these R-region DNA forms from OFAGE. By electron microscopy, we show that the extrachromosomal elements are single supercoiled circular DNA molecules, and are predominantly circular monomers and dimers of the original R-region DNA amplification unit. Using OFAGE, an analysis of cloned isolates shows that individual cells may contain multiple forms of R-region DNA. Furthermore, within a given cell line, certain distinguishable forms appear to have the same size and restriction map, suggesting they may be topoisomers. The multiple forms of R-region DNA are in a dynamic state in the antifolate-resistant populations, and the relative amount of DNA in each form as well as the number of forms within each cell line change through time. As currently understood, the generation of amplified R-region DNA in L. major is summarized.  相似文献   

14.
An extrachromosomal DNA was discovered in Naegleria gruberi. The 3,000 to 5,000 copies per cell of this 14-kilobase-pair circular plasmid carry all the 18S, 28S, and 5.8S rRNA genes. The presence of the ribosomal DNA of an organism exclusively on a circular extrachromosomal element is without precedent, and Naegleria is only the third eucaryotic genus in which a nuclear plasmid DNA has been found.  相似文献   

15.
Paramecium internal eliminated sequences (IESs) are short AT-rich DNA elements that are precisely eliminated from the germ line genome during development of the somatic macronucleus. They are flanked by one 5'-TA-3' dinucleotide on each side, a single copy of which remains at the donor site after excision. The timing of their excision was examined in synchronized conjugating cells by quantitative PCR. Significant amplification of the germ line genome was observed prior to IES excision, which starts 12 to 14 h after initiation of conjugation and extends over a 2- to 4-h period. Following excision, two IESs were shown to form extrachromosomal circles that can be readily detected on Southern blots of genomic DNA from cells undergoing macronuclear development. On these circular molecules, covalently joined IES ends are separated by one copy of the flanking 5'-TA-3' repeat. The similar structures of the junctions formed on the excised and donor molecules point to a central role for this dinucleotide in IES excision.  相似文献   

16.
M C Yao  C H Yao 《Nucleic acids research》1994,22(25):5702-5708
Extensive programmed DNA deletion occurs in ciliates during development. In this study we examine the excised forms of two previously characterized deletion elements, the R- and M-element, in Tetrahymena. Using divergently oriented primers in polymerase chain reactions we have detected the junctions formed by joining the two ends of these elements, providing evidence for the presence of circular excised forms. These circular forms were detected in developing macronuclear DNA from 12-24 h after mating began, but not in micronuclear or whole cell DNA of vegetative cells. They are present at very low abundance, detectable after PCR only through hybridization with specific probes. Sequence analysis shows that the circle junctions occur at or very near the known ends of the elements. There is sequence microheterogeneity in these junctions, which does not support a simple reciprocal exchange model for DNA deletion. A model involving staggered cuts and variable mismatch repair is proposed to explain these results. This model also explains the sequence microheterogeneity previously detected among the junction sequences retained in the macronuclear chromosome.  相似文献   

17.
This study characterizes amplified structures carrying the human multidrug resistance (MDR) genes in colchicine-selected multidrug resistant KB cell lines and strongly supports a model of gene amplification in which small circular extrachromosomal DNA elements generated from contiguous chromosomal DNA regions multimerize to form cytologically detectable double minute chromosomes (DMs). The human MDR1 gene encodes the 170-kDa P-glycoprotein, which is a plasma membrane pump for many structurally unrelated chemotherapeutic drugs. MDR1 and its homolog, MDR2, undergo amplification when KB cells are subjected to stepwise selection in increasing concentrations of colchicine. The structure of the amplification unit at each step of drug selection was characterized using both high-voltage gel electrophoresis and pulsed-field gel electrophoresis (PFGE) techniques. An 890-kb submicroscopic extrachromosomal circular DNA element carrying the MDR1 and MDR2 genes was detected in cell line KB-ChR-8-5-11, the earliest step in drug selection in which conventional Southern/hybridization analyses detected MDR gene amplification. When KB-ChR-8-5-11 was subjected to stepwise increases in colchicine, this circular DNA element dimerized as detected by PFGE with and without digestion with Not 1, which linearizes the 890-kb amplicon. This dimerization process, which also occurred at the next step of colchicine selection, resulted in the formation of cytologically detectable DMs revealed by analysis of Giemsa-stained metaphase spreads.  相似文献   

18.
.We have analyzed the macronuclear DNA of Paramecium tetraurelia using orthogonal-field-altemation gel electrophoresis. The mean size of the linear macronuclear DNA molecules is approximately 450 kb. Less than 6% of the macronuclear DNA is larger than 800 kb. Using pulse times of 20, 40, 60 and 90 s we show that the macronuclear fragment containing the A type variable surface antigen gene migrates reproducibly as a 320-kb linear DNA. Over the same pulse times we describe the unusual migration of the ribosomal RNA gene (rDNA) of P. tetraurelia. At pulse times of 20 and 40 s the rDNA migrates at limit mobility (300 and 500 kb, respectively) whereas with 60- and 90-s pulse times, 2 components of rDNA are observed; 1 fraction independent of pulse time migrating at limit mobility, and a 2nd component migrating between 100-kb and 400-kb linear markers. Based upon previous electron micrographic studies of Paramecium rDNA as well as data presented here we conclude that the majority of Paramecium rDNA molecules are a circular DNA form.  相似文献   

19.
Extrachromosomal circular DNA molecules of chromosomal origin have been detected in many organisms and are thought to reflect genomic plasticity in eukaryotic cells. Here we report a developmentally regulated formation of extrachromosomal circular DNA that occurs de novo in preblastula Xenopus embryos. This specific DNA population is not detected in the male or female germ cells and is dramatically reduced in later developmental stages and in adult tissues. The activity responsible for the de novo production of extrachromosomal circles is maternally inherited, is stored in the unfertilized egg, and requires genomic DNA as a template. The formation of circular molecules does not require genomic DNA replication but both processes can occur simultaneously in the early development. The production of extrachromosomal circular DNA does not proceed at random since multimers of the tandemly repeated sequence satellite 1 were over-represented in the circle population, while other sequences (such as ribosomal DNA and JCC31 repeated sequence) were not detected. This phenomenon reveals an unexpected plasticity of the embryonic genome which is restricted to the early developmental stage.  相似文献   

20.
Linearized bovine papillomavirus type 1 (BPV-1) DNA was introduced into mouse C127 cells, where it recircularized and replicated as an intact monomeric, extrachromosomal circular form in the resulting transformants. These cells contained a mixture of complex high molecular weight forms that were converted to a linear form of approximately BPV-1 size upon digestion with an enzyme that cuts once within the BPV-1 genome. Further analysis of one of these cell lines revealed that these high molecular weight forms consisted of two components. One was detected on agarose gels as a diffuse smear of slow-migrating material representing linear forms that were tightly associated with host chromosomes, probably by integration. The second component was composed of discrete-sized oligomeric open and supercoiled extrachromosomal circular forms of up to approximately 48 X 10(3) base-pairs (6 tandemly linked BPV-1 genomes) in size. No catenated (interlocked) forms could be detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号